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a b s t r a c t

The COVID-19 pandemic is an ongoing pandemic and is placing additional burden on healthcare
systems around the world. Timely and effectively detecting the virus can help to reduce the spread of
the disease. Although, RT-PCR is still a gold standard for COVID-19 testing, deep learning models to
identify the virus from medical images can also be helpful in certain circumstances. In particular,
in situations when patients undergo routine X-rays and/or CT-scans tests but within a few days
of such tests they develop respiratory complications. Deep learning models can also be used for
pre-screening prior to RT-PCR testing. However, the transparency/interpretability of the reasoning
process of predictions made by such deep learning models is essential. In this paper, we propose
an interpretable deep learning model that uses positive reasoning process to make predictions. We
trained and tested our model over the dataset of chest CT-scan images of COVID-19 patients, normal
people and pneumonia patients. Our model gives the accuracy, precision, recall and F-score equal to
99.48%, 0.99, 0.99 and 0.99, respectively.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

The pandemic COVID-19 is placing enormous strain on pub-
ic health systems around the world, and severely affecting the
conomies of many countries. Although, vaccination is being done
or the virus, but the number of the variants of the virus is
lso increasing. The new variants of the virus can reduce the
ffectiveness of the vaccines (WHO, 2021). Therefore, along with
accination for the virus, detection of the virus is important to
educe the spread of the disease and the development of mutants
f the virus. In addition to the prevalent testing technique reverse
ranscription polymerase chain reaction (RT-PCR), deep learning
odels can also be helpful in efforts to detect the virus. Most
f the deep learning algorithms work as a black-box because
heir reasoning process for their predictions is not transpar-
nt/interpretable. However, the interpretation of the reasoning
rocess of a deep learning model related to a high stake decision
s important. There have been cases where erroneous data fed
nto the black-box models went unnoticed, due to which wrong-
ul long prison sentences were given (e.g., inmate Glen Rodriguez
as denied parole because of wrong COMPAS score) (Li, Liu, Chen,
Rudin, 2017; Wexler, 2017). The lack of interpretability of the

easoning processes of such deep learning models has become a
ajor issue for whether we can trust predictions that are coming

rom these models. Therefore, we propose an interpretable deep
earning model quasi prototypical part network (Quasi-ProtoPNet),
nd trained and tested the model over the dataset of chest CT
mages.

E-mail address: Gurmail.Singh@uregina.ca.
ttps://doi.org/10.1016/j.neunet.2022.03.034
893-6080/© 2022 Elsevier Ltd. All rights reserved.
1.1. Related work

In this section, we first discuss those works that are related
to our paper because of the interpretability of their reasoning
process. Second, we provide a brief summary of the studies that
are related to this study as they categorize medical images (chest
CT-scan and X-ray images). The models in the second category
attempt to distinguish medical images of COVID-19 patients from
the medical images of pneumonia patients and normal people,
but the models are not necessarily interpretable.

Several approaches have emerged to interpret convolutional
neural networks, including posthoc interpretability analysis. Once
a neural network performs the classification, posthoc analysis is
used to interpret the neural network. Deconvolution (Zeiler &
Fergus, 2014), saliency visualization (Simonyan, Vedaldi, & Zis-
serman, 2014; Smilkov, Thorat, Kim, Viégas, & Wattenberg, 2017;
Sundararajan, Taly, & Yan, 2017; Wexler, 2017) and activation
maximization (Erhan, Bengio, Courville, & Vincent, 2009; Hinton,
2012; Lee, Grosse, Ranganath, & Ng, 2009; Nguyen, Dosovitskiy,
Yosinski, Brox, & Clune, 2016; Simonyan et al., 2014; Yosin-
ski, Clune, Nguyen, Fuchs, & Lipson, 2015) are a few examples
of posthoc analysis technique. However, these visualization ap-
proaches of posthoc analysis do not shed light on the reasoning
process with clarity.

