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With the development of artificial intelligence and high-performance computing equipment, new tech-
nologies have huge effects on medical image research. However, it is difficult to find out when new
research topics appear, who those authors with influences are, and how relevant publications influence
the academic community. In order to catch up with global research trends, traditional methods of liter-
ature review are inadequate to acquire information. In this case, a data-driven analysis offers a new quan-
titative approach to studying global research trends. Specifically, this paper used several basic
bibliometric indexes to characterize the global trends of medical image research from 1993 to 2022,
including yearly output, active journals, important authors, active institutions, and main countries.
Furthermore, we utilized network-based methods to analyze the internal relations of co-word, co-
authorship, and co-citation, so as to discover academic hotspots and clarify global research trends.
Finally, some conclusions are drawn as follow: (1) The present medical image research is on an upward
trend. The number of publications on medical image surged since 2015 due to advances in deep learning.
Deep learning and convolutional neural networks (CNNs) are both popular research keywords in recent
years. (2) IEEE Transactions on Medical Imaging is the most influential journal in view of Total Local
Citation Score (TLCS) and Total Global Citation Score (TGCS), followed by Medical Image Analysis.
Neurocomputing and Information Fusion are well-recognized in local research community. (3) Van
Ginneken B and Aerts HJWL are representative scholars in consideration of TLCS and TGCS. (4) The
USA is a leading country in medical image research. Other influential countries include China, India,
UK, Germany, France, Canada, Netherlands, Australia, Italy, South Korea, Switzerland, etc. Most important
institutions are from these countries, including Harvard, UMich, Stanford, UPenn, UNC, CAS, SJTU, UCL, UofT,
RU, etc. (5) Application of artificial intelligence technologies, especially CNNs, has dramatically promoted
global studies of medical image since 2015. Interdisciplinary collaborations become popular among
experts with different disciplines backgrounds. We can infer that medical image analysis and application
based on deep learning will still be a flourishing field in the near future with the improvement of algo-
rithms and the application of high-performance computing equipment.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Medical images describe distributions of various physical fea-
tures measured from the human body [1]. Medical image research
contains two relatively independent research directions: medical
imaging system and medical image processing. Medical imaging
has categories including ultrasound imaging, X-ray imaging, com-
puted tomography (CT), magnetic resonance imaging (MRI), Posi-
tron Emission Tomography (PET), etc. [2] Medical image
processing involves several tasks such as segmentation [3], regis-
tration [4], enhancement [5], conversion [2], clustering [6], etc.

When the medical images were first digitized and processed in
a computer, scientists tried to analyze them automatically. Sets of
rules were established for medical image processing in the early
days. In the late 1990 s, pattern recognition and machine learning,
especially supervised methods, enjoyed tremendous popularity
among academics of medical image analysis [7,8]. In the early
2000 s, many researchers turned to optimize learning models
according to specific problems [9,10]. Since the great success of
AlexNet [11] in 2012, deeper convolutional networks have made
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great progress in computer vision [12]. Deep learning in medical
image analysis appeared at international conferences soon and
has grown dramatically since 2015.

A number of studies have made efforts to summarize literature
on medical image (such as Litjens et al., 2017 [7], Ravi et al., 2017
[13], Mathur et al., 2019 [14], Haskins et al., 2020 [15], Sarvaman-
gala et al., 2021 [16], Chen et al., 2022 [46]), based on which they
describe the trends and supply expert insights for future
researches. Nonetheless, this interdisciplinary scientific field cov-
ers a wide range of topics and research directions, and it is difficult
for scholars to fully understand the situation. Further, expert opin-
ions may be biased due to background, expertise, and view [17].
Hence, we need to investigate the research trends from another
perspective.

The data-driven analysis is a more objective approach based on
quantitative analysis. It can use basic bibliometric information, e.g.,
keywords, authors, citations, institutions, countries, and topics
[18]. Two important metrics have been applied to the numerical
analysis: total local citation score (TLCS) and total global citation
score (TGCS) [19]. They represent the local and global influence
of authors and journals. Other structure information can be
extracted by network-based approaches such as co-author rela-
tions, co-word relations, and co-citation relations. These metrics
have been proved effective for analyzing and understanding the
scientific field, especially in areas where readers may require a
great deal of expertise and corresponding background.

Several scientometric analyses have been conducted in previous
work [18–20]. These analyses clearly show the local and global
impacts of topics and journals. Also, internal structure information
better reveals the interactions among topics. However, data-driven
analysis is rarely adopted in the field of medical image research.
With the rapid growth of the field, this type of data-driven analysis
is becoming more and more necessary. Therefore, we propose the
use of scientometric methods to help analyze trends in the field.

