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Abstract—The central building block of convolutional neural networks (CNNs) is the convolution operator, which enables networks to
construct informative features by fusing both spatial and channel-wise information within local receptive fields at each layer. A broad
range of prior research has investigated the spatial component of this relationship, seeking to strengthen the representational power of
a CNN by enhancing the quality of spatial encodings throughout its feature hierarchy. In this work, we focus instead on the channel
relationship and propose a novel architectural unit, which we term the “Squeeze-and-Excitation” (SE) block, that adaptively recalibrates
channel-wise feature responses by explicitly modelling interdependencies between channels. We show that these blocks can be
stacked together to form SENet architectures that generalise extremely effectively across different datasets. We further demonstrate
that SE blocks bring significant improvements in performance for existing state-of-the-art CNNs at slight additional computational cost.
Squeeze-and-Excitation Networks formed the foundation of our ILSVRC 2017 classification submission which won first place and
reduced the top-5 error to 2.251%, surpassing the winning entry of 2016 by a relative improvement of ∼25%. Models and code are
available at https://github.com/hujie-frank/SENet.

Index Terms—Squeeze-and-Excitation, Image representations, Attention, Convolutional Neural Networks.
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1 INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) have proven
to be useful models for tackling a wide range of visual

tasks [1], [2], [3], [4]. At each convolutional layer in the net-
work, a collection of filters expresses neighbourhood spatial
connectivity patterns along input channels—fusing spatial
and channel-wise information together within local recep-
tive fields. By interleaving a series of convolutional layers
with non-linear activation functions and downsampling op-
erators, CNNs are able to produce image representations
that capture hierarchical patterns and attain global theo-
retical receptive fields. A central theme of computer vision
research is the search for more powerful representations that
capture only those properties of an image that are most
salient for a given task, enabling improved performance.
As a widely-used family of models for vision tasks, the
development of new neural network architecture designs
now represents a key frontier in this search. Recent research
has shown that the representations produced by CNNs can
be strengthened by integrating learning mechanisms into
the network that help capture spatial correlations between
features. One such approach, popularised by the Inception
family of architectures [5], [6], incorporates multi-scale pro-
cesses into network modules to achieve improved perfor-
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mance. Further work has sought to better model spatial
dependencies [7], [8] and incorporate spatial attention into
the structure of the network [9].

In this paper, we investigate a different aspect of network
design - the relationship between channels. We introduce
a new architectural unit, which we term the Squeeze-and-
Excitation (SE) block, with the goal of improving the quality
of representations produced by a network by explicitly mod-
elling the interdependencies between the channels of its con-
volutional features. To this end, we propose a mechanism
that allows the network to perform feature recalibration,
through which it can learn to use global information to
selectively emphasise informative features and suppress less
useful ones.

The structure of the SE building block is depicted in
Fig. 1. For any given transformation Ftr mapping the
input X to the feature maps U where U ∈ RH×W×C ,
e.g. a convolution, we can construct a corresponding SE
block to perform feature recalibration. The features U are
first passed through a squeeze operation, which produces a
channel descriptor by aggregating feature maps across their
spatial dimensions (H ×W ). The function of this descriptor
is to produce an embedding of the global distribution of
channel-wise feature responses, allowing information from
the global receptive field of the network to be used by
all its layers. The aggregation is followed by an excitation
operation, which takes the form of a simple self-gating
mechanism that takes the embedding as input and pro-
duces a collection of per-channel modulation weights. These
weights are applied to the feature maps U to generate
the output of the SE block which can be fed directly into
subsequent layers of the network.

It is possible to construct an SE network (SENet) by
simply stacking a collection of SE blocks. Moreover, these
SE blocks can also be used as a drop-in replacement for the
original block at a range of depths in the network architec-
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Fig. 1. A Squeeze-and-Excitation block.

ture (Section 6.4). While the template for the building block
is generic, the role it performs at different depths differs
throughout the network. In earlier layers, it excites infor-
mative features in a class-agnostic manner, strengthening
the shared low-level representations. In later layers, the SE
blocks become increasingly specialised, and respond to dif-
ferent inputs in a highly class-specific manner (Section 7.2).
As a consequence, the benefits of the feature recalibration
performed by SE blocks can be accumulated through the
network.

The design and development of new CNN architectures
is a difficult engineering task, typically requiring the se-
lection of many new hyperparameters and layer configura-
tions. By contrast, the structure of the SE block is simple and
can be used directly in existing state-of-the-art architectures
by replacing components with their SE counterparts, where
the performance can be effectively enhanced. SE blocks are
also computationally lightweight and impose only a slight
increase in model complexity and computational burden.

To provide evidence for these claims, we develop several
SENets and conduct an extensive evaluation on the Ima-
geNet dataset [10]. We also present results beyond ImageNet
that indicate that the benefits of our approach are not
restricted to a specific dataset or task. By making use of
SENets, we ranked first in the ILSVRC 2017 classification
competition. Our best model ensemble achieves a 2.251%
top-5 error on the test set1. This represents roughly a 25%
relative improvement when compared to the winner entry
of the previous year (top-5 error of 2.991%).

2 RELATED WORK

Deeper architectures. VGGNets [11] and Inception mod-
els [5] showed that increasing the depth of a network could
significantly increase the quality of representations that
it was capable of learning. By regulating the distribution
of the inputs to each layer, Batch Normalization (BN) [6]
added stability to the learning process in deep networks
and produced smoother optimisation surfaces [12]. Building
on these works, ResNets demonstrated that it was pos-
sible to learn considerably deeper and stronger networks
through the use of identity-based skip connections [13], [14].
Highway networks [15] introduced a gating mechanism to
regulate the flow of information along shortcut connections.
Following these works, there have been further reformula-
tions of the connections between network layers [16], [17],
which show promising improvements to the learning and
representational properties of deep networks.

