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a b s t r a c t 

Our fast-paced digital economy shaped by global competition requires increased data-driven decision-making 

based on artificial intelligence (AI) and machine learning (ML). The benefits of deep learning (DL) are manifold, 

but it comes with limitations that have – so far – interfered with widespread industry adoption. This paper 

explains why DL – despite its popularity – has difficulties speeding up its adoption within business analytics. It 

is shown that the adoption of deep learning is not only affected by computational complexity, lacking big data 

architecture, lack of transparency (black-box), skill shortage, and leadership commitment, but also by the fact 

that DL does not outperform traditional ML models in the case of structured datasets with fixed-length feature 

vectors. Deep learning should be regarded as a powerful addition to the existing body of ML models instead of 

a “one size fits all ” solution. The results strongly suggest that gradient boosting can be seen as the go-to model 

for predictions on structured datasets within business analytics. In addition to the empirical study based on three 

industry use cases, the paper offers a comprehensive discussion of those results, practical implications, and a 

roadmap for future research. 
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. Introduction 

The last decade was shaped by huge improvements in data stor-

ge and analytics capabilities ( Baesens, Bapna, Marsden, Vanthienen,

 Zhao, 2016 ; Henke et al., 2016 ). What started as the big-data

 Kushwaha, Kar, & Dwivedi, 2021 ) revolution brought us the age of

onstant digital change, accelerating globalization, and the continu-

us move toward a digital world economy ( Davenport, 2018 ; Warner

 Wäger, 2019 ). Companies operating in today’s world have to deal

ith global competition in an ultra-fast marketplace ( Davenport, 2018 ),

nd AI-enabled information management ( Borges, Laurindo, Spínola,

onçalves, & Mattos, 2021 ; Collins, Dennehy, Conboy, & Mikalef, 2021 ;

uan, Edwards, & Dwivedi, 2019 ; Verma, Sharma, Deb, & Maitra, 2021 )

s the key to navigating the digital storm of the 21st century. 

Artificial intelligence (AI) and machine learning (ML) have been

idely accepted as general-purpose technology for decision-making

 Agrawal, Gans, & Goldfarb, 2019 ) across a variety of domains, indus-

ries, and functions including biotech, healthcare ( Sounderajah et al.,

022 ; Young & Steele, 2022 ), marketing ( Verma et al., 2021 ), human

esource management ( Votto, Valecha, Najafirad, & Rao, 2021 ), finan-

ial services ( Schmitt, 2020 ; Singh, Chen, Singhania, Nanavati, & Gupta,

022 ), insurance ( Rawat, Rawat, Kumar, & Sabitha, 2021 ), risk man-

gement ( Fujii, Sakaji, Masuyama, & Sasaki, 2022 ; Schmitt, 2022b ), cy-

ersecurity ( Taddeo, McCutcheon, & Floridi, 2019 ; Thorat, Parekh, &

angrulkar, 2021 ), and many others ( Kumar, Kar, & Ilavarasan, 2021 ).
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ata analytics and information systems ( Kushwaha et al., 2021 ) build

he foundation for actionable insights and are the primary enablers for

I-based decision-making across all domains. 

The function responsible for converting raw data into valuable

usiness insights is called business analytics. It is an interdisciplinary

eld drawing and combining expertise from machine learning, statis-

ics, information systems, operations research, and management science

 Sharda, Delen, & Turban, 2017 ). Business analytics constitutes a quite

ong chain of different analytics, which includes descriptive, predictive,

nd prescriptive analytics ( Delen & Ram, 2018 ). ML operates mainly in

he predictive sphere of business intelligence but has started to incorpo-

ate prescriptive analytics as well ( Bertsimas & Kallus, 2019 ). 

One of the major technologies responsible for driving the current

igital revolution ( Agrawal et al., 2019 ; Bughin et al., 2017 ) is deep

earning ( LeCun, Bengio, & Hinton, 2015 ). It is a subset of ML and

merged out of earlier research on brain-inspired neural networks. DL

s capable of learning complex hierarchical representations of data. It

as able to outperform traditional methods and has predictive capabil-

ties that come close to or surpass human-level intelligence in different

reas. The main reasons for the breakthrough of DL stem from develop-

ents in three different areas ( Goodfellow, Bengio, & Courville, 2016 ):

1) Optimization algorithms allow the training of deep neural networks

 Hinton, Osindero, & Teh, 2006 ); (2) The era of “big data ” increased the

mount of large structured, as well as unstructured data-sets, which are

ow ripe for harvesting ( Chen, Chiang, & Storey, 2012 ; Kushwaha et al.,
cember 2022 
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021 ); and (3) hardware improvements, especially GPU’s made it pos-

ible to train those highly power-hungry models with those huge data-

ets. Accurate performance for unstructured high-dimensional data sets

ecame only possible due to the advances of DL, which significantly en-

ances the field of machine learning ( Jordan & Mitchell, 2015 ) to tackle

urther use cases and take over tasks that were initially only reserved

or humans ( Agrawal et al., 2019 ). 

However, there seems to be a certain confusion when it comes to the

doption of deep learning in business analytics and information man-

gement. Hence this paper is an attempt to bring clarity towards why

L might be used or not used for certain business uses cases, and what

he reasons are, and also gives recommendations on where to apply DL

n practice. 

