ترجمه مقاله نقش ضروری ارتباطات 6G با چشم انداز صنعت 4.0
- مبلغ: ۸۶,۰۰۰ تومان
ترجمه مقاله پایداری توسعه شهری، تعدیل ساختار صنعتی و کارایی کاربری زمین
- مبلغ: ۹۱,۰۰۰ تومان
In this paper, we propose to guide reinforcement learning (RL) with expert coordination knowledge for multi-agent problems managed by a central controller. The aim is to learn to use expert coordination knowledge to restrict the joint action space and to direct exploration towards more promising states, thereby improving the overall learning rate. We model such coordination knowledge as constraints and propose a two-level RL system that utilizes these constraints for online applications. Our declarative approach towards specifying coordination in multi-agent learning allows knowledge sharing between constraints and features (basis functions) for function approximation. Results on a soccer game and a tactical real-time strategy game show that coordination constraints improve the learning rate compared to using only unary constraints. The two-level RL system also outperforms existing single-level approach that utilizes joint action selection via coordination graphs.