1. http://image-net.org/challenges/LSVRC/2017/results

An alternative, but closely related line of research has
focused on methods to improve the functional form of
the computational elements contained within a network.
Grouped convolutions have proven to be a popular ap-
proach for increasing the cardinality of learned transforma-
tions [18], [19]. More flexible compositions of operators can
be achieved with multi-branch convolutions [5], [6], [20],
[21], which can be viewed as a natural extension of the
grouping operator. In prior work, cross-channel correlations
are typically mapped as new combinations of features, ei-
ther independently of spatial structure [22], [23] or jointly
by using standard convolutional filters [24] with 1 × 1
convolutions. Much of this research has concentrated on the
objective of reducing model and computational complexity,
reflecting an assumption that channel relationships can be
formulated as a composition of instance-agnostic functions
with local receptive fields. In contrast, we claim that provid-
ing the unit with a mechanism to explicitly model dynamic,
non-linear dependencies between channels using global in-
formation can ease the learning process, and significantly
enhance the representational power of the network.

Algorithmic Architecture Search. Alongside the works
described above, there is also a rich history of research
that aims to forgo manual architecture design and instead
seeks to learn the structure of the network automatically.
Much of the early work in this domain was conducted in
the neuro-evolution community, which established methods
for searching across network topologies with evolutionary
methods [25], [26]. While often computationally demand-
ing, evolutionary search has had notable successes which
include finding good memory cells for sequence models
[27], [28] and learning sophisticated architectures for large-
scale image classification [29], [30], [31]. With the goal of re-
ducing the computational burden of these methods, efficient
alternatives to this approach have been proposed based on
Lamarckian inheritance [32] and differentiable architecture
search [33].

By formulating architecture search as hyperparameter
optimisation, random search [34] and other more sophis-
ticated model-based optimisation techniques [35], [36] can
also be used to tackle the problem. Topology selection
as a path through a fabric of possible designs [37] and
direct architecture prediction [38], [39] have been proposed
as additional viable architecture search tools. Particularly
strong results have been achieved with techniques from
reinforcement learning [40], [41], [42], [43], [44]. SE blocks
can be used as atomic building blocks for these search
algorithms, and were demonstrated to be highly effective
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in this capacity in concurrent work [45].

Attention and gating mechanisms. Attention can be in-
terpreted as a means of biasing the allocation of available
computational resources towards the most informative com-
ponents of a signal [46], [47], [48], [49], [50], [51]. Attention
mechanisms have demonstrated their utility across many
tasks including sequence learning [52], [53], localisation
and understanding in images [9], [54], image captioning
[55], [56] and lip reading [57]. In these applications, it
can be incorporated as an operator following one or more
layers representing higher-level abstractions for adaptation
between modalities. Some works provide interesting studies
into the combined use of spatial and channel attention [58],
[59]. Wang et al. [58] introduced a powerful trunk-and-mask
attention mechanism based on hourglass modules [8] that is
inserted between the intermediate stages of deep residual
networks. By contrast, our proposed SE block comprises a
lightweight gating mechanism which focuses on enhancing
the representational power of the network by modelling
channel-wise relationships in a computationally efficient
manner.

3 SQUEEZE-AND-EXCITATION BLOCKS

A Squeeze-and-Excitation block is a computational unit
which can be built upon a transformation Ftr mapping an
input X ∈ RH′×W ′×C′

to feature maps U ∈ RH×W×C .
In the notation that follows we take Ftr to be a convo-
lutional operator and use V = [v1,v2, . . . ,vC ] to denote
the learned set of filter kernels, where vc refers to the
parameters of the c-th filter. We can then write the outputs
as U = [u1,u2, . . . ,uC ], where

uc = vc ∗X =
C′∑
s=1

vs
c ∗ xs. (1)

Here ∗ denotes convolution, vc = [v1
c ,v

2
c , . . . ,v

C′

c ], X =
[x1,x2, . . . ,xC′

] and uc ∈ RH×W . vs
c is a 2D spatial kernel

representing a single channel of vc that acts on the corre-
sponding channel of X. To simplify the notation, bias terms
are omitted. Since the output is produced by a summation
through all channels, channel dependencies are implicitly
embedded in vc, but are entangled with the local spatial
correlation captured by the filters. The channel relationships
modelled by convolution are inherently implicit and local
(except the ones at top-most layers). We expect the learning
of convolutional features to be enhanced by explicitly mod-
elling channel interdependencies, so that the network is able
to increase its sensitivity to informative features which can
be exploited by subsequent transformations. Consequently,
we would like to provide it with access to global information
and recalibrate filter responses in two steps, squeeze and
excitation, before they are fed into the next transformation.
A diagram illustrating the structure of an SE block is shown
in Fig. 1.

3.1 Squeeze: Global Information Embedding
In order to tackle the issue of exploiting channel depen-
dencies, we first consider the signal to each channel in the
output features. Each of the learned filters operates with

a local receptive field and consequently each unit of the
transformation output U is unable to exploit contextual
information outside of this region.

To mitigate this problem, we propose to squeeze global
spatial information into a channel descriptor. This is
achieved by using global average pooling to generate
channel-wise statistics. Formally, a statistic z ∈ RC is gener-
ated by shrinking U through its spatial dimensions H ×W ,
such that the c-th element of z is calculated by:

zc = Fsq(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j). (2)

Discussion. The output of the transformation U can be
interpreted as a collection of the local descriptors whose
statistics are expressive for the whole image. Exploiting
such information is prevalent in prior feature engineering
work [60], [61], [62]. We opt for the simplest aggregation
technique, global average pooling, noting that more sophis-
ticated strategies could be employed here as well.

