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Variable Step-Size NLMS and Affine
Projection Algorithms
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Abstract—This letter proposes two new variable step-size algo-
rithms for normalized least mean square and affine projection. The
proposed schemes lead to faster convergence rate and lower mis-
adjustment error.

Index Terms—Adaptive filters, affine projection algorithm, nor-
malized least mean square (NLMS), variable step-size.

I. INTRODUCTION

COLORED input data tend to deteriorate the convergence
performance of least mean square (LMS)-type adaptive

filters [1]–[3]. To overcome this problem, Ozeki and Umeda
proposed an affine projection algorithm (APA) [4] that is based
on affine subspace projections. In contrast to NLMS, which up-
dates the weight vector based only on the current input vector,
APA updates the weight vector based on input vectors. In
both cases of normalized least mean square (NLMS) and APA,
the step-size governs the rate of convergence and the steady-
state excess mean-square error. To meet the conflicting require-
ments of fast convergence and low misadjusment, the step-size
needs to be controlled. In standard LMS, various schemes for
controlling the step-size have been proposed [5]–[8]. The per-
formance of these schemes is determined by how accurately
they can estimate how far the filter is from optimal performance.
Various criteria have been developed for this purpose. Kwong
and Johnston [5] used squared instantaneous errors. To improve
noise immunity under Gaussian noise, Aboulnasr and Mayyas
[6] used the squared autocorrelation of errors at adjacent time,
and Pazaitis and Constantinides [7] adopted the fourth-order cu-
mulant of instantaneous error. In [8] and in some of the refer-
ences therein, the optimum step-size for NLMS is obtained by
minimizing the mean-square derivation at each iteration. These
criteria work effectively for LMS but are not directly applicable
to APA. This is because the instantaneous error of APA is a
vector, not a scalar quantity as in LMS.
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In this letter, we propose a criterion that provides a measure of
the adaptive filter state, i.e., it indicates how close the adaptive
filter is to optimal performance. Using this criterion, we develop
a variable step-size APA, which has faster convergence rate
and lower misadjustment error than existing schemes. We also
develop, as a special case, a variable step-size NLMS algorithm.
Throughout the letter, the following notations are adopted: is
the Euclidean norm of a vector; and Tr is the trace of a matrix.

II. VARIABLE STEP-SIZE APA

Consider data that arise from the model

(1)

where is an unknown column vector that we wish to es-
timate, accounts for measurement noise and denotes

row input (regressor) vectors. Let be an estimate for
at iteration . The affine projection algorithm computes

via

(2)

where

...
...

, and is the step-size.

A. Optimal Variable Step-Size

The update recursion (2) can be written in terms of the
weight-error vector, , as

(3)

Squaring both sides and taking expectations, we find that the
mean-square deviation (MSD) satisfies

Re

(4)

If we choose such that is maximized, then this choice
guarantees that the MSD will undergo the largest decrease from
iteration to iteration . Maximizing

Re
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Fig. 1. Plot of the MSD for VS-APA and standard APA (K = 8, C = 0:15,
Input: Gaussian AR(1), pole at 0.9).

Fig. 2. Comparison of the estimate kp̂ k withEkp k (K = 4,C = 0:01,
Input: Gaussian AR(1), pole at 0.9).

Fig. 3. Plot of the MSD for VS-APA and standard APA (K = 4, C = 0:01,
Input: Gaussian AR(1), pole at 0.9).

Fig. 4. Plot of the MSD for VS-NLMS and standard NLMS (K = 1, C =

0:0001, Input: Gaussian AR(1), pole at 0.9).

Fig. 5. Plot of the MSD for the proposed and other VS algorithms (K = 1,
C = 0:0001, Input: Gaussian AR(1), pole at 0.9).

Fig. 6. Plot of the MSD for VS-APA and standard APA [K = 8, C = 0:15,
Input: Gaussian ARMA(4,2)].
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Fig. 7. Plot of the MSD for VS-APA and standard APA [K = 4, C = 0:01,
Input: Gaussian ARMA(4,2)].

with respect to , leads to the optimum step-size

Re
(5)

Assuming the noise sequence is identically and indepen-
dently distributed and statistically independent of the regres-
sion data , and neglecting the dependency of on past
noises, is approximated as

Tr
(6)

where .
Observe that is a projection matrix onto

, the range space of . Let ,
which is the projection of onto . Since

, the optimum step-size in
(6) becomes

Tr
(7)

In calculating this , however, the major obstacle is that
is not available during adaptation, since is unknown.

B. Variable Step-Size APA

However, note that when ,
and even with noise, it holds under expectation that

Motivated by these facts, we propose to estimate by time-
averaging as follows:

(8)

with a smoothing factor .

Fig. 8. Plot of the MSD for VS-NLMS and standard NLMS [K = 1, C =

0:0001, Input: Gaussian ARMA(4,2)].

Fig. 9. Plot of the MSD for the proposed and other VS algorithms [K = 1,
C = 0:0001, Input: Gaussian ARMA(4,2)].

Using instead of in (7), the proposed variable
step-size (VS) APA becomes

(9)

where is a positive constant. From (7) and (9), we know that
is related to Tr , and this quantity can be ap-

proximated as SNR. So is proportional to and inversely
proportional to SNR. When is large, tends to .
On the other hand, when is small, the step-size is small.
Thus depending on , varies between 0 and . To
guarantee filter stability, is chosen less than 2.

C. Variable Step-Size NLMS

A special case of (9) is a variable step-size NLMS algorithm
obtained by setting . Recall that standard NLMS com-
putes via

(10)
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TABLE I
PARAMETERS FOR VARIABLE STEP-SIZE NLMS ALGORITHMS

Fig. 10. Variation of the rate of convergence of the proposed VS-APA as a
function of C .

where . Then from (9), the step-size is
calculated as where now

.

III. SIMULATION RESULTS

We illustrate the performance of the proposed algorithms
by carrying out computer simulations in a channel estimation
scenario. The unknown channel is represented by a
moving average model with 16 taps. The adaptive filter and
the unknown channel are assumed to have the same number of
taps. Two Gaussian distributed signals are used for the input
signal. The input signals are obtained by filtering a white,
zero-mean, Gaussian random sequence through a first-order
system or a second-order system

The SNR is calculated by

SNR

where . The measurement noise is added
to such that SNR 30 dB. The simulation results are
obtained by ensemble averaging over 100 independent trials.
We use the input signals generated by and for
Figs. 1–5 and Figs. 6–9, respectively. In Fig. 1, we show the
MSD for , , , and

. Dashed lines indicate the results of APA with fixed step-

sizes where we choose and . As can be
seen, the proposed VS-APA converges faster and has lower mis-
adjustment error. In Figs. 2 and 3, we choose , ,

, and . Fig. 2 shows how accurately
estimates . A similar result to Fig. 1 is observed in Fig. 3.
Figs. 4 and 5 show the performance of the proposed variable
step-size NLMS. For comparison purposes, the following vari-
able step-size schemes are applied to (10); although the first
three schemes have been originally developed for standard LMS

VSS-LMS

RVS-LMS

KVS-LMS

VS-NLMS

The parameters used in Figs. 4 and 5 are shown in Table I.
Figs. 6–9 are the simulation results with the different input
signal generated by .

Finally, as indicated in Fig. 10, the rate of convergence of the
proposed algorithm is not highly sensitive to the choice of . In
the figure, the value of is varied by one order of magnitude.

IV. CONCLUSION

We have presented two variable step-size NLMS and APA
schemes. The norm of the projected weighted error vector is
used as a criterion to determine how close the adaptive filter is
to optimum performance. The algorithms show improved filter
performance.
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