The main contributions can be summarized as a better roadmap
for newcomers to the field; interdisciplinary research chances can
be better identified; knowledge gaps can be found by seasoned
experts to gain a more objective understanding of the field. The
rest of this article is presented as follows. Section 2 gives the pro-
cedure of data acquisition. Section 3 elaborates the methodology of
data-driven analysis. Numerical indexes and network-based meth-
ods are introduced in detail. Section 4 and 5 present bibliometric
and network-based analysis. Section 6 discusses the subject cate-
gory distribution and the reason why medical image research has
become a hotspot in recent years. Section 7 concludes and points
out future research directions.
2. Data acquisition

Several databases can be selected as data sources of biblio-
graphic data such as Web of Science (WOS), Scopus, Embase, etc.
In this work, data are acquired from the WOS Core Collection, a
well-known comprehensive database that provides standardized
academic publications [21]. Specifically, we retrieve data from
the Science Citation Index Expanded database of WOS. The Science
Citation Index (SCI) is recognized as an authoritative and high-
quality scientific literature citation indexing tool due to its rigorous
Table 1
Search criteria given in this paper.

Search Query

‘‘medical image” OR ‘‘medical imaging” OR (‘‘medical X-ray” OR ‘‘medical computed
MRI” OR ‘‘medical Positron Emission Tomography”)
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selection process [22]. Science Citation Index Expanded (SCI-E) is
an expanded version of SCI covering some extra important papers
that are not indexed by SCI. Furthermore, the aforementioned
database has been used for the bibliometric analysis in past biblio-
metric review articles [17,21,22].

The search criteria used in this paper are shown in Table 1. We
defined several phrases related to medical image as a search query.
The timespan was restricted to the past thirty years from 1993 to
2022. We attempted to obtain ‘‘Article” type documents in the SCI-
E database in all languages since most well-recognized academic
papers are published in the form of articles [19]. The database
was accessed on September 7th, 2022. Finally, a total of 19,762
records related to the medical image over the past three decades
have been obtained from the WOS. Among the publications,
98.02 % of articles (19,371) are written in English. Other languages
involve French (218), German (68), Chinese (50), Spanish (22),
Dutch (9), Turkish (5), Korean (4), Portuguese (4), Japanese (3), Pol-
ish (3), etc.

Analysis and visualization of the extracted data can be handled
by many bibliometric and network tools such as HistCite, Pajek,
VOSviewer, Gephi, and CiteSpace. This work strives to explore
the global trends in medical image research by programming and
utilizing HistCite [23], VOSviewer [24], and CiteSpace [25].
3. Methodologies

Both basic bibliometric analysis and network analysis are
exploited to reflect the global academic research trends and
explore hotspots in the field of medical imaging. In this section,
numerical indexes are first introduced to help readers comprehend
some important concepts in subsequent analysis. Then network-
based methods are presented with co-word, co-authorship, and
co-citation analysis.
3.1. Numerical indexes

For most scholars in academia, the Impact Factor (IF) is a well-
known metric for evaluating the impact of an academic journal. It
is an instant index by calculating the yearly average number of
citations gained by papers published in the journal [26]. Journals
with high IF are cited more frequently and play a crucial role in sci-
entific development and communication. However, the IF also has
some disadvantages. For instance, biological science or medical
journals typically have higher IF than computer science or engi-
neering. Besides, open-access journals incline to have higher IF
since they provide easy access to their academic publications. In
these cases, the IF may not be effective to measure the true quality
or impact of journals. Hence, it is essential to incorporate extra
metrics for further assessing the quality of journals.

Two indexes are contained in the bibliometric tool HistCite
[23]: TLCS and TGCS. TLCS and TGCS are abbreviations for Total
Local Citation Score and Total Global Citation Score, respectively.
TLCS describes the count of citations that a research article gains
from the present data collection. In this study, local data collection
is the data retrieved from the SCI-E database with specified search
criteria. On the other hand, TGCS refers to the times that an article
has been cited from the entire data collection. Taking this work as
Timespan Document
Types

Citation
Indexes

Language

tomography” OR ‘‘medical 1993–
2022

Article SCI-E All
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an example, WOS is the whole database. By combining TLCS and
TGCS indexes, it is possible to discover underlying research trends
within the domain and throughout the entire science community.
3.2. Network-based methods

The numerical indexes above give straightforward rankings, but
they are incapable of providing insights into the relations among
the target papers, journals, or authors. Therefore, some network-
based analysis approaches have been presented, including co-
word [27], co-authorship [28], and co-citation network [29].