3.2 Excitation: Adaptive Recalibration

To make use of the information aggregated in the squeeze
operation, we follow it with a second operation which aims
to fully capture channel-wise dependencies. To fulfil this
objective, the function must meet two criteria: first, it must
be flexible (in particular, it must be capable of learning
a nonlinear interaction between channels) and second, it
must learn a non-mutually-exclusive relationship since we
would like to ensure that multiple channels are allowed to
be emphasised (rather than enforcing a one-hot activation).
To meet these criteria, we opt to employ a simple gating
mechanism with a sigmoid activation:

s = Fex(z,W) = σ(g(z,W)) = σ(W2δ(W1z)), (3)

where δ refers to the ReLU [63] function, W1 ∈ RC
r ×C and

W2 ∈ RC×C
r . To limit model complexity and aid general-

isation, we parameterise the gating mechanism by forming
a bottleneck with two fully-connected (FC) layers around
the non-linearity, i.e. a dimensionality-reduction layer with
reduction ratio r (this parameter choice is discussed in Sec-
tion 6.1), a ReLU and then a dimensionality-increasing layer
returning to the channel dimension of the transformation
output U. The final output of the block is obtained by
rescaling U with the activations s:

x̃c = Fscale(uc, sc) = sc uc, (4)

where X̃ = [x̃1, x̃2, . . . , x̃C ] and Fscale(uc, sc) refers to
channel-wise multiplication between the scalar sc and the
feature map uc ∈ RH×W .

Discussion. The excitation operator maps the input-
specific descriptor z to a set of channel weights. In this
regard, SE blocks intrinsically introduce dynamics condi-
tioned on the input, which can be regarded as a self-
attention function on channels whose relationships are not
confined to the local receptive field the convolutional filters
are responsive to.
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Fig. 2. The schema of the original Inception module (left) and the SE-
Inception module (right).

3.3 Instantiations

The SE block can be integrated into standard architectures
such as VGGNet [11] by insertion after the non-linearity
following each convolution. Moreover, the flexibility of the
SE block means that it can be directly applied to transforma-
tions beyond standard convolutions. To illustrate this point,
we develop SENets by incorporating SE blocks into several
examples of more complex architectures, described next.

We first consider the construction of SE blocks for Incep-
tion networks [5]. Here, we simply take the transformation
Ftr to be an entire Inception module (see Fig. 2) and by
making this change for each such module in the archi-
tecture, we obtain an SE-Inception network. SE blocks can
also be used directly with residual networks (Fig. 3 depicts
the schema of an SE-ResNet module). Here, the SE block
transformation Ftr is taken to be the non-identity branch
of a residual module. Squeeze and Excitation both act before
summation with the identity branch. Further variants that
integrate SE blocks with ResNeXt [19], Inception-ResNet
[21], MobileNet [64] and ShuffleNet [65] can be constructed
by following similar schemes. For concrete examples of
SENet architectures, a detailed description of SE-ResNet-50
and SE-ResNeXt-50 is given in Table 1.

One consequence of the flexible nature of the SE block
is that there are several viable ways in which it could
be integrated into these architectures. Therefore, to assess
sensitivity to the integration strategy used to incorporate SE
blocks into a network architecture, we also provide ablation
experiments exploring different designs for block inclusion
in Section 6.5.

4 MODEL AND COMPUTATIONAL COMPLEXITY

For the proposed SE block design to be of practical use, it
must offer a good trade-off between improved performance
and increased model complexity. To illustrate the compu-
tational burden associated with the module, we consider
a comparison between ResNet-50 and SE-ResNet-50 as an
example. ResNet-50 requires ∼3.86 GFLOPs in a single
forward pass for a 224 × 224 pixel input image. Each SE
block makes use of a global average pooling operation in

Fig. 3. The schema of the original Residual module (left) and the SE-
ResNet module (right).

the squeeze phase and two small FC layers in the excitation
phase, followed by an inexpensive channel-wise scaling
operation. In the aggregate, when setting the reduction ratio
r (introduced in Section 3.2) to 16, SE-ResNet-50 requires
∼3.87 GFLOPs, corresponding to a 0.26% relative increase
over the original ResNet-50. In exchange for this slight addi-
tional computational burden, the accuracy of SE-ResNet-50
surpasses that of ResNet-50 and indeed, approaches that
of a deeper ResNet-101 network requiring ∼7.58 GFLOPs
(Table 2).

In practical terms, a single pass forwards and backwards
through ResNet-50 takes 190 ms, compared to 209 ms for
SE-ResNet-50 with a training minibatch of 256 images (both
timings are performed on a server with 8 NVIDIA Titan X
GPUs). We suggest that this represents a reasonable runtime
overhead, which may be further reduced as global pooling
and small inner-product operations receive further opti-
misation in popular GPU libraries. Due to its importance
for embedded device applications, we further benchmark
CPU inference time for each model: for a 224 × 224 pixel
input image, ResNet-50 takes 164 ms in comparison to 167
ms for SE-ResNet-50. We believe that the small additional
computational cost incurred by the SE block is justified by
its contribution to model performance.

We next consider the additional parameters introduced
by the proposed SE block. These additional parameters
result solely from the two FC layers of the gating mechanism
and therefore constitute a small fraction of the total network
capacity. Concretely, the total number introduced by the
weight parameters of these FC layers is given by:

2

r

S∑
s=1

Ns · Cs
2, (5)

where r denotes the reduction ratio, S refers to the number
of stages (a stage refers to the collection of blocks operat-
ing on feature maps of a common spatial dimension), Cs

denotes the dimension of the output channels and Ns de-
notes the number of repeated blocks for stage s (when bias
terms are used in FC layers, the introduced parameters and
computational cost are typically negligible). SE-ResNet-50
introduces ∼2.5 million additional parameters beyond the
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TABLE 1
(Left) ResNet-50 [13]. (Middle) SE-ResNet-50. (Right) SE-ResNeXt-50 with a 32×4d template. The shapes and operations with specific parameter

settings of a residual building block are listed inside the brackets and the number of stacked blocks in a stage is presented outside. The inner
brackets following by fc indicates the output dimension of the two fully connected layers in an SE module.