Attention-based interpretability is another technique to clarify
the reasoning process of the neural networks. The instances of
this technique include part-based models (Fu, Zheng, & Mei,
2017; Girshick, Donahue, Darrell, & Malik, 2014; Huang, Xu, Tao,

& Zhang, 2015; Ren, He, Girshick, & Sun, 2015; Simon & Rodner,
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Fig. 1. For a given CT-scan image of a COVID-19 patient, Quasi-ProtoPNet
identifies the parts of the image where it thinks that this part of the image
is similar to that learned prototype.

2015; Uijlings, van de Sande, Gevers, & Smeulders, 2013; Xiao
et al., 2015; Zhang, Donahue, Girshick, & Darrell, 2014; Zheng,
Fu, Mei, & Luo, 2017; Zhou, Sun, Bau, & Torralba, 2018) and class
activation maps (CAM) (Zhou, Khosla, Lapedriza, Oliva, & Torralba,
2016). In this approach, the aim of a model is to show the patches
of an input image that are the focus of its attention; nonetheless,
these models do not represent prototypes that resemble the parts
of an input image that are the focal points of the models. Recently,
a model CXR-specific with class activation maps has also been
developed to detect COVID-19 from medical images (Rajaraman,
Sornapudi, Alderson, Folio, & Antani, 2020).

Case-based classification techniques that use prototypes (Bien
Tibshirani, 2011; Priebe, Marchette, DeVinney, & Socolinsky,

003; Wu & Tabak, 2017) or k-nearest neighbors (Papernot &
McDaniel, 2018; Salakhutdinov & Hinton, 2007; Weinberger &
Saul, 2009) are also related to our work. Throughout this paper,
a prototype or a prototypical part will represent a patch of an
image. Li et al. (2017) have developed a model that uses full
image-sized prototypes and requires a decoder for visualizing
prototypes. Chen, Li, Barnett, Su, and Rudin (2018) developed
a model ProtoPNet which significantly improved on the model
developed in Li et al. (2017).

As shown in Fig. 1, ProtoPNet is able to identify different parts
of an input image that are similar to different prototypes, and
it classifies an image based on the similarity scores. To classify
an input image, ProtoPNet finds the Euclidean distance between
each latent patch of the input image and the learned prototypes of
images from different classes, where prototypes have spatial di-
mensions 1× 1. The maximum of the inverted distances between
a prototype and the patches of the input image is called the sim-
ilarity score of the prototype. Note that, the smaller the distance,
the larger the reciprocal, and there will be only one similarity
score for each prototype. A weighted combination of similarity
scores is used to determine the logits for different classes and
these logits are normalized using Softmax to determine the class
of the input image. The weights for the correct class and incorrect
class of a training image are set equal to 1 and −0.5, respectively.
These weights are also called connections of the similarity scores
with the classes. The negative weights are assigned to include
the negative reasoning process, that is, to reject the incorrect
classes. ProtoPNet tries to zero out the negative weights during
the training process, and with this assumption of ProtoPNet, a
theorem is proved (Chen et al., 2018, Theorem 1.1). However,
our experiments show that it is hardly possible to zero out the
negative connections during the training process after making a
negative connection between the similarity scores and incorrect
classes.