Co-word network. Co-word network method was proposed by
French scholars and soon attracted the attention of numerous
researchers [30]. The co-word relationship could be simply consid-
ered as the co-occurrence of keywords in academic publications.
The co-word relation would be strong enough if every-two key-
words appeared together with a high frequency. We can construct
a co-word network by extracting the keywords of all papers in data
collection and counting the co-occurrence relationship. By reduc-
ing links using minimum spanning tree and pathfinder network
[31], crucial clusters of keywords are created for the analysis of
research trends.

Co-authorship network. Compared to the co-word networks,
the co-authorship networks reflect the relationship of co-author
in the academic circle rather than groups of keywords. Authors
and their co-author relations can be simplified as nodes and links
in a co-authorship network. The weight of links denotes the
strength of the scientific collaboration relation. When two scholars
co-author a paper, the weight of the link will increase by one. The
more frequent every-two scholars co-author, the stronger the co-
author relation will be. Many scientific co-authorship networks
have been created and applied in different fields of academic anal-
ysis [32].

Co-citation network. The co-citation network can be con-
structed based on the co-citation relationship. Similar to co-word
and co-authorship network, the nodes and links of a co-citation
network are the cited references and co-citation relations. This
type of network investigates the bibliographic datasets based on
the co-citation relationship. If a paper cites two other research arti-
cles in the reference, a link will be built between the two articles.
The link strength represents the frequency that two articles are co-
cited. The co-citation network studies research hotspots and trends
from the perspective of domain knowledge, rather than the social
relationships of authors. In addition, co-citation networks display
Fig. 1. Yearly output of medical image research
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more details than co-word networks that focus on the semantic
level.

Experiments using both bibliometric and network analysis are
elaborated in the following section. Simple numerical indexes like
TLCS and TGCS will be applied to direct bibliometric analysis.
Based on the network technologies, three methods of co-word,
co-authorship, and co-citation network are given to illuminate
the global research trends in the field of medical imaging. More-
over, the visualization of produced network helps to better under-
stand important research communities.
4. Basic bibliometric analysis

4.1. Yearly output

Yearly output reflects the annual activity and impact of a
research field. Here, we calculate the time distribution of yearly
publication counts, TLCS, and TGCS to uncover the active and influ-
ential status of medical image research. The publication count
directly reveals the number of records collected in the WOS data-
base each year. TLCS and TGCS stand for the local and global impact
of publications. Publication counts, TLCS, and TGCS of the medical
image between 1993 and 2022 are shown in Fig. 1.

According to Fig. 1, before 2012, the annual publication count in
the field of medical imaging was less than 600. However, this num-
ber began to increase dramatically in the past ten years due to the
development of deep learning and high-performance computing
equipment. The last decade witnessed an upward trend in the
research of medical image, especially in the last three years. There
are 1,470, 1,955 and 2,240 research articles published in 2019,
2020 and 2021, respectively. Because of incomplete data for 2022
when the database was accessed on September 7th, 2022, it
explains the low record in 2022.

Even though publication count is a good indicator of activity, it
does not represent the influence of papers. Two other metrics, TLCS
and TGCS, can measure the degree of influence because they utilize
the number of citations, which often reflects the impact of a jour-
nal or an author. TGCS is much larger than TLCS because TGCS gets
references from the entire WOS database.

The TLCS peaked in 2019 (2,787), so the publications in 2019
have attracted huge attention from researchers in the local field.
By examining the publications in 2019, we discovered two papers
contribute a lot to this peak: ‘‘CE-Net: context encoder network for
2D medical image segmentation [33]” (129) and ‘‘Medical image
in the WOS database from 1993 to 2022.
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fusion with parameter-adaptive pulse coupled neural network in
nonsubsampled shearlet transform domain [61]” (113). Both of
them focus on the complicated neural network model in specific
tasks of medical image. In addition, there was another local peak
(2,745) in 2017. We found a paper named ‘‘A survey on deep learn-
ing in medical image analysis” [7] with the largest LCS (Local Cita-
tion Score) of 548, accounting for the peak. As deep learning has
been a prevalent topic in recent years, a survey on deep learning
in the field of medical image analysis naturally draws considerable
attentions from the local community.

TGCS achieved its peak with a value of 30,698 in 2017. Four
papers play a vital role: ‘‘A survey on deep learning in medical
image analysis” [7]” (with a GCS of 4,615), ‘‘Computational radio-
mics system to decode the radiographic phenotype [34]” (with a
GCS of 1,732), ‘‘Deep learning for health informatics [13]” (with a
GCS of 725), and ‘‘Low-dose CT with a residual encoder-decoder
(b) Top ten journals o

(c) Top ten journal

Fig. 2. Publication count, TLCS, and TGCS per
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convolutional neural network [35]” (with a GCS of 625). We also
saw some local peaks in 2010, 2012, and 2019 due to the delay
citation window effect [20]. Besides, it needs several years for a
new paper to get citations, which also leads to a low value of TLCS
and TGCS in 2020, 2021 and 2022.