Output size ResNet-50 SE-ResNet-50 SE-ResNeXt-50 (32× 4d)
112× 112 conv, 7× 7, 64, stride 2

56× 56
max pool, 3× 3, stride 2conv, 1× 1, 64

conv, 3× 3, 64
conv, 1× 1, 256

× 3


conv, 1× 1, 64
conv, 3× 3, 64
conv, 1× 1, 256
fc, [16, 256]

× 3


conv, 1× 1, 128
conv, 3× 3, 128 C = 32
conv, 1× 1, 256
fc, [16, 256]

× 3

28× 28

conv, 1× 1, 128
conv, 3× 3, 128
conv, 1× 1, 512

× 4


conv, 1× 1, 128
conv, 3× 3, 128
conv, 1× 1, 512
fc, [32, 512]

× 4


conv, 1× 1, 256
conv, 3× 3, 256 C = 32
conv, 1× 1, 512
fc, [32, 512]

× 4

14× 14

conv, 1× 1, 256
conv, 3× 3, 256
conv, 1× 1, 1024

× 6


conv, 1× 1, 256
conv, 3× 3, 256
conv, 1× 1, 1024
fc, [64, 1024]

× 6


conv, 1× 1, 512
conv, 3× 3, 512 C = 32
conv, 1× 1, 1024
fc, [64, 1024]

× 6

7×7

conv, 1× 1, 512
conv, 3× 3, 512
conv, 1× 1, 2048

× 3


conv, 1× 1, 512
conv, 3× 3, 512
conv, 1× 1, 2048
fc, [128, 2048]

× 3


conv, 1× 1, 1024
conv, 3× 3, 1024 C = 32
conv, 1× 1, 2048
fc, [128, 2048]

× 3

1× 1 global average pool, 1000-d fc, softmax

TABLE 2
Single-crop error rates (%) on the ImageNet validation set and complexity comparisons. The original column refers to the results reported in the
original papers. To enable a fair comparison, we re-train the baseline models and report the scores in the re-implementation column. The SENet

column refers to the corresponding architectures in which SE blocks have been added. The numbers in brackets denote the performance
improvement over the re-implemented baselines. † indicates that the model has been evaluated on the non-blacklisted subset of the validation set

(this is discussed in more detail in [21]), which may slightly improve results. VGG-16 and SE-VGG-16 are trained with batch normalization.

original re-implementation SENet
top-1 err. top-5 err. top-1 err. top-5 err. GFLOPs top-1 err. top-5 err. GFLOPs

ResNet-50 [13] 24.7 7.8 24.80 7.48 3.86 23.29(1.51) 6.62(0.86) 3.87

ResNet-101 [13] 23.6 7.1 23.17 6.52 7.58 22.38(0.79) 6.07(0.45) 7.60

ResNet-152 [13] 23.0 6.7 22.42 6.34 11.30 21.57(0.85) 5.73(0.61) 11.32

ResNeXt-50 [19] 22.2 - 22.11 5.90 4.24 21.10(1.01) 5.49(0.41) 4.25

ResNeXt-101 [19] 21.2 5.6 21.18 5.57 7.99 20.70(0.48) 5.01(0.56) 8.00

VGG-16 [11] - - 27.02 8.81 15.47 25.22(1.80) 7.70(1.11) 15.48

BN-Inception [6] 25.2 7.82 25.38 7.89 2.03 24.23(1.15) 7.14(0.75) 2.04

Inception-ResNet-v2 [21] 19.9† 4.9† 20.37 5.21 11.75 19.80(0.57) 4.79(0.42) 11.76

∼25 million parameters required by ResNet-50, correspond-
ing to a ∼10% increase. In practice, the majority of these
parameters come from the final stage of the network, where
the excitation operation is performed across the greatest
number of channels. However, we found that this compara-
tively costly final stage of SE blocks could be removed at
only a small cost in performance (<0.1% top-5 error on
ImageNet) reducing the relative parameter increase to∼4%,
which may prove useful in cases where parameter usage
is a key consideration (see Section 6.4 and 7.2 for further
discussion).

5 EXPERIMENTS

In this section, we conduct experiments to investigate the
effectiveness of SE blocks across a range of tasks, datasets
and model architectures.

5.1 Image Classification
To evaluate the influence of SE blocks, we first perform
experiments on the ImageNet 2012 dataset [10] which
comprises 1.28 million training images and 50K validation

images from 1000 different classes. We train networks on
the training set and report the top-1 and top-5 error on the
validation set.

Each baseline network architecture and its correspond-
ing SE counterpart are trained with identical optimisation
schemes. We follow standard practices and perform data
augmentation with random cropping using scale and as-
pect ratio [5] to a size of 224 × 224 pixels (or 299 × 299
for Inception-ResNet-v2 [21] and SE-Inception-ResNet-v2)
and perform random horizontal flipping. Each input im-
age is normalised through mean RGB-channel subtraction.
All models are trained on our distributed learning system
ROCS which is designed to handle efficient parallel training
of large networks. Optimisation is performed using syn-
chronous SGD with momentum 0.9 and a minibatch size
of 1024. The initial learning rate is set to 0.6 and decreased
by a factor of 10 every 30 epochs. Models are trained for 100
epochs from scratch, using the weight initialisation strategy
described in [66]. The reduction ratio r (in Section 3.2) is set
to 16 by default (except where stated otherwise).

When evaluating the models we apply centre-cropping
so that 224× 224 pixels are cropped from each image, after
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TABLE 3
Single-crop error rates (%) on the ImageNet validation set and complexity comparisons. MobileNet refers to “1.0 MobileNet-224” in [64] and

ShuffleNet refers to “ShuffleNet 1× (g = 3)” in [65]. The numbers in brackets denote the performance improvement over the re-implementation.

original re-implementation SENet
top-1 err. top-5 err. top-1 err. top-5 err. MFLOPs Params top-1 err. top-5 err. MFLOPs Params

MobileNet [64] 29.4 - 28.4 9.4 569 4.2M 25.3(3.1) 7.7(1.7) 572 4.7M
ShuffleNet [65] 32.6 - 32.6 12.5 140 1.8M 31.0(1.6) 11.1(1.4) 142 2.4M

Fig. 4. Training baseline architectures and their SENet counterparts on ImageNet. SENets exhibit improved optimisation characteristics and produce
consistent gains in performance which are sustained throughout the training process.

its shorter edge is first resized to 256 (299 × 299 from
each image whose shorter edge is first resized to 352 for
Inception-ResNet-v2 and SE-Inception-ResNet-v2).