Most analytics departments across the corporate value chain have

raditionally been using predictive statistics and machine learning mod-

ls such as GLMs, CART, and ensemble learning. Those models are vital

ools to help with several analytics tasks that directly impact the bottom

ine of firms and organizations ( Siebel, 2019 ). Also, we have moved from

undamental progress in AI to the application of deep learning in vari-

us sciences, businesses, and governments ( Lee, 2018 ; Stadelmann et al.,

018 ). Despite the huge success of DL, a closer investigation of the cur-

ent literature reveals that the adoption rate for DL in business functions

or analytic purposes is quite low. 

Chui et al. (2018) analyzed 100 use cases to demonstrate the cur-

ent deployment of AI/DL-related models across industries and business

unctions compared to other models referred to as traditional analyt-

cs. The result is that while the adoption of DL starts to increase, it

eems most units remain working with the older more established an-

lytical models that have been successful already years ago. McKinsey

 Chui et al., 2018 ) also distinguishes departments that have tradition-

lly been using analytics as compared to departments that are foreign

o quantitative decision enablers. McKinsey draws a clear picture that

hows that the only areas where DL has been utilized so far are tradi-

ional analytics arms that have the natural capabilities and skillsets in

lace to work with modern AI, while technology foreign departments

re reluctant to adopt DL models. But even in business units with tradi-

ionally strong links to analytics – like risk management and insurance

the utilization of DL remains relatively low and traditional models are

till the go-to solution. 

Deep learning is on the way to becoming the industry standard

nd is broadly perceived as general-purpose technology for decision-

aking, however, business analytics is still in its infancy when it comes

o adopting this technology. DL does not prevail within business analyt-

cs functions as perceived due to the current hype and job descriptions

 Kraus, Feuerriegel, & Oztekin, 2019 ). 

The main issues why it is not easy to develop and deploy DL – espe-

ially for small to medium-sized corporations – can be partially mapped

o the three reasons why DL found its breakthrough in recent years. The

ollowing bottlenecks could be identified when it comes to the adoption

f DL in business analytics functions: 

1) Computational Complexity: The hardware necessary to train and

validate DL models on large datasets is tremendous, which makes

infrastructure investments quite expensive. This stands in large con-

trast to the question of whether the development and implementa-

tion of those models will materialize and be reflected in a future

value increase ( Bughin et al., 2017 ). 

2) Infrastructure: Companies need to be able to harvest a continu-

ous flow of unstructured data to capture the value from DL, which

is difficult if the necessary “big data ” infrastructure is not in place

( Bughin et al., 2017 ). 

3) Transparency: Another reason is the nature of DL itself. DL is mainly

a black box, which means it can predict correctly, but we lack a

causal explanation of why it arrives at a certain decision ( Samek &

Müller, 2019 ). This makes it problematic for industries, which are

subject to regulatory supervision. 
2 
4) Skill Shortage: Talent ( Kar, Kar, & Gupta, 2021 ) is required to im-

plement those models as well as subject matter expertise to define

use cases ( Henke et al., 2016 ). The current supply and demand gap

for ML experts makes it difficult for small- and medium-sized corpo-

rations to utilize advanced AI. 

5) Leadership Commitment: Full management support to establish

and drive a company-wide AI strategy is also a vital prerequisite

for increased adoption speed ( Kar et al., 2021 ). 

Many studies about the adoption of DL in business analytics seem to

gnore its general value contribution, which should come in the form of

mproved prediction accuracy. DL must make a business case for itself

o justify its adoption, but this is not always given. Also, complexity and

nfrastructure justifications cannot be the complete picture as resources

re increasing consistently, powerful processors and databases do exist,

nd once a model is trained, the resource requirements are not that

ignificant anymore. Another reason why DL might be lacking in certain

reas could be its ability to outperform existing AI/ML models. 

Several standalone studies comparing the predictive ability of deep

earning against traditional machine learning methods on structured

ata sets have concluded that DL does not outperform tree-based en-

embles ( Addo, Guegan, & Hassani, 2018 ; Hamori, Kawai, Kume, Mu-

akami, & Watanabe, 2018 ). This stands in contrast to the claim that

L offers performance improvements across the board as indicated by

raus et al. (2019) and also to the general assumption that DL needs

o be adopted in every business function ( Chui et al., 2018 ). While the

uccess of DL for unstructured data problems such as image recognition

nd NLP is beyond doubt, the reality of DL for structured data within

ompanies’ business analytics functions is less clear and is the focus of

his article. Structured data with fixed-length feature vectors are vastly

resent in relational databases and standard business uses cases. 

This paper investigates the following two research questions: 

• RQ1: Does DL outperform traditional ML models for supervised

learning problems in the case of structured data with fixed-length

feature vectors? 
• RQ2: Is Deep Learning – despite its popularity – always the right

AI/ML model within business analytics and information manage-

ment? 