4.2. Active journals

Journals are often the conduits for well-recognized research
results and academic activities [20]. The 19,762 downloaded arti-
cles are derived from 2,968 different journals. The top ten journals
with the highest publication counts, TLCS, and TGCS are summa-
rized in Fig. 2, respectively.

According to Fig. 2 (a), Medical Physics produces the largest
number of publications. It is the most active journal in medical
image research from the viewpoint of publication output. On the
f TLCS 

s of TGCS 

journal for medical image (1993–2022).
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contrary, IEEE Transactions on Medical Imaging holds the highest
TLCS and TGCS (see Fig. 2 (b) and Fig. 2 (c)), which means it gets
cited by both in-domain and out-domain scholars. Therefore, this
journal has a great influence on the local and the whole scientific
community. Within the journal, a paper titled ‘‘Deep convolutional
neural networks for computer-aided detection: CNN architectures,
dataset characteristics and transfer learning [36]” maintains a
maximum LCS of 195, whereas another paper titled ‘‘Multimodal-
ity image registration by maximization of mutual information
[37]” has the largest GCS value of 3,312. Medical Image Analysis
and Medical Physics are ranked second and third in view of TLCS
and TGCS. Famous multidisciplinary journals, such as Nature,
Science, etc., appear in the top ten TGCS rankings. This is partly
because papers published in the world’s leading journals have
drawn more attentions from scholars outside medical image
research. In contrast, Information Fusion and Neurocomputing pos-
sess larger TLCS (ranked sixth and seventh) but do not appear in
Fig. 3. Publication count, TLCS, and TGCS per
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the top ten journals of TGCS. These two journals focus more on
computer science and artificial intelligence techniques in medical
image processing, hence attracting researchers within the domain.

4.3. Important authors

Important authors are significant indicators to assist scholars in
academic research [19]. Newcomers can quickly follow the
research hotspot by looking at the publications of the leading
authors. In the field of medical image research, 58,933 different
authors published 19,762 papers. All authors in the dataset are
ranked by three metrics: publication count, TLCS, and TGCS. As
depicted in Fig. 3 (a), many productive authors have written more
than 60 articles, but none of them appears in the TLCS or TGCS
rankings. The high number of publications is due to the ambiguity
of Chinese personal names. For example, ‘‘Wang Y” may refer to
Wang Yue (Beijing Institute of Petrochemical Technology), Wang
author for medical image (1993–2022).
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Yi (St. Francis Hospital), Wang Yu (North University of China),
Wang Yi (Iowa State University), Wang Yan (University of Califor-
nia, San Francisco), etc. Therefore, TLCS and TGCS are more accu-
rate to measure important authors in this case.

For TLCS in Fig. 3 (b), nine of the top ten TLCS authors (except
Summers RM) co-authored a paper titled ‘‘A survey on deep learn-
ing in medical image analysis” [7] with the LCS of 548. Accordingly,
they have a TLCS of at least 548 and belong to a highly influential
group in the local research community. Furthermore, three of the
nine authors appear in the TGCS ranking in Fig. 3 (c), involving
Van Ginneken B, Setio AAA, and Sanchez CI. In other words, the
three experts also play an important role in the all-science
community.

We investigated the top ten TGCS authors and discovered that
Aerts HJWL has the largest influence from the standpoint of TGCS.
He has many high GCS research articles and has contributed a lot to
the global impact. One paper named ‘‘Decoding tumour phenotype
Fig. 4. Publication count, TLCS, and TGCS per in
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by noninvasive imaging using a quantitative radiomics approach”
[38] published in 2014 achieves the highest GCS of 24,74.
4.4. Active institutions and main countries

Institutions play a substantial role in analyzing global trends in
the academic field. By counting the institutions of all authors, we
gained 13,389 institutions. The publication counts of the top ten
institutions account for 9.52 % of the total literature. Publication
count, TLCS and TGCS per institution are illustrated in Fig. 4. Chi-
nese Academy of Sciences (CAS) had 359 papers for publication, so
it is the most active institution in consideration of the publication
count. Shanghai Jiao Tong University (SJTU) and Stanford University
rank second and third respectively. About 88.02 % of papers were
published between 2013 and 2022 for CAS, compared to 81.04 %
and 69.74 % for SJTU and Stanford, respectively.
stitution for medical image (1993–2022).
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As for TLCS, Harvard University achieves the best TLCS, followed
by Radboud University Nijmegen (RU). Harvard continuously pub-
lished journals with local impact from 1997 to 2022. Most research
concentrates on computer science methods in medical image anal-
ysis and processing. However, there are only 36 papers in the data-
set for RU, among which the paper titled ‘‘A survey on deep
learning in medical image analysis” [7] has the highest LCS of
548. This means that some influential papers play a pivotal role
in improving the academic reputation of an organization. CAS
and SJTU rank third and fifth in TLCS respectively.