The models NP-ProtoPNet (Singh & Yow, 2021c), Gen-ProtoPNe
(Singh & Yow, 2021a) and Ps-ProtoPNet (Singh & Yow, 2021b) are
variations of ProtoPNet, and we refer to these four models collec-
tively the ProtoPNet models or the series of ProtoPNet models.
179
Gen-ProtoPNet model uses a generalized version of the Euclidean
distance function, NP-ProtoPNet considers the negative reasoning
process and the positive reasoning process but emphasizes on
the negative reasoning process, and Ps-ProtoPNet model uses the
connections between logits and similarity scores as suggested
by Singh and Yow (2021b, Theorem 1), and uses the generalized
version of the distance function. The theorem (Singh & Yow,
2021b, Theorem 1) uses a more realistic assumption of fixed neg-
ative connections between similarity scores and incorrect classes
to find the impact of change in the negative connections on the
logits. The impact on the logits is obtained due to the projection of
prototypes to the patches of training images, that is, the replace-
ment of the prototypes with the latent patches of the training
images. However, the use of fixed negative connections leads to
decrease in the logit of correct class and increase in the logit
of incorrect classes, consequently the accuracy of Ps-ProtoPNet
deceases after the projection of prototypes. In particular, the
impact is more severe when the number of classes is small,
see Singh and Yow (2021b, Theorem 1). In summary, each model
of the series of ProtoPNet models uses the negative reasoning
process along with the positive reasoning process, whereas our
model Quasi-ProtoPNet uses only positive reasoning process to
categorize images.

In order to get rid of the flaws of the ProtoPNet models, espe-
cially when the number of classes is small, Quasi-ProtoPNet uses
only positive reasoning process by placing zero connection be-
tween the similarity scores and incorrect classes. Quasi-ProtoPNet
suspends the convex optimization of the last layer to keep the
connections constant, where by the suspension of the convex
optimization of the last layer means that Quasi-ProtoPNet does
not optimize the last layer by freezing all other layers. In ad-
dition to the positive reasoning process, Quasi-ProtoPNet uses
prototypes of all types of spatial dimensions, that is, rectangu-
lar spatial dimensions and square spatial dimensions, whereas
ProtoPNet model uses the prototypes with only square spatial
dimensions 1 × 1. Prototypes with large spatial dimensions help
our model to classify the images on the basis of objects instead of
backgrounds of the objects in the images. However, the optimum
spatial dimensions need to be determined to get better accuracy.

To identify an image that has not been previously exposed,
humans can compare patches of the image with patches of im-
ages of known objects. This type of reasoning is usually used
in difficult identification tasks. For example, radiologists may
compare suspicious tumors in an X-ray or a CT-scan image with
prototype tumor images to diagnose cancer. This type of human
reasoning inspired our model where comparison of image parts
with learned prototypes is an integral part of the model’s reason-
ing process. Therefore, our model differentiates between CT-scan
images of a COVID-19 patient and CT-scan images of pneumo-
nia patients based on greater similarity between the learned
prototypes and the patches of images.

Several non-interpretable networks have been proposed to
distinguish chest CT-scan or X-ray images of COVID-19 patients
from chest CT-scan or X-ray images of pneumonia patients and
normal people, see Al-Waisy et al. (2020, 2021), Chaudhary et al.
(2021), Chen, Che Azemin, Hassan, Mohd Tamrin, and Md Ali
(2020), Clough, Sharma, Rani, and Gupta (2020), Cohen et al.
(2020), Dansana et al. (2020), Gunraj, Sabri, Koff, and Wong
(2021a), Gunraj, Wang, and Wong (2020), Jain, Gupta, Tanjea, and
Jude (2020), Jain, Mittal, Thakur, and Mittal (2020), Kumar et al.
(2020), Ozturk et al. (2020), Rajaraman et al. (2020), Reddy et al.
(2020) and Zebin and Rezvy (2020). Some studies have surveyed
the machine learning/deep learning models that classify chest CT-
scan images or X-ray images of COVID-19 patients, pneumonia
patients and normal people. A survey by Bhattacharya et al.
(2021) signifies the lack of sufficient and reliable data of the med-
ical images related COVID-19 patients for neural networks, but
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model’s reliability depends data. However, we experimented
ur model over currently publicly available the biggest dataset
f the CT-scan images (Gunraj, Sabri, Koff, & Wong, 2021b). Few
ore studies (Yan, Gong, Wei, & Gao, 2021; Yan, Hao, et al., 2022;
an et al., 2020; Yan, Meng, et al., 2022; Yan, Teng, et al., 2021)
elated to multi-view hashing and image retrieval are also worth
entioning.