The core contribution of the paper is to paint a clear picture of deep

earning in business analytics and information management in terms of

ts performance on structured datasets. Comments such as “DL can be

 simple replacement of traditional models ” are too general and not al-

ays true. For structured data, tree-based ensembles as gradient boost-

ng seem to be at least on par with DL across different domains. In sup-

ort of this claim, an empirical test using three case studies based on

eal-world data is presented. 

Concrete, this paper will contribute to the current body of literature

n the following ways: 

1) DL is compared to traditional machine learning models such as

GLMs, random forest, and gradient boosting based on three real-

world use cases within the context of business analytics to verify

the assumption that DL does not outperform traditional methods on

structured datasets. 

2) Comprehensive discussion based on the results of the empirical study

including practical implications for researchers and professionals. 

3) In the end, a roadmap for future research directions to further inte-

grate AI/ML with business analytics and information management

is presented. 

This article is structured as follows: Section 2 introduces the machine

earning models used in this study - logistic regression, random forest,

radient boosting, and deep learning. Second, the experimental design

s presented, which includes an explanation of the dataset, preprocess-

ng steps, and the software setup. In Section 3 , the numerical results

rom the three case studies based on real-world data/business problems
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re presented. All three case studies show that in the case of structured

ata (tabular data) DL does not have a performance advantage over

he tree-based ensembles random forest and gradient boosting machine.

ection 4 discusses the technical implications of these results, implica-

ions for practice, and future research directions, while Section 5 con-

ludes with a summary. 

. Methods and materials 

.1. Machine learning 

This part gives an overview of predictive analytics and the ML mod-

ls used in the experiment. The ML models used and compared in this

xperiment are Logistic Regression (LR), Random Forest (RF), Gradient

oosting Machine (GBM), and Deep Learning (DL). For a comprehensive

reatment of the underlying theory, it is referred to ( Hastie, Tibshirani,

 Friedman, 2017 ) and ( Murphy, 2012 ) for ML and ( Goodfellow et al.,

016 ) for DL. 

.1.1. Logistic regression 

The Logistic Regression (LR) belongs to the big family of general-

zed linear models (GLMs). GLMs are characterized by taking as input

 linear combination of features and linking them to the output with

he help of a function where the output has an underlying exponen-

ial probability distribution like the normal distribution or the binomial

istribution ( Murphy, 2012 ). The LR is the standard method for binary

lassification and is widely used in academia and industry. A linear com-

ination of inputs and weights is calculated and applied by feeding 𝑤 

𝑇 𝑥

nto the logic or sigmoid function represented by 

𝑖𝑔𝑚 

(
𝑤 

𝑇 𝑥 
)
= 

1 
1 + 𝑒 − 𝑤 𝑇 𝑥 

= 

𝑒 𝑤 
𝑇 𝑥 

𝑒 𝑤 
𝑇 𝑥 + 1 

. (1)

The sigmoid function restricts the range of the output to be in the

nterval [0, 1]. 

.1.2. Random forest 

The recursive partitioning algorithms Random Forest (RF) is part

f the family of ensemble methods and operates very similar to decision

rees with bagging. Bagging ( Breiman, 1996 ) chooses randomly differ-

nt M subsets from the training data with replacement and averages
ig. 1. The deep learning model used in this experiment is called a feedforward arti

orward direction. It is the most appropriate choice for problems based on structured

nd various hidden layers. At each node, a linear combination of input variables and

he next layer. 

3 
hese estimates. The random forest creates different decision trees and

verages the results in the end to reduce the variance of the prediction

odel ( Murphy, 2012 ). It is one of the most potent ML algorithms for

lassification and regression tasks out there. 

.1.3. Gradient boosting 

Boosting is like bagging but builds models in a sequential order in-

tead of averaging different results. The idea of boosting is to start with

 weak learner that gradually improves by correcting the error of the

revious model at each step. This process improves the performance of

he weak learner and moves gradually towards higher accuracy. The

ost common model used for boosting is a decision tree. There are sev-

ral different Gradient Boosting (GM) implementations out there. This

aper uses the gradient boosting version implemented by ( Malohlava &

andel, 2019 ) which is based on ( Hastie et al., 2017 ). Gradient boosting

s one of the strongest prediction models for structured data currently

vailable. 

.1.4. Deep learning 

Deep Learning comes with many architectures such as feed-

orward artificial neural networks (ANN), Convolutional neural net-

orks (CNNs), as well as Recurrent Neural Networks (RNNs). The best

rchitecture for transactional (tabular) data, which are not sequential

as in this study – is a multi-layer feedforward artificial neural net-

ork. Other, more complex architectures such as RNNs do not possess

ny advantage in those cases ( Candel & LeDell, 2019 ). The architectural

raph of a feed-forward neural network can be seen in Fig. 1 . The first

olumn represents the input features and is called the input layer. The

ast single neuron represents the output to where the final activation

unction is applied to. The two layers in the middle are called hidden

ayers. In case the neural network has more than one hidden layer it is

alled a deep neural network. A deep learning model can consist of sev-

ral hidden layers and is trained with stochastic gradient descent and

ackpropagation ( Goodfellow et al., 2016 ). 