Harvard University and Harvard Medical School (HMS) are the
leading institutions from the perspective of TGCS as shown in
Fig. 4 (c). Many scholars from HMS often use HMS rather than Har-
vard University as their institution. Consequently, Harvard plays an
important role in all scientific areas. Nevertheless, CAS and SJTU fail
to enter the TGCS rankings, which indicates the two Chinese uni-
versities are currently less influential than other top ten institu-
tions in the entire science community.

Overall, only Harvard University and University of Michigan
(UMich) appear in the top ten ranking list for publication count,
TLCS and TGCS. Other active and important institutions appear
twice in the three rankings, including Stanford University, University
of Pennsylvania (UPenn), University of North Carolina (UNC), Univer-
sity College London (UCL), University of Toronto (UofT), CAS, SJTU, and
RU.

Countries are another dimension for assessing academic activi-
ties in medical image research. The retrieved papers are from 134
different countries, suggesting many countries attach importance
to this field. The top ten countries have occupied 89.30 % of the
total publication count. Fig. 5 displays the top ten countries accord-
ing to publication counts, TLCS, and TGCS.

Both the USA and China are in the top two positions in terms of
three metrics. The USA is the leading country in terms of publica-
tion count, TLCS, and TGCS. Therefore, the USA maintains a domi-
nant position in both the local and the whole scientific
community. Seven countries appear in three rankings simultane-
ously, including the USA, China, India, UK, Germany, France, and
Canada. Other influential countries include the Netherlands, Aus-
tralia, Italy, South Korea, Switzerland, etc.
5. Network analysis

Numerical indexes used in bibliometric analysis reflect the
activity and influence of authors, journals, institutions, countries,
etc. However, these indexes are insufficient to describe the rela-
tionship within the target dataset. In this section, network-based
approaches are exploited to analyze the co-word, co-authorship,
and co-citation relations.
5.1. Co-word analysis for medical image

Co-word network reveals the topics and hotspots in a research
community. Co-word network is created by extracting keywords as
nodes and their co-occurrences in a paper as links. The minimum
number of occurrences of a keyword is chosen as 5. In our analysis,
4,362 of the 53,689 keywords meet the threshold. 50 keywords
with the greatest total link strength in 4,362 keywords are selected
to highlight important keywords. Finally, we succeeded in obtain-
ing a network with 50 nodes and 1,196 links, displaying the co-
word network utilizing VOSviewer [24] in Fig. 6.

The node size reveals the occurrence frequency of a keyword. A
larger node denotes the keyword has a higher occurrence rate in
the dataset [18]. The link strength indicates how many articles
two keywords co-occur in. Different clusters are represented by
different colors. The color of a node implies which cluster it
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belongs to. According to Fig. 6, there are 4 clusters of different
research themes. The largest cluster in red color incorporates key-
words like ‘‘algorithm”, ‘‘optimization”, ‘‘registration”, ‘‘segmenta-
tion”, ‘‘models”, etc. It can be inferred that the algorithm is
important in this group. The segmentation and registration of med-
ical images often need the design and use of complicated algo-
rithms. Another cluster in green includes keywords such as
‘‘computed-tomography”, ‘‘ct”, ‘‘ultrasound”, ‘‘PET”, and ‘‘medical
imaging”. Many keywords are highly relevant to different cate-
gories of medical imaging. The remaining two clusters (blue and
yellow) have similar keywords, like ‘‘medical image processing”,
‘‘feature extraction”, ‘‘classification”, ‘‘machine learning”, ‘‘deep
learning”, and ‘‘convolutional neural network”. These two groups
focus on a hot research area: the application of machine learning
and deep learning in the field of medical image processing.

Since the co-word network cannot capture the temporal infor-
mation, an improved co-word network considering time can be
given to better understand the trends in medical image research.
Fig. 7 presents the temporal co-word network with time as a
parameter. Thirty years are separated into six periods. Each period
contains five years, which is depicted in different color. In this
work, the pathfinder method is used for pruning and filtering out
small clusters.

