5 Summary and conclusions
The corrosion behavior of conventional reinforced concrete and reinforced hybrid fiber reinforced concrete (HyFRC) was found to be highly dependent on the cracked state of the composite matrix. A corrosive environment was prepared by allowing 3.5% w/w NaCl solution to permeate the porous cementitious matrix of samples containing a single steel reinforcing bar (rebar) in a wet-dry cyclic manner over a 2.5-year experimental duration. To account for cracks that are present in civil engineering structures in service, subsets of specimens were subjected to the same applied tensile load during environmental exposure. Corrosion potential measurements, linear polarization tests, and Tafel polarization tests were periodically conducted to monitor the electrochemical response of samples during the experiment. In addition, electrochemical impedance spectroscopy (EIS) was performed to evaluate the differences in the impedance responses between samples as a result of accumulated matrix cracking.