A standard neural network operation consists of multiplying the in-

ut features by a weight matrix and applying a non-linearity (activation

unction). Input variables 𝑋 𝑖 = ( 𝑋 1 , 𝑋 2 , … , 𝑋 𝑛 ) are fed into the neural

etwork, weights 𝑊 𝑖 = ( 𝑊 1 , 𝑊 2 , … , 𝑊 𝑛 ) are added to each of the inputs

nd a linear combination of 
∑

𝑋 𝑖 𝑊 𝑖 = 𝑤 

𝑇 𝑥 is calculated. This linear
ficial neural network as the signal flow through the network evolves only in a 

 datasets as used in this study. It contains one input as well as one output layer 

 weights is fed into an activation function to calculate a new set of values for 
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Table 1 

Description of datasets. 

Business Area Observations Description 

Total y = 0 y = 1 Balanced ∗ Features 

Credit Risk 30,000 23,364 6,636 6636/6636 23 Prediction whether a customer is going to default on their loan payment 

Insurance Claims 595,212 573,518 21,694 21694/21694 57 Prediction whether a policy holder will initiate an auto insurance claim in the next year 

Marketing/Sales 45,211 39,922 5,289 5289/5289 16 Prediction whether a targeted customer will open a deposit account after a direct marketing/sales effort 

∗ For the purpose of this study random under-sampling was used to bring the datasets in a balanced state 
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r  
ombination plus the bias term or interceptor serves as input for the ac-

ivation function to calculate the output Y, which serves either as input

or the next layer or represents the final output/prediction. A neural net-

ork is trained with stochastic gradient descent and backpropagation. 

Applying a non-linearity in the form of an activation function is es-

ential for neural networks to be able to learn complex (non-linear) rep-

esentations of the input datasets. The activation function transforms

he output at each node into a nonlinear function. 

This study will build two different DL classifiers using the following

ctivation functions for the hidden layers: 

• The rectified linear unit (ReLU): 𝑔( 𝑧 ) = max ( 0 , z ) ∈ [ 0 , ∞) , 
• The Maxout function: 𝑔( 𝑧 ) = max ( 𝑤 

𝑘 𝑧 + 𝑏 𝑘 ) ∈ ( −∞, ∞) , 𝑘 ∈
{ 1 , … , 𝐾 } . 

As the scope of the research is binary classification of structured data

he output activation function used is the sigmoid function 𝑠𝑖𝑔𝑚 ( 𝑧 ) =
1 

1+ 𝑒 − 𝑧 = 

𝑒 𝑧 

𝑒 z +1 ∈ [ 0 , 1 ] in line with the binary cross-entropy loss function.

.2. Experimental design 

.2.1. Data and preprocessing 

This experiment is based on three datasets. All three use cases require

he same ML method, which is supervised learning and binary classifica-

ion, and were used in earlier studies, which allows for easy comparison

f classifier strength regarding earlier studies. To facilitate reproducibil-

ty and comparability the chosen data sets are all publicly available and

an either be downloaded from the UCI machine learning repository

r from the public machine learning competition site “Kaggle ”, which

egularly offers access to high-quality datasets for experimentation. See

able 1 for an overview of the case studies/datasets used in this study. 

redit risk. The first dataset represents payment information from Tai-

anese credit card clients. It consists of 30,000 observations, of which

3,364 are good cases and 6,636 are bad cases (flagged as defaults).

ach observation contains 23 features including a binary response col-

mn for the default information of the credit cardholder. The features

ithin the dataset contain mainly historical payment information, but

lso demographic information such as gender, age, marital status, and

ducation. 1 

nsurance claims. The second dataset represents information about au-

omotive insurance policyholders. It consists of 595,212 observations,

f which 573,518 are non-filed and 21,694 are filed claims. Each ob-

ervation contains 57 features including a binary response column that

ndicates whether or not a particular policyholder has filed a claim. 2 

arketing and sales. The third dataset stems from a retail bank and rep-

esents customer information for a direct marketing campaign. It con-

ists of 45,211 observations, of which 39,922 were unsuccessful and

,289 were successful (resulting in a sale). Each observation contains
1 The “Credit Risk ” dataset can be accessed here: https://archive.ics.uci.edu/ 

l/datasets/default + of + credit + card + clients 
2 The “Insurance Claims ” dataset can be accessed here: https://www.kaggle. 

om/c/porto-seguro-safe-driver-prediction/data 

t  

r  

e

4 
6 features including a binary response column indicating whether or

ot the person ended up opening a deposit account with the bank fol-

owing the direct marketing effort. 3 

The experiment required several adjustments. All three datasets are

ighly unbalanced. For this study, random under-sampling was used

o bring the good as well as the bad cases into a state of equilibrium.

his can also be seen in Table 1 . Example: If highly unbalanced datasets

ith a ratio of 90:10 are trained it is very easy for the classifier to reach

n accuracy of 90% by simply going for the positive observations in

ll cases. To counter this naturally occurring gravitation towards the

ajority class resampling is used to better gauge the predictive ability

f the classifiers. One drawback of under-sampling might be a loss of

nformation, but can be neglected as the major purpose of the dataset is

o benchmark the introduced ML classifiers. 