According to Fig. 7, there exists five crucial clusters in period 5
(2013–2017). It indicates that the most important keywords and
famous concepts in medical image research emerged between
2013 and 2017. The keywords of ‘‘classification”, ‘‘segmentation”,
‘‘reconstruction”, ‘‘registration”, and ‘‘optimization” can indicate
the popularity of medical image processing among researchers.
In period 6 (2018–2022), keywords such as ‘‘deep learning” and
‘‘convolutional neural network” are the focus of most scholars in
the field of medical imaging. Thanks to the advances in deep learn-
ing and high-performance computing equipment, medical image
research has developed rapidly over the past decade [39–41]. The
remaining two clusters are from period 1 (1993–1997) and period
2 (1998–2002).

Nevertheless, the keywords in period 3 (2003–2007) and period
4 (2008–2012) fail to form identifiable clusters because they are
strongly linked to period 5. In these periods, ‘‘medical imaging”
and ‘‘medical image processing” are prevalent keywords, as much
work has been performed, such as face recognition [42,43].
Although many keywords first appear in period 3 and 4, they are
widely used in period 5.

5.2. Co-author analysis for medical image

Co-authorship networks explore global research trends and hot-
spots by investigating different academic communities. The mini-
mum publication count of each author was set to 5. By filtering
small nodes and finding the largest connected component of the
co-authorship network, a network of 223 authors was discovered.
The number of links is 736, which stands for the number of times
that two scholars co-author papers. A co-author density map for
medical image research is shown in Fig. 8.

Although 22 clusters are found in our analysis, we tag five clus-
ters in Fig. 8. Cluster #1 is composed of 6 authors. Josien P.W. Pluim
frequently collaborates with Bram van Ginneken andMarius Staring.
Marius Staring and Josien P.W. Pluim co-authored 7 papers in the
dataset. For cluster #2, it is a research community of many Chinese
scholars. Shen Dinggang has a total link strength of 62. Wang Qian
and Wu Guorong are his co-authors, with 12 and 14 collaborations,
respectively. Three people co-authored a high GCS paper titled
‘‘Scalable high-performance image registration framework by
unsupervised deep feature representations learning” [44]. In the
dataset, Shen Dinggang also cooperates with Wang Lei, Zhang Yu,
etc. In cluster #3, Sebastien Ourselin published 8 papers and 7
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papers withMarc Modat and Jan Deprest respectively. One high GCS
paper is a collaboration between Sebastien Ourselin and Marc
Modat: ‘‘Fast free-form deformation using graphics processing uni-
ts” [45]. Also, Sebastien Ourselin, Jan Deprest,Wang Guotai, Li Wenqi,
etc. co-authored a paper with a high GCS named ‘‘Interactive med-
ical image segmentation using deep learning with image-specific
fine tuning” [47]. Cluster #4 is a complete network of 13 scholars,
as people within the community often collaborate to publish
papers. Cluster #5 is a cluster containing 15 authors, but it is a
loosely connected research community.

Co-author analysis assesses scientific collaborations of authors
in the field. However, some important scientists may publish
315
highly-cited research papers only by themselves. In this case, co-
author analysis fails to evaluate such influential authors. This prob-
lem can be solved by co-citation analysis.
5.3. Co-citation analysis for medical image

Rather than scientific collaboration and semantic information,
co-citation networks make use of citations to trace global research
trends in medical imaging. A timeline map of co-citation networks
for medical image research is drawn by CiteSpace [25]. Fig. 9 gives
the visualization along with cluster information.



Fig. 6. Visualization of co-word network for medical image.

Fig. 7. Visualization of temporal co-word network for medical image.
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As shown in Fig. 9, each line represents the timeline of a corre-
sponding topic, labeled on the right. The basic method of topic gen-
eration is the automatic topic extraction method applied to a
collection of topic texts. These text collections are mainly abstracts,
titles, or keywords in co-cited reference clusters. From left to right,
the colors from blue, green, yellow, to red stand for different peri-
ods from 1993 to 2022. The purple perimeter of a node implies the
publication has high betweenness, which is defined as the fraction
of the shortest path passing through the node [30]. A high-
betweenness node can easily communicate with nodes in different
communities [48]. The purple-colored node is often the starting
point to initiate a new research direction [20], playing a crucial role
in the subfield of medical imaging.

By removing small clusters, the top ten largest clusters are
selected in the timeline map. Between 1993 and 1997, it was diffi-
cult to find large clusters through co-citation analysis owing to a
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tiny number of papers. When it comes to the period 1998–2002,
cluster #8 was identified with the label of ‘‘3d differential opera-
tors”. This topic was a hotspot during the 1990 s, but the number
of papers declined after 2002. For cluster #3, ‘‘mutual information
(MI)” was the major theme in the research community. MI was first
introduced to the medical image field before 2000. Maintz et al.
referred to the application of MI in a survey [49]. In the early
2000s, MI was widely exploited in medical image processing, espe-
cially in registration. For example, Pluim et al. expounded different
types of MI-based registration methods in his article [50]. From
2003 to 2012, the main topics of the two clusters #5 and #9 were
‘‘radiation therapy” and ‘‘content-based image retrieval”, respec-
tively. In cluster #9, the paper of Mueller et al. in 2004 [51], dis-
cussing content-based image retrieval systems, was the most
cited publication. Experts in clusters #5 and #9 focused on medical
applications.