Network depth. We begin by comparing SE-ResNet against
ResNet architectures with different depths and report the
results in Table 2. We observe that SE blocks consistently
improve performance across different depths with an ex-
tremely small increase in computational complexity. Re-
markably, SE-ResNet-50 achieves a single-crop top-5 valida-
tion error of 6.62%, exceeding ResNet-50 (7.48%) by 0.86%
and approaching the performance achieved by the much
deeper ResNet-101 network (6.52% top-5 error) with only
half of the total computational burden (3.87 GFLOPs vs.
7.58 GFLOPs). This pattern is repeated at greater depth,
where SE-ResNet-101 (6.07% top-5 error) not only matches,
but outperforms the deeper ResNet-152 network (6.34%
top-5 error) by 0.27%. While it should be noted that the SE
blocks themselves add depth, they do so in an extremely
computationally efficient manner and yield good returns
even at the point at which extending the depth of the base
architecture achieves diminishing returns. Moreover, we see
that the gains are consistent across a range of different
network depths, suggesting that the improvements induced
by SE blocks may be complementary to those obtained by
simply increasing the depth of the base architecture.

Integration with modern architectures. We next study the
effect of integrating SE blocks with two further state-of-
the-art architectures, Inception-ResNet-v2 [21] and ResNeXt
(using the setting of 32 × 4d) [19], both of which introduce
additional computational building blocks into the base net-
work. We construct SENet equivalents of these networks,
SE-Inception-ResNet-v2 and SE-ResNeXt (the configuration
of SE-ResNeXt-50 is given in Table 1) and report results
in Table 2. As with the previous experiments, we observe
significant performance improvements induced by the in-
troduction of SE blocks into both architectures. In partic-
ular, SE-ResNeXt-50 has a top-5 error of 5.49% which is
superior to both its direct counterpart ResNeXt-50 (5.90%

top-5 error) as well as the deeper ResNeXt-101 (5.57% top-5
error), a model which has almost twice the total number of
parameters and computational overhead. We note a slight
difference in performance between our re-implementation
of Inception-ResNet-v2 and the result reported in [21].
However, we observe a similar trend with regard to the
effect of SE blocks, finding that SE counterpart (4.79% top-5
error) outperforms our reimplemented Inception-ResNet-v2
baseline (5.21% top-5 error) by 0.42% as well as the reported
result in [21].

We also assess the effect of SE blocks when operating on
non-residual networks by conducting experiments with the
VGG-16 [11] and BN-Inception architecture [6]. To facilitate
the training of VGG-16 from scratch, we add Batch Normal-
ization layers after each convolution. We use identical train-
ing schemes for both VGG-16 and SE-VGG-16. The results of
the comparison are shown in Table 2. Similarly to the results
reported for the residual baseline architectures, we observe
that SE blocks bring improvements in performance on the
non-residual settings.

To provide some insight into influence of SE blocks on
the optimisation of these models, example training curves
for runs of the baseline architectures and their respective
SE counterparts are depicted in Fig. 4. We observe that SE
blocks yield a steady improvement throughout the optimi-
sation procedure. Moreover, this trend is fairly consistent
across a range of network architectures considered as base-
lines.

Mobile setting. Finally, we consider two representative
architectures from the class of mobile-optimised networks,
MobileNet [64] and ShuffleNet [65]. For these experiments,
we used a minibatch size of 256 and slightly less aggressive
data augmentation and regularisation as in [65]. We trained
the models across 8 GPUs using SGD with momentum (set
to 0.9) and an initial learning rate of 0.1 which was reduced
by a factor of 10 each time the validation loss plateaued. The
total training process required ∼ 400 epochs (enabling us
to reproduce the baseline performance of [65]). The results
reported in Table 3 show that SE blocks consistently improve
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TABLE 4
Classification error (%) on CIFAR-10.

original SENet
ResNet-110 [14] 6.37 5.21
ResNet-164 [14] 5.46 4.39
WRN-16-8 [67] 4.27 3.88
Shake-Shake 26 2x96d [68] + Cutout [69] 2.56 2.12

TABLE 5
Classification error (%) on CIFAR-100.

original SENet
ResNet-110 [14] 26.88 23.85
ResNet-164 [14] 24.33 21.31
WRN-16-8 [67] 20.43 19.14
Shake-Even 29 2x4x64d [68] + Cutout [69] 15.85 15.41

the accuracy by a large margin at a minimal increase in
computational cost.

Additional datasets. We next investigate whether the bene-
fits of SE blocks generalise to datasets beyond ImageNet. We
perform experiments with several popular baseline archi-
tectures and techniques (ResNet-110 [14], ResNet-164 [14],
WideResNet-16-8 [67], Shake-Shake [68] and Cutout [69]) on
the CIFAR-10 and CIFAR-100 datasets [70]. These comprise
a collection of 50k training and 10k test 32 × 32 pixel RGB
images, labelled with 10 and 100 classes respectively. The in-
tegration of SE blocks into these networks follows the same
approach that was described in Section 3.3. Each baseline
and its SENet counterpart are trained with standard data
augmentation strategies [24], [71]. During training, images
are randomly horizontally flipped and zero-padded on each
side with four pixels before taking a random 32 × 32 crop.
Mean and standard deviation normalisation is also applied.
The setting of the training hyperparameters (e.g. minibatch
size, initial learning rate, weight decay) match those sug-
gested by the original papers. We report the performance
of each baseline and its SENet counterpart on CIFAR-10
in Table 4 and performance on CIFAR-100 in Table 5. We
observe that in every comparison SENets outperform the
baseline architectures, suggesting that the benefits of SE
blocks are not confined to the ImageNet dataset.

5.2 Scene Classification

We also conduct experiments on the Places365-Challenge
dataset [73] for scene classification. This dataset comprises
8 million training images and 36, 500 validation images
across 365 categories. Relative to classification, the task of
scene understanding offers an alternative assessment of a
model’s ability to generalise well and handle abstraction.
This is because it often requires the model to handle more
complex data associations and to be robust to a greater level
of appearance variation.