Before model construction can take place, several other common

reprocessing steps have been performed. A required procedure in ML

uring preprocessing is to transform categorical values into a numeri-

al representation. Especially the “Case Study 3 – Marketing and Sales ”

ontains predominately categorical strings. Where necessary categorical

eatures were transformed into factor variables with a method called

ne-hot encoding. H2O has a parameter setting called one_hot_explicit,

hich creates N + 1 new columns for categorical features with N levels. 

For this experimental study, all three datasets are separated into a

raining set and a test set with a proportion of 80:20. To tune the model

arameters, the training set will be further divided into different training

nd validation sets using a method called cross-validation during the

onstruction of the classifiers. Cross-validation is used to increase the

eneralization ability of the classifiers to unknown data and to avoid

verfitting. This study uses 5-fold cross-validation. 

Model tuning in ML is a highly empirical and interactive process and

s essentially based on trial and error. The methods commonly used to

elp with automating the model tuning process are grid search and ran-

om search. Grid search automatically trains several models with differ-

nt parameter settings over a predefined range of parameters. Overall,

his does not change the basic necessity of trying out different combi-

ations of parameters that allow the classifier to adjust adequately to

he underlying dataset. This study used a random search, selective grid

earch, and manual adjustments to arrive at the final parameter settings.

The four performance evaluation measures ( Flach, 2019 ) used in this

tudy are AUC, Accuracy, F-score, and LogLoss. 

.2.2. Software 

Data preparation and handling are managed in RStudio, which is the

ntegrated development environment (IDE) for the statistical program-

ing language R. R is one of the go-to languages for Data Science re-

earch as well as prototyping in practice. The machine learning models

n this paper are developed with H2O, which is an open-source machine

earning platform written in Java and supports a wide range of pre-

ictive models ( LeDell & Gill, 2019 ). This makes experimentation and

esearch easier. The high abstraction level allows the idea and the data

o become the central part of the problem and helps to reduce the effort

equired to reach a solution. Also, H2O has the advantage of speed as
3 The „Marketing/Sales dataset can be accessed here: https://archive.ics.uci. 

du/ml/datasets/Bank + Marketing 

https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://www.kaggle.com/c/porto-seguro-safe-driver-prediction/data
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
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Table 2 

Numerical results for case study 1 - credit risk. 

Method Out-of-Sample Performance 

AUC Accuracy F-score Logloss 

Logistig Regression 0.712 0.671 0.653 0.623 

Random Forest 0.773 0.711 0.688 0.572 

Gradient Boosting Machine 0.774 0.712 0.691 0.572 

Deep Learning + ReLU 0.760 0.700 0.646 0.592 

Deep Learning + Maxout 0.762 0.703 0.687 0.599 

Table 3 

Numerical results for case study 2 - insurance claims. 

Method Out-of-Sample Performance 

AUC Accuracy F-score Logloss 

Logistig Regression 0.629 0.594 0.586 0.667 

Random Forest 0.636 0.598 0.584 0.667 

Gradient Boosting Machine 0.640 0.602 0.588 0.664 

Deep Learning + ReLU 0.628 0.597 0.540 0.670 

Deep Learning + Maxout 0.633 0.597 0.534 0.669 
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M

t allows us to move from a desktop- or notebook-based environment

o a large-scale environment. This increases performance and makes it

asier to handle large data sets. R is connected to H2O by means of a

EST API. 

. Numerical results 

In this section, three different case studies: Credit risk, insurance

laims, and marketing and sales are presented to demonstrate that deep

earning while being promoted as a superior ML solution has difficul-

ies beating traditional machine learning methods in some cases. Con-

rete, logistic regression, random forest, gradient boosting machine, and

wo different deep learning classifiers were trained on each dataset. The

rst DL model was built with the ReLU activation function whereas the

econd DL model was built with the Maxout activation function. The

eLU activation function is widely used and has shown to be superior

n terms of accuracy and computational speed. The Maxout activation

unction has been developed to improve classification accuracy in com-

ination with dropout ( Goodfellow, Warde-Farley, Mirza, Courville, &

engio, 2013 ; Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdi-

ov, 2014 ) and is hence the second choice for this experiment. Several

yper-parameters were adjusted during the model training process to

mprove the performance measured by the evaluation metrics AUC, Ac-

uracy, F-score, and LogLoss. 

.1. Case study 1: credit risk 

Numerical results for the credit risk business case to accurately pre-

ict the default category of an applicant. The performance of deep learn-

ng is compared to traditional machine learning classifiers via the four

valuation matrices AUC, Accuracy, F-score, and LogLoss. The best per-

ormance is highlighted in bold. 

Table 2 shows clearly that GBM has the best overall performance

ith the highest AUC, Accuracy, and F-score of 0.774, 0.712, and 0.691,

espectively, including a LogLoss of 0.572. RF comes as a close second

ith an AUC of 0.773 and the same LogLoss as GBM of 0.572. Both en-

emble models achieve a better performance in the case of the credit

isk dataset than the two DL models with an AUC of 0.760 and 0.762,

espectively. The DL + Maxout model has a slightly higher AUC com-

ared to the DL + ReLU, whereas the LogLoss is reversed, which results

n a similar performance for the two DL models. 

A graphical presentation of the results of each model sorted by the

valuation measure can be found in Fig. 2 . The best-performing model
ig. 2. Graphical representation of the performance of each classifier for all 4 per

achine (GBM) achieves the highest accuracy according to those results. 