Fig. 8. Density visualization of co-authorship network for medical image.

Fig. 9. Timeline visualization of co-citation network for medical image.
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The period of 2013–2022 witnessed several emerging topics
and a tremendous number of publications. For the period from
2013 to 2017, many nodes were aggregated into cluster #4, focus-
ing on ‘‘label fusion”. A node is colored with a purple perimeter,
indicating a new branch of label fusion research. It was a study
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of multi-atlas segmentation by the use of joint label fusion, pub-
lished by Wang et al., 2013 [52]. A highly cited article concerning
this topic was written by Sotiras et al., 2013 [53].

In cluster #2 and # 7, researches started in the early 2010 s and
then entered in new phase after 2015. For cluster #7, two highly



Table 2
Subject category distribution of medical image research (top ten listed).

Ranking Subject Category Publication
Count

Percentage

1 Engineering 7209 36.45 %
2 Computer Science 6076 30.72 %
3 Radiology, Nuclear Medicine &

Medical Imaging
3639 18.40 %

4 Physics 1710 8.65 %
5 Instruments & Instrumentation 1215 6.14 %
6 Mathematical & Computational

Biology
1053 5.32 %

7 Optics 971 4.91 %
8 Materials Science 940 4.75 %
9 Science & Technology - Other Topics 910 4.60 %
10 Chemistry 840 4.25 %
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cited papers on the ‘‘watermarking” topic were published in 2017,
incorporating Qayyum et al., 2017 [54] and Parah et al., 2017
[55]. In cluster #2, ‘‘medical image fusion” is the core research topic
of the authors.Major achievements before 2015 involveWang et al.,
2014 [56] and Singh et al., 2014 [57]. Due to the development of
deep learning, most of the highly cited papers are published from
2015, including Liu et al., 2015 [58], Singh et al., 2015 [59], Du
et al., 2017 [60], Li et al., 2018 [5], and Yin et al., 2019 [61]. These
studies explore the theory and application of medical image fusion.

Three clusters, tagged as #0, #1, and #6, are composed of many
fashionable topics such as ‘‘deep learning”, ‘‘transfer learning”, and
‘‘medical image synthesis”. For cluster #0, the papers of Long et al.,
2015 [62] and He et al., 2016 [63] are two high-citation papers
from CVPR. Though they do not belong to the medical image
research field, they appear with high frequency in citations of the
downloaded WOS database. Hence, co-citation analysis can dis-
cover more information than co-word and co-author analysis.
Another significant paper is a survey on deep learning in medical
image analysis (Litjens et al., 2017 [7]), which has been discussed
in the previous section. For cluster #1, the work of LeCun et al.,
2015 [64] and Schmidhuber et al., 2015 [65] are two pivotal pub-
lications that build the theoretical foundation of medical image
research based on transfer learning. The work of Esteva et al.,
2017 [66] is the application of deep neural networks in dermatol-
ogy. Finally, cluster #6 is concerned with the topic of medical
image synthesis. Related studies are identified such as Goodfellow
et al., 2014 [67], Zhu et al., 2017 [68], and Zhang, et al., 2017 [69].
They adopt deep learning for the task of image synthesis. Overall,
deep learning plays a critical role in the advance of medical image
research.
6. Discussions

The field of medical imaging covers interdisciplinary studies in
medicine, computer science, mathematics, etc. For instance, the
nuclear medicine imaging research may include subject areas such
as radiology, biophysics, and oncology. Thus, subject categories in a
publication are good indicators to help us learn more about cross-
disciplinary topics. Web of Science provides more than 200 WOS
subject categories, showing different disciplines of publications
and specific areas of research. Each paper can be tagged with at
least one subject category.

The subject category distribution of medical image research has
been calculated according to the bibliographic data of WOS. The
statistical results show that there are 141 subject categories in
19,762 publications concerning medical image research. That is
to say, a wide range of research directions exist in this field, and
there is a lot of interdisciplinary content in the publications. The
top ten subject categories, publication counts, and percentages
are listed in Table 2. As can be seen from the table, the number
of publications for Engineering is the largest, followed by Computer
Science. The imaging technique develops with the improvement of
efficient analysis methods based on computer science and engi-
neering. Pattern recognition, deep learning, artificial intelligence,
and other engineering technologies are widely utilized in medical
image research, which has contributed to the progress of medical
imaging techniques in the last few years. The ‘‘Radiology, Nuclear
Medicine & Medical Imaging” category ranks third. It is a cross-
disciplinary research direction that integrates medical imaging
and clinical treatment, which has developed rapidly in the past
three decades.

