دانلود رایگان مقاله انگلیسی تشخیص مکان و خطای مولفه های پشتیبانی کانکتور بر اساس یادگیری عمیق - IEEE 2018

عنوان فارسی
تشخیص مکان و خطای مولفه های پشتیبانی کانکتور بر اساس یادگیری عمیق
عنوان انگلیسی
Location and Fault Detection of Catenary Support Components Based on Deep Learning
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
6
سال انتشار
2018
نشریه
آی تریپل ای - IEEE
فرمت مقاله انگلیسی
PDF
کد محصول
E8669
رشته های مرتبط با این مقاله
مهندسی برق، مهندسی کامپیوتر
گرایش های مرتبط با این مقاله
مهندسی کنترل، مکاترونیک، مهندسی الکترونیک، هوش مصنوعی
مجله
کنفرانس بین المللی فناوری اندازه گیری و ابزار - International Instrumentation and Measurement Technology Conference
کلمات کلیدی
راه آهن، اجزای پشتیبانی شبکه، یادگیری عمیق، محل هدف، تشخیص گسل
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract:


Catenary support components (CSCs) are the most important devices that support the overhead line and messenger of catenary system in electric railway. The faults of CSCs can result in the poor state of catenary system, and directly influence the normal operation of trains. In order to efficiently locate and identify the faults of CSCs, the deep learning algorithms are tried to process the captured images of CSCs in this paper. First at all, a dataset of CSCs that contains 50k labeled instances with 12 categories is built. Second, some traditional location methods of CSCs are introduced, and four recent representative deep learning networks, namely Faster RCNN (VGG16 and ResNet101), YOLOv2 and SSD, are applied to locate 12 categories CSCs, simultaneously and separately. In order to find more suitable algorithms of deep learning, their location performances are compared and evaluated. For the location of single category of CSCs, these algorithms show good performance. However, the models that are adopted to simultaneously locate all categories have a poor location performance on small-scale components of CSCs. Third, aiming at the fault detection of CSCs, some common methods are presented and compared, and the deep learning algorithms are tried to detect the faults of CSCs. Finally, the issues of deep learning for location and fault detection of CSCs, especially for the simultaneous location of CSCs are proposed and discussed, and further prospects are given.

نتیجه گیری

V. CONCLUSION


This paper presents the work that we have tried for CSCs location and faults detection, especially the work of deep learning. The experiment results indicate that deep learning methods can realize CSCs location with high accuracy for most categories, and they are also promising for faults classification. Finally, our views on some issues in the CSCs location and fault detection are given, and several potential solutions are proposed to help solving the problems in this field.


بدون دیدگاه