5 
BM is highlighted via a callout text field, which shows the performance

f each evaluation metric. 

.2. Case study 2: insurance claims 

In Table 3 the numerical results for the insurance case study are

resented. The goal is to accurately predict whether a policyholder is

oing to file an insurance claim within the next year. The performance

f deep learning is compared to traditional machine learning classifiers

ia the four evaluation matrices AUC, Accuracy, F-score, and LogLoss.

he best performance is highlighted in bold. 

The results of Table 3 are similar to the first case study. GBM is the

lear winner in terms of performance with the highest AUC, Accuracy,

nd F-score of 0.640, 0.602, and 0.588, respectively, including the low-

st LogLoss of 0.664. RF takes second place with an AUC of 0.773 and a

ogLoss of 0.664. Both ensemble models achieve a better performance

n the insurance case study than the two DL models. The DL + Maxout

odel with an AUC of 0.633 has a slightly higher AUC compared to the

L + ReLU with an AUC of 0.628. 

A graphical presentation of the results of each model sorted by the

valuation measure can be found in Fig. 3 . The best-performing model

Gradient Boosting) is highlighted via a callout text field. 
formance evaluation metrics for case study 1 - credit risk. Gradient Boosting 
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Fig. 3. Graphical representation of the performance of each classifier on all 4 performance measures for case study 2 - insurance claims. Also, in the second case 

study, Gradient Boosting Machine (GBM) achieves the highest prediction accuracy. 

Table 4 

Numerical results for case study 3 - marketing and sales. 

Method Out-of-Sample Performance 

AUC Accuracy F-score Logloss 

Logistig Regression 0.918 0.839 0.845 0.377 

Random Forest 0.940 0.879 0.888 0.320 

Gradient Boosting Machine 0.940 0.878 0.886 0.299 

Deep Learning + ReLU 0.930 0.861 0.877 0.328 

Deep Learning + Maxout 0.930 0.857 0.865 0.336 
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.3. Case study 3: marketing and sales 

Table 4 shows the numerical results for the marketing and sales case

tudy to accurately predict successful conversions based on a direct mar-

eting effort. The performance of deep learning is compared to tradi-

ional machine learning classifiers via the four evaluation metrics AUC,

ccuracy, F-score, and LogLoss. The best performance is highlighted in

old. 

Based on Table 4 the results for the third case study are slightly

ifferent from case studies one and two. GBM shares the maximum AUC

f 0.940 with RF. The RF classifier has also a slightly higher Accuracy

f 0.879, and also a higher F-score of 0.888 while GBM has still the

owest LogLoss, which indicates the highest prediction reliability across

he models. In line with previous results, both ensemble models achieve

 better performance than the two DL models, which have both an AUC

f 0.930. LR underperforms all classifiers by a significant amount. 

A graphical presentation of the results of each model clustered by

he evaluation measure can be found in Fig. 4 . GBM and RF perform

etter than the two DL models across all performance measures while

ogistic regression turns out the be the weakest classifier. 

. DL in business analytics: a reality check 

.1. Discussion of results 

To better understand the utility of Deep Learning for Business Ana-

ytics it was benchmarked against traditional ML models such as GLMs,

andom Forest, and Gradient Boosting Machine. Based on the four eval-

ation measures AUC, Accuracy, F-score, and LogLoss. 

The empirical results of all three case studies presented (Credit Risk,

nsurance Claims, Marketing and Sales) suggest that DL does not have a

erformance advantage for classification problems based on structured

ata. Instead, the results are strongly in favor of tree-based ensembles
6 
uch as random forest and gradient boosting. GBM turns out to be the

odel with the highest utility for the type of problems analyzed in this

tudy. 

Kraus et al. (2019) benchmarked several baseline models against

heir proposed embedded DNN model, which resulted in superior per-

ormance for DL. The authors recommend fostering the adoption of DL

odels within the field of Business Analytics and operations research.

hile the paper of Kraus et al. (2019) is an excellent overview of DL for

usiness Analytics and is very insightful, the analysis does not include

BM as a baseline model in the comparison, which is widely used and

nown to deliver strong and robust predictions on structured datasets. 

Case study two in this study uses the same dataset as

raus et al. (2019) and according to the empirical results is GBM at

east on par with the proposed deep architecture by Kraus et al. (2019) .

ther studies by Hamori et al. (2018) and Addo et al. (2018) included

ree-based ensembles as gradient boosting and came to the same

onclusions as this study. As the findings of this study are in line with

everal papers comparing the performance of DL against other ML

odels there is strong evidence that tree-based methods (GBM as well

s Random Forest) do indeed outperform DL models (different configu-

ations have been tested) on most problems containing structured data.

lso, DL has several weaknesses such as computational complexity,

uge data requirements, transparency issues, and needs highly skilled

abor, which makes it often difficult to develop and deploy those

odels at scale. Especially the computational complexity issue results

n significantly longer training and validation times compared to all

ther ML models. 

.2. Contributions to literature 

RQ1: Does DL outperform traditional ML models for supervised

learning problems in the case of structured data with fixed-length

feature vectors? 