The number of publications increased dramatically in medical
image research since 2015. Both TLCS and TGCS showed similar
trends from 2015 to 2019 (see Fig. 1). TLCS achieved a maximum
score in 2019, whereas TGCS in 2017. The great success of deep
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learning in the field of computer vision has inspired many
researchers to apply it to medical image analysis. After 2013, con-
volutional neural networks (CNNs) rapidly developed into a
research hotspot in medical image analysis [70–72], which can
automatically extract hidden features of the medical image and
significantly improve the performance of classification, registra-
tion, conversion, etc. In 2017, a comprehensive summary of the
research on deep learning in medical image analysis [7] con-
tributed to the second highest score of TLCS and the highest score
of TGCS, becoming a common reference for many scholars within
the domain and throughout the entire science community. The
application of deep learning, especially CNNs, accounts for the rise
of publication count, TLCS, and TGCS. More and more papers are
published in this field, contributing to the peak of TLCS in 2019.
Moreover, many hospitals and medical schools begin to cooperate
with experts in computer vision, which facilitates the sharing of
medical image resources, thus promoting the flourishing of medi-
cal image research.

Deep learning can automatically learn more discriminative fea-
tures from datasets. After being applied to tasks of medical image
classification, detection, segmentation, registration, and so forth, it
has made significant breakthroughs compared with traditional
approaches. This is the main reasons why deep learning and trans-
fer learning are the most fashionable topics in temporal co-citation
network (see Fig. 9). Medical image analysis and applications based
on deep learning will show a continuous growth trend in the com-
ing years with the improvement of deep learning algorithms, high-
performance computing equipment, medical image quality, and
labeling set.

We discussed global research trends in medical imaging based
on theWOS data from 1993 to 2022, but there are some limitations
of the analysis. It is impossible to retrieve all articles of a field by
setting a keyword or a search query. Some papers may be
neglected in this process. Therefore, we brought up a representa-
tive search query that can capture most mainstream papers in this
field. In addition, other datasets were not used in this paper. Some
previous work has proved that most research topics can be found
overlapped in different datasets and the WOS database is a repre-
sentative for studying the global research trends [20].

7. Conclusions

In this paper, we concentrated on the analysis of global research
trends in medical image from 1993 to 2022 based on a data-driven
method. Data acquisition was carried out through the Web of
Science by setting some restricted search conditions. We success-
fully fetched 19,762 records. Further, both bibliometric indexes
and network-based methods were taken to study the research hot-
spots and global trends. Taking into account the analysis presented
above, we eventually reached the following conclusions:
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(1) In the field of medical imaging, the overall number of papers
has been increasing for nearly-three decades. In particular,
the annual output skyrocketed from 635 to 2,240 in the past
ten years due to the development of deep learning and high-
performance computing equipment. Medical Physics is the
most active journal from the standpoint of publication
counts, while IEEE Transactions on Medical Imaging and Med-
ical Image Analysis are the most influential journals in view
of TLCS and TGCS. Neurocomputing and Information Fusion
are well-recognized journals in the local research
community.

(2) There are 141 subject categories discovered in the publica-
tions of medical image research. Engineering and Computer
Science currently attract most scholars in medical image
research. For active authors, Van Ginneken B and Aerts HJWL
are representative researchers from the viewpoint of TLCS
and TGCS, respectively.

(3) The USA leads in medical image research from the perspec-
tive of three metrics. Other influential countries include
China, India, UK, Germany, France, Canada, Netherlands,
Australia, Italy, South Korea, Switzerland, etc. Most leading
institutions come from these countries such as Harvard,
UMich, Stanford, UPenn, UNC, CAS, SJTU, UCL, UofT, RU, etc.
However, only Harvard and UMich appear in the top ten of
publication count, TLCS, and TGCS.

(4) Network-based methods succeed in extracting the main
focus and discovering global research trends in the field of
medical imaging. Segmentation, classification, registration,
and algorithm are academia’s adored research topics. In
the past thirty years, various hotspots surfaced at different
times. With the upgrading of deep learning algorithms such
as convolutional neural networks, the application of artificial
intelligence technologies has dramatically promoted global
studies in this field since 2015. Scientific collaboration
becomes incredibly popular among experts in medical image
research. Many hospitals and medical schools cooperate
with scholars who specialize in computer vision, facilitating
access to medical image resources. Thus, the medical image
will still be a thriving research direction in the near future.
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