We opted to use ResNet-152 as a strong baseline to
assess the effectiveness of SE blocks and follow the training
and evaluation protocols described in [72], [74]. In these
experiments, models are trained from scratch. We report
the results in Table 6, comparing also with prior work. We
observe that SE-ResNet-152 (11.01% top-5 error) achieves a
lower validation error than ResNet-152 (11.61% top-5 error),

TABLE 6
Single-crop error rates (%) on Places365 validation set.

top-1 err. top-5 err.
Places-365-CNN [72] 41.07 11.48
ResNet-152 (ours) 41.15 11.61
SE-ResNet-152 40.37 11.01

TABLE 7
Faster R-CNN object detection results (%) on COCO minival set.

AP@IoU=0.5 AP
ResNet-50 57.9 38.0
SE-ResNet-50 61.0 40.4
ResNet-101 60.1 39.9
SE-ResNet-101 62.7 41.9

providing evidence that SE blocks can also yield improve-
ments for scene classification. This SENet surpasses the
previous state-of-the-art model Places-365-CNN [72] which
has a top-5 error of 11.48% on this task.

5.3 Object Detection on COCO
We further assess the generalisation of SE blocks on the
task of object detection using the COCO dataset [75]. As
in previous work [19], we use the minival protocol, i.e.,
training the models on the union of the 80k training set
and a 35k val subset and evaluating on the remaining
5k val subset. Weights are initialised by the parameters
of the model trained on the ImageNet dataset. We use
the Faster R-CNN [4] detection framework as the basis
for evaluating our models and follow the hyperparameter
setting described in [76] (i.e., end-to-end training with the
’2x’ learning schedule). Our goal is to evaluate the effect
of replacing the trunk architecture (ResNet) in the object
detector with SE-ResNet, so that any changes in perfor-
mance can be attributed to better representations. Table 7
reports the validation set performance of the object detector
using ResNet-50, ResNet-101 and their SE counterparts as
trunk architectures. SE-ResNet-50 outperforms ResNet-50
by 2.4% (a relative 6.3% improvement) on COCO’s stan-
dard AP metric and by 3.1% on AP@IoU=0.5. SE blocks
also benefit the deeper ResNet-101 architecture achieving
a 2.0% improvement (5.0% relative improvement) on the
AP metric. In summary, this set of experiments demonstrate
the generalisability of SE blocks. The induced improvements
can be realised across a broad range of architectures, tasks
and datasets.

5.4 ILSVRC 2017 Classification Competition
SENets formed the foundation of our submission to the
ILSVRC competition where we achieved first place. Our
winning entry comprised a small ensemble of SENets that
employed a standard multi-scale and multi-crop fusion
strategy to obtain a top-5 error of 2.251% on the test set.
As part of this submission, we constructed an additional
model, SENet-154, by integrating SE blocks with a modified
ResNeXt [19] (the details of the architecture are provided
in Appendix). We compare this model with prior work on
the ImageNet validation set in Table 8 using standard crop
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TABLE 8
Single-crop error rates (%) of state-of-the-art CNNs on ImageNet

validation set with crop sizes 224× 224 and 320× 320 / 299× 299.

224× 224 320× 320 /
299× 299

top-1
err.

top-5
err.

top-1
err.

top-5
err.

ResNet-152 [13] 23.0 6.7 21.3 5.5
ResNet-200 [14] 21.7 5.8 20.1 4.8
Inception-v3 [20] - - 21.2 5.6
Inception-v4 [21] - - 20.0 5.0
Inception-ResNet-v2 [21] - - 19.9 4.9
ResNeXt-101 (64 × 4d) [19] 20.4 5.3 19.1 4.4
DenseNet-264 [17] 22.15 6.12 - -
Attention-92 [58] - - 19.5 4.8
PyramidNet-200 [77] 20.1 5.4 19.2 4.7
DPN-131 [16] 19.93 5.12 18.55 4.16
SENet-154 18.68 4.47 17.28 3.79

TABLE 9
Comparison (%) with state-of-the-art CNNs on ImageNet validation set

using larger crop sizes/additional training data. †This model was
trained with a crop size of 320× 320.

extra
data

crop
size

top-1
err.

top-5
err.

Very Deep PolyNet [78] - 331 18.71 4.25
NASNet-A (6 @ 4032) [42] - 331 17.3 3.8
PNASNet-5 (N=4,F=216) [35] - 331 17.1 3.8
SENet-154† - 320 16.88 3.58
AmoebaNet-C [79] - 331 16.5 3.5
ResNeXt-101 32× 48d [80] X 224 14.6 2.4

sizes (224× 224 and 320× 320). We observe that SENet-154
achieves a top-1 error of 18.68% and a top-5 error of 4.47%
using a 224 × 224 centre crop evaluation, which represents
the strongest reported result.

Following the challenge there has been a great deal of
further progress on the ImageNet benchmark. For compar-
ison, we include the strongest results that we are currently
aware of among the both published and unpublished lit-
erature in Table 9. The best performance using only Im-
ageNet data was recently reported by [79]. This method
uses reinforcement learning to develop new policies for
data augmentation during training to improve the perfor-
mance of the architecture searched by [31]. The best overall
performance was reported by [80] using a ResNeXt-101
32×48d architecture. This was achieved by pretraining their
model on approximately one billion weakly labelled images
and finetuning on ImageNet. The improvements yielded by
more sophisticated data augmentation [79] and extensive
pretraining [80] may be complementary to our proposed
changes to the network architecture.

6 ABLATION STUDY

In this section we conduct ablation experiments to gain a
better understanding of the effect of using different con-
figurations on components of the SE blocks. All ablation
experiments are performed on the ImageNet dataset on a
single machine (with 8 GPUs). ResNet-50 is used as the
backbone architecture. We found empirically that on ResNet
architectures, removing the biases of the FC layers in the
excitation operation facilitates the modelling of channel

TABLE 10
Single-crop error rates (%) on ImageNet and parameter sizes for
SE-ResNet-50 at different reduction ratios. Here, original refers to

ResNet-50.