The empirical results suggest that deep learning does not have a

erformance advantage for classification problems based on structured

atasets with fixed-length feature vectors. The results are strongly in fa-

or of tree-based ensembles such as random forest and gradient boost-

ng. These results strengthen the findings of earlier studies ( Addo et al.,

018 ; Hamori et al., 2018 ; Schmitt, 2022b ) which were predominately

ocusing on applications within credit risk management. This paper has

xtended the application domain with insurance, marketing, and sales

se cases and it was shown that the outperformance of GBM for struc-

ured datasets is not an isolated phenomenon restricted to a single do-
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Fig. 4. Graphical representation of the performance of each classifier on all 4 performance measures for case study 3 – marketing and sales. Gradient Boosting 

Machine (GBM) is again the winner, but the results are less significant than before, and Random Forest (RF) achieves a very similar performance. 
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ain – it is a fact that can be generalized across different fields that

epend on business analytics and information management for power-

ul data-driven decision-making. 

RQ2: Is Deep Learning – despite its popularity – always the right

AI/ML model within business analytics and information manage-

ment? 

Deep learning should be regarded as a powerful addition to the ex-

sting body of ML models instead of a “one size fits all ” solution. Earlier

tudies ( Chui et al., 2018 ; Grover, Kar, & Dwivedi, 2022 ; Kar et al.,

021 ; Samek & Müller, 2019 ) have identified different barriers to AI

doption as computational complexity, missing big data infrastructure,

acking transparency, skill shortage, leadership commitment, and miss-

ng strategic guidance. All of those findings have the potential to im-

act the adoption speed of DL across different domains. In addition,

he findings in this paper reveal that the prediction accuracy of DL is

ot always superior compared to other ML models. The results strongly

uggest that gradient boosting can be seen as the go-to model for most

usiness analytics problems. It is fast, not too complex, and delivers for

se cases based on structured data the best performance currently avail-

ble. The results are clear, however, business analytics experts should

arefully consider the type, characteristics, and volume of the data at

and to make a final decision about the correct model choice. This is

n important overall conclusion and an additional factor that impacts

he adoption of DL for data-driven decision-making in business analytics

nd information management. 

.3. Implications for practice 

It has been proven that data-driven or evidence-based decisions are

uperior compared to pure intuitive business decisions and a compre-

ensive analytics strategy has become necessary for businesses across

ll industries to capture value at the bottom line. One of the challenges

ssociated with becoming a digital enterprise is how exactly to leverage

igital technologies and especially advanced analytics and AI. Current

iscussions about AI and digital strategy are strongly focused on the ap-

lications of DL, but this is not the best way to approach digital trans-

ormation. This focus resulted in the problematic assumption that DL

doption in business by itself can be regarded as a benchmark – thereby

gnoring the question of utility that always needs to be asked before the

eployment of any new method or technology. 

The main explanation why DL has not found its way into the differ-

nt business functions as expected is often explained by computational

omplexity, lacking big-data infrastructure, the non-transparent nature
7 
f DL (black-box), and a shortage of skills. But as was demonstrated in

his paper, an additional explanation for the lack of adoption in certain

usiness analytics functions is that DL does not have performance ad-

antages over traditional analytics when it comes to structured data use

ases. 

For example, many departments that have been utilizing advanced

nalytics as risk management are perfectly capable of developing and

eploying a DL model as the required skillset is identical. Also, the nec-

ssary infrastructure to leverage DL in these departments should be in

lace. The usually described problems are not the only reasons. The

roblem is that DL does not offer any advantage over certain tree-based

nsembles for the data present in those departments. Also, the disad-

antages of speed and transparency are still present, which makes it, in

act, unreasonable to use DL instead of traditional analytics. DL should

e viewed as a valuable addition to the current body of ML that offers

he possibility to create new use cases based on its strength instead of

orcefully replacing models that are equally powerful and can easily co-

xist within advanced analytics. 

This realization triggers the second argument, which is related to

he nature of the underlying dataset. The kind of data present in prob-

ems faced within business analytics can largely be divided into three

roups ( Chen et al., 2012 ): (1) Structured data from relational database

anagement systems (DBMS), (2) unstructured data, which stem mainly

rom web-based activities (Social Media Analytics, etc.), and (3) sensor-

nd mobile-based content, which is largely untouched when it comes

o research activities. Many problems in business analytics are indeed

ased on structured datasets and given that most business functions uti-

ize exactly those kinds of data it should not come as a surprise that DL

emains a rather scarce ML algorithm to support their decision-making.

