ترجمه مقاله نقش ضروری ارتباطات 6G با چشم انداز صنعت 4.0
- مبلغ: ۸۶,۰۰۰ تومان
ترجمه مقاله پایداری توسعه شهری، تعدیل ساختار صنعتی و کارایی کاربری زمین
- مبلغ: ۹۱,۰۰۰ تومان
In this research, a new wavelet artificial neural network (WANN) model was proposed for daily suspended sediment load (SSL) prediction in rivers. In the developed model, wavelet analysis was linked to an artificial neural network (ANN). For this purpose, daily observed time series of river discharge (Q) and SSL in Yadkin River at Yadkin College, NC station in the USA were decomposed to some sub-time series at different levels by wavelet analysis. Then, these sub-time series were imposed to the ANN technique for SSL time series modeling. To evaluate the model accuracy, the proposed model was compared with ANN, multi linear regression (MLR), and conventional sediment rating curve (SRC) models. The comparison of prediction accuracy of the models illustrated that the WANN was the most accurate model in SSL prediction. Results presented that the WANN model could satisfactorily simulate hysteresis phenomenon, acceptably estimate cumulative SSL, and reasonably predict high SSL values.
در این تحقیق جدید مدل موجک شبکه عصبی مصنوعی (WANN) برای پیش بینی بار رسوب به حالت تعلیق در رودخانه ها پیشنهاد شد. در این مدل به تجزیه در موجک مصنوعی مرتبط با شبکه عصبی مصنوعی پرداخته شد.برای این منظور هر روز سری زمانی از دبی رودخانه و بار رسوبی معلق در ایستگاه nc رودخانه Yadkin در ایالات متحده امریکا مشاهده شده برداشت شدسپس از تجزیه وتحلیل موجک ، از سری زمانی SSL به روش ANN مدل سازی شد.برای ارزیابی دقت مدل، مدل پیشنهادی با ANN، مدل رگرسیون چند خطی (MLR) و منحنی رتبه بندی رسوب رسمی (SRC) مقایسه شد. مقایسه دقت پیش بینی مدل ها نشان داد که WANN دقیق ترین مدل در پیش بینی SSL بود. نتایج نشان داد که مدل WANN میتواند به طور رضایت بخش پدیده هیسترزیس را شبیه سازی کند، SSL تجمعی را قابل قبول و مقادیر SSL بالا را پیش بینی کند