Ratio r top-1 err. top-5 err. Params
2 22.29 6.00 45.7M
4 22.25 6.09 35.7M
8 22.26 5.99 30.7M
16 22.28 6.03 28.1M
32 22.72 6.20 26.9M

original 23.30 6.55 25.6M

dependencies, and use this configuration in the following
experiments. The data augmentation strategy follows the
approach described in Section 5.1. To allow us to study the
upper limit of performance for each variant, the learning
rate is initialised to 0.1 and training continues until the
validation loss plateaus2 (∼300 epochs in total). The learn-
ing rate is then reduced by a factor of 10 and then this
process is repeated (three times in total). Label-smoothing
regularisation [20] is used during training.

6.1 Reduction ratio
The reduction ratio r introduced in Eqn. 5 is a hyperpa-
rameter which allows us to vary the capacity and compu-
tational cost of the SE blocks in the network. To investigate
the trade-off between performance and computational cost
mediated by this hyperparameter, we conduct experiments
with SE-ResNet-50 for a range of different r values. The
comparison in Table 10 shows that performance is robust to
a range of reduction ratios. Increased complexity does not
improve performance monotonically while a smaller ratio
dramatically increases the parameter size of the model. Set-
ting r = 16 achieves a good balance between accuracy and
complexity. In practice, using an identical ratio throughout
a network may not be optimal (due to the distinct roles
performed by different layers), so further improvements
may be achievable by tuning the ratios to meet the needs
of a given base architecture.

6.2 Squeeze Operator
We examine the significance of using global average pooling
as opposed to global max pooling as our choice of squeeze
operator (since this worked well, we did not consider more
sophisticated alternatives). The results are reported in Ta-
ble 11. While both max and average pooling are effective,
average pooling achieves slightly better performance, jus-
tifying its selection as the basis of the squeeze operation.
However, we note that the performance of SE blocks is fairly
robust to the choice of specific aggregation operator.

6.3 Excitation Operator
We next assess the choice of non-linearity for the excitation
mechanism. We consider two further options: ReLU and
tanh, and experiment with replacing the sigmoid with these

2. For reference, training with a 270 epoch fixed schedule (reducing
the learning rate at 125, 200 and 250 epochs) achieves top-1 and top-5
error rates for ResNet-50 and SE-ResNet-50 of (23.21%, 6.53%) and
(22.20%, 6.00%) respectively.
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TABLE 11
Effect of using different squeeze operators in SE-ResNet-50 on

ImageNet (error rates %).

Squeeze top-1 err. top-5 err.
Max 22.57 6.09
Avg 22.28 6.03

TABLE 12
Effect of using different non-linearities for the excitation operator in

SE-ResNet-50 on ImageNet (error rates %).

Excitation top-1 err. top-5 err.
ReLU 23.47 6.98
Tanh 23.00 6.38

Sigmoid 22.28 6.03

alternative non-linearities. The results are reported in Ta-
ble 12. We see that exchanging the sigmoid for tanh slightly
worsens performance, while using ReLU is dramatically
worse and in fact causes the performance of SE-ResNet-50
to drop below that of the ResNet-50 baseline. This suggests
that for the SE block to be effective, careful construction of
the excitation operator is important.

6.4 Different stages

We explore the influence of SE blocks at different stages by
integrating SE blocks into ResNet-50, one stage at a time.
Specifically, we add SE blocks to the intermediate stages:
stage 2, stage 3 and stage 4, and report the results in Ta-
ble 13. We observe that SE blocks bring performance benefits
when introduced at each of these stages of the architecture.
Moreover, the gains induced by SE blocks at different stages
are complementary, in the sense that they can be combined
effectively to further bolster network performance.

6.5 Integration strategy

Finally, we perform an ablation study to assess the influence
of the location of the SE block when integrating it into exist-
ing architectures. In addition to the proposed SE design, we
consider three variants: (1) SE-PRE block, in which the SE
block is moved before the residual unit; (2) SE-POST block,
in which the SE unit is moved after the summation with
the identity branch (after ReLU) and (3) SE-Identity block,
in which the SE unit is placed on the identity connection in
parallel to the residual unit. These variants are illustrated
in Figure 5 and the performance of each variant is reported
in Table 14. We observe that the SE-PRE, SE-Identity and
proposed SE block each perform similarly well, while usage

TABLE 13
Effect of integrating SE blocks with ResNet-50 at different stages on

ImageNet (error rates %).

Stage top-1 err. top-5 err. GFLOPs Params
ResNet-50 23.30 6.55 3.86 25.6M
SE Stage 2 23.03 6.48 3.86 25.6M
SE Stage 3 23.04 6.32 3.86 25.7M
SE Stage 4 22.68 6.22 3.86 26.4M
SE All 22.28 6.03 3.87 28.1M

TABLE 14
Effect of different SE block integration strategies with ResNet-50 on

ImageNet (error rates %).

Design top-1 err. top-5 err.
SE 22.28 6.03
SE-PRE 22.23 6.00
SE-POST 22.78 6.35
SE-Identity 22.20 6.15

TABLE 15
Effect of integrating SE blocks at the 3x3 convolutional layer of each

residual branch in ResNet-50 on ImageNet (error rates %).

Design top-1 err. top-5 err. GFLOPs Params
SE 22.28 6.03 3.87 28.1M
SE 3×3 22.48 6.02 3.86 25.8M

of the SE-POST block leads to a drop in performance. This
experiment suggests that the performance improvements
produced by SE units are fairly robust to their location,
provided that they are applied prior to branch aggregation.

In the experiments above, each SE block was placed
outside the structure of a residual unit. We also construct
a variant of the design which moves the SE block inside
the residual unit, placing it directly after the 3 × 3 convo-
lutional layer. Since the 3× 3 convolutional layer possesses
fewer channels, the number of parameters introduced by the
corresponding SE block is also reduced. The comparison in
Table 15 shows that the SE 3×3 variant achieves comparable
classification accuracy with fewer parameters than the stan-
dard SE block. Although it is beyond the scope of this work,
we anticipate that further efficiency gains will be achievable
by tailoring SE block usage for specific architectures.