The era of big data has brought tremendous amounts of data within a

ingle data set across several domains, which fulfills the requirement of

mpirical prediction based on deep learning. However, it is important

o differentiate and use DL models mainly in line with their strength,

hich is the usage of vast unstructured datasets, which posed signifi-

ant problems for traditional analytics. ML overall has been recognized

s a general-purpose technology (GPT) for decision-making, which has

ust started to infuse our economy with the ability to replace mental

asks that were traditionally only reserved for humans ( Agrawal et al.,

019 ). It has also the potential to create completely new business mod-

ls ( Siebel, 2019 ). Finding use cases that are in line with the strength of

L would help to foster the adoption of DL in business analytics. And the

ajor strength is unprecedented accuracy on unstructured datasets. Tra-

itional ML models reach a performance plateau quite early and further

ata are not helpful to increase accuracy. DL has here an advantage as it
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D  
ains predictive power with every additional data point ( Ng, 2019 ). This

akes DL extremely scalable and future-proof, especially since hard-

are power and the amount of available data will increase continuously

ver the years. Also, DL eliminates the need for extensive feature engi-

eering as this was usually present in the preprocessing stage of data

ining and predictive analytics tasks ( LeCun et al., 2015 ). The time re-

uired for preparing data sets often amounts to 80% to 90% of overall

ask completion and is one of the major reasons why further advances in

L would indeed be welcoming news for all analytics functions. Over-

ll, management and practitioners responsible for digital strategy and

ransformation should avoid seeing DL as a simple replacement or en-

ancement of existing tools for predictive analytics tasks, but as an op-

ortunity to develop new application areas and use cases for business

nalytics based on the strength of DL – which are predictions based on

ast amounts of unstructured data. 

.4. Future research 

The following four key areas could be identified where further re-

earch is necessary to increase the utility and hence the adoption of DL

n business analytics. 

1) Future research in business analytics could focus on identifying cur-

rently non-existing uses which are in line with the strength of DL.

Due to its ability to handle huge amounts of unstructured data DL

is in terms of future possibilities and new use cases more interesting

than traditional analytics. DL possesses the ability to create com-

pletely new business models and ways of value generation. 

2) Enhancing the prediction accuracy of DL for structured data would

be a game-changing development for neural networks. DL has sev-

eral advantages over traditional methods but has in its current ca-

pacity difficulties reaching the performance and accuracy levels of

tree-based ensembles such as Random Forest and GBM for predic-

tions on structured data. A simple replacement makes hence no sense

unless further research in this area realizes performance improve-

ments for DL on structured classification tasks. Developments such

as dropout ( Srivastava et al., 2014 ) and the Maxout activation func-

tion ( Goodfellow et al., 2013 ), which were specifically developed

to tackle classification problems are going in this direction, but as

shown above, are not enough to reach accuracy levels to justify the

replacement of tree-based ensemble models as RF or GBM. Further

research could focus on enhancing the ability of DL models to con-

sistently surpass traditional ML models. This would be a significant

development, which could result in the extinction of all other ML

models. 

3) Another issue – especially in light of the skill shortage – is that hyper-

parameter tuning can be a quite complex undertaking requiring the

right talent. A recent development is automated machine learning

or AutoML, which has started to gain traction and is an interesting

field of research that can help to further democratize the use of DL

models ( Schmitt, 2022a ). Increasing the user-friendliness of AI by

decreasing complexity, and aligning it with the end user’s needs to

increase job fit will help to foster adoption ( Grover et al., 2022 ). AI

needs to adapt to humans to enable a fully augmented workforce. 

4) This study was primarily concerned with binary classification, hence

an extension towards multiclass classification and regression would

make sense. Especially regression is relevant for finance and insur-

ance due to the presence of financial times series data in those fields.

Several studies have shown that deep learning architectures such

as recurrent neural networks (RNN) and long short-term memory

(LSTM) are strong candidates for time series data in finance and of-

fer superior performance ( Fischer & Krauss, 2018 ). 

5) Other areas for investigation would be reinforcement learning appli-

cations within business analytics ( Singh et al., 2022 ), bio-inspired

computation/ML models ( Jain, Batra, Kar, Agrawal, & Tikkiwal,

2022 ; Kudithipudi et al., 2022 ), and also research that would further
8 
enhance the explainability of AI/ML, which would enable additional

use cases in regulatory environments that require transparency

( Bücker, Szepannek, Gosiewska, & Biecek, 2022 ; Sharma, Kumar,

& Chuah, 2021 ). 

. Conclusion 

The progress and breakthroughs achieved by DL are undeniable as

an be witnessed by a vast array of new real-world applications all

round us. Despite this fact, the adoption rate and hence diffusion across

usiness analytics functions has been lacking behind. This study helped

o explain the current lack of adoption of DL in business analytics func-

ions. The literature analysis suggested that the lack of adoption across

usiness functions is based on the five bottlenecks computational com-

lexity, no existing big-data architecture, lack of transparency/black-

ox nature of DL, skill shortage, and leadership commitment. However,

he empirical study based on three real-world case studies revealed that

L does not offer – as widely assumed – a performance advantage when

t comes to predictions based on structured data sets. This has to be taken

nto account when using deep learning for data-driven decisions within

he context of business analytics and answers the question of why ana-

ytics departments do not deploy those models consistently. Overall, ML

s a general-purpose technology for data-driven prediction will further

nd its way into business analytics and shape the field of information

anagement. Deep learning is a valuable addition to the ML ecosystem

nd enhanced our ability to generate insights from unstructured data.

ut it is not yet possible to replace the other models. Especially tree-

ased models such as random forest and gradient boosting are power-

ul classifiers when it comes to structured datasets. Practitioners should

oncentrate on creating new use cases that leverage the strengths of DL

nstead of forcing the replacement of traditional models. 
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