7 ROLE OF SE BLOCKS

Although the proposed SE block has been shown to im-
prove network performance on multiple visual tasks, we
would also like to understand the relative importance of
the squeeze operation and how the excitation mechanism
operates in practice. A rigorous theoretical analysis of the
representations learned by deep neural networks remains
challenging, we therefore take an empirical approach to
examining the role played by the SE block with the goal of
attaining at least a primitive understanding of its practical
function.

7.1 Effect of Squeeze
To assess whether the global embedding produced by the
squeeze operation plays an important role in performance,
we experiment with a variant of the SE block that adds an
equal number of parameters, but does not perform global
average pooling. Specifically, we remove the pooling op-
eration and replace the two FC layers with corresponding
1 × 1 convolutions with identical channel dimensions in
the excitation operator, namely NoSqueeze, where the ex-
citation output maintains the spatial dimensions as input.
In contrast to the SE block, these point-wise convolutions
can only remap the channels as a function of the output
of a local operator. While in practice, the later layers of a
deep network will typically possess a (theoretical) global
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(a) Residual block (b) Standard SE block (c) SE-PRE block (d) SE-POST block (e) SE-Identity block

Fig. 5. SE block integration designs explored in the ablation study.

(a) SE_2_3 (b) SE_3_4 (c) SE_4_6

(d) SE_5_1 (e) SE_5_2 (f) SE_5_3

Fig. 6. Activations induced by the Excitation operator at different depths in the SE-ResNet-50 on ImageNet. Each set of activations is named
according to the following scheme: SE_stageID_blockID. With the exception of the unusual behaviour at SE_5_2, the activations become
increasingly class-specific with increasing depth.

TABLE 16
Effect of Squeeze operator on ImageNet (error rates %).

top-1 err. top-5 err. GFLOPs Params
ResNet-50 23.30 6.55 3.86 25.6M
NoSqueeze 22.93 6.39 4.27 28.1M
SE 22.28 6.03 3.87 28.1M

receptive field, global embeddings are no longer directly
accessible throughout the network in the NoSqueeze variant.
The accuracy and computational complexity of both models
are compared to a standard ResNet-50 model in Table 16. We
observe that the use of global information has a significant
influence on the model performance, underlining the im-
portance of the squeeze operation. Moreover, in comparison
to the NoSqueeze design, the SE block allows this global
information to be used in a computationally parsimonious
manner.

7.2 Role of Excitation
To provide a clearer picture of the function of the excitation
operator in SE blocks, in this section we study example

activations from the SE-ResNet-50 model and examine their
distribution with respect to different classes and different
input images at various depths in the network. In particular,
we would like to understand how excitations vary across
images of different classes, and across images within a class.

We first consider the distribution of excitations for dif-
ferent classes. Specifically, we sample four classes from the
ImageNet dataset that exhibit semantic and appearance di-
versity, namely goldfish, pug, plane and cliff (example images
from these classes are shown in the suppl. material). We then
draw fifty samples for each class from the validation set and
compute the average activations for fifty uniformly sampled
channels in the last SE block of each stage (immediately
prior to downsampling) and plot their distribution in Fig. 6.
For reference, we also plot the distribution of the mean
activations across all of the 1000 classes.

We make the following three observations about the
role of the excitation operation. First, the distribution across
different classes is very similar at the earlier layers of the
network, e.g. SE 2 3. This suggests that the importance of
feature channels is likely to be shared by different classes in
the early stages. The second observation is that at greater
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(a) SE_2_3 (b) SE_3_4 (c) SE_4_6

(d) SE_5_1 (e) SE_5_2 (f) SE_5_3

Fig. 7. Activations induced by Excitation in the different modules of SE-ResNet-50 on image samples from the goldfish and plane classes of
ImageNet. The module is named “SE_stageID_blockID”.

depth, the value of each channel becomes much more
class-specific as different classes exhibit different prefer-
ences to the discriminative value of features, e.g. SE 4 6 and
SE 5 1. These observations are consistent with findings in
previous work [81], [82], namely that earlier layer features
are typically more general (e.g. class agnostic in the context
of the classification task) while later layer features exhibit
greater levels of specificity [83].

Next, we observe a somewhat different phenomena in
the last stage of the network. SE 5 2 exhibits an interesting
tendency towards a saturated state in which most of the
activations are close to one. At the point at which all
activations take the value one, an SE block reduces to the
identity operator. At the end of the network in the SE 5 3
(which is immediately followed by global pooling prior
before classifiers), a similar pattern emerges over different
classes, up to a modest change in scale (which could be
tuned by the classifiers). This suggests that SE 5 2 and
SE 5 3 are less important than previous blocks in providing
recalibration to the network. This finding is consistent with
the result of the empirical investigation in Section 4 which
demonstrated that the additional parameter count could be
significantly reduced by removing the SE blocks for the last
stage with only a marginal loss of performance.

Finally, we show the mean and standard deviations of
the activations for image instances within the same class
for two sample classes (goldfish and plane) in Fig. 7. We
observe a trend consistent with the inter-class visualisation,
indicating that the dynamic behaviour of SE blocks varies
over both classes and instances within a class. Particularly
in the later layers of the network where there is consider-
able diversity of representation within a single class, the
network learns to take advantage of feature recalibration to
improve its discriminative performance [84]. In summary,
SE blocks produce instance-specific responses which nev-
ertheless function to support the increasingly class-specific

needs of the model at different layers in the architecture.

8 CONCLUSION

In this paper we proposed the SE block, an architectural
unit designed to improve the representational power of a
network by enabling it to perform dynamic channel-wise
feature recalibration. A wide range of experiments show
the effectiveness of SENets, which achieve state-of-the-art
performance across multiple datasets and tasks. In addition,
SE blocks shed some light on the inability of previous
architectures to adequately model channel-wise feature de-
pendencies. We hope this insight may prove useful for other
tasks requiring strong discriminative features. Finally, the
feature importance values produced by SE blocks may be
of use for other tasks such as network pruning for model
compression.
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