.2. Dataset

We choose the dataset (Gunraj et al., 2021b) of chest CT-
can images of COVID-19 patient, normal people and pneumonia
atients to train and test our model. The dataset consists of
43778 training images and 25658 test images. We crop the
mages using the bounding box information provided with the
ataset. Also, we use the information provided with the dataset
o segregate the cropped images into three classes Covid, Normal
nd Pneumonia that contain the images of COVID-19 patients,
ormal people and pneumonia patients, respectively. We also call
hese classes first, second and third, and denote them by C,N and
, respectively. The classes C,N and P have 35996, 25496 and

82286 training images, and 12245, 7395 and 6018 test images,
respectively. All images have been resized to the dimensions
224 × 224 as required by the base models.

1.3. Contributions

The novelty of our model is that it uses positive reasoning
process along with the use of prototypes that can have any
type of spatial dimensions, that is, rectangular spatial dimensions
and square spatial dimensions. Quasi-ProtoPNet uses an objec-
tive function different from the objective function used in the
series of ProtoPNet models. The contributions of this paper are
summarized below.

• Quasi-ProtoPNet uses only the positive reasoning process
by maintaining zero connection between the similarity
scores and incorrect classes. Quasi-ProtoPNet suspends the
convex optimization of the last layer to keep the connec-
tions fixed. The suspension of the convex optimization also
reduces the training time considerably.
• The architecture of Quasi-ProtoPNet helped us to prove

a theorem, see Theorem 3.1. The theorem provides the
theoretical evidence of the reason of the improvement in
the performance of our model over the other ProtoPNet
models. We remark that the theorem is not only true for
the distance function that we use for our model, but it is
also true for any positive-valued function that satisfies the
triangular inequality and has appropriate domain.
• Quasi-ProtoPNet uses prototypes with both types of spatial

dimensions, that is, rectangular spatial dimensions and
square spatial dimensions, whereas ProtoPNet model uses
prototypes with only square spatial dimensions 1 × 1.

The rest of the paper is organized as follows. In Section 2,
we provide a detailed information about the architecture of our
model, and we explain the training procedure and reasoning
process of our model. In Section 3, we provide confusion matri-
ces for our model with different base models, and we compare
the performance of our model with the ProtoPNet models and
the base models. Also, we show that the improvement in the
accuracies given by our model over the accuracies given by the
other ProroPNet models is statistically significant. A graphical
comparison of the accuracies is provided. In this section, we also
prove a theorem that finds the bounds of the changes in logits due
to projection of prototypes on the training images. In Section 4,
we talk about the limitations of our model. In Section 5, a brief
discussion on our model and the series of ProtoPNet models is
provided. Finally, in Section 6, we conclude our work.
180
2. Method

In this section, we introduce and explain the architecture and
the training process of our model Quasi-ProtoPNet in the context
of CT-scan images.

2.1. Quasi-ProtoPNet architecture

Quasi-ProtPNet can be built on convolutional layers of a state-
of-the-art base model (baseline), such as: VGG-19 (Simonyan
& Zisserman, 2015), ResNet-34, ResNet-152 (He, Zhang, Ren, &
Sun, 2016), DenseNet-121, or DenseNet-161 (Huang, Liu, Van
Der Maaten, & Weinberger, 2017). As shown in Fig. 2, Quasi-
ProtoPNet consists of the convolution layers of a base model that
are followed by two additional convolutional layers 2 × 1 and
1 × 1. These convolutional layers are collectively denoted by L,
and they are followed by a generalized convolutional
layer (Ghiasi-Shirazi, 2019; Nalaie, Ghiasi-Shirazi, & Akbarzadeh-
T, 2017) pt of prototypical parts. The layer pt is followed by
a dense layer w with no bias. The parameters of L and the
weight matrix of a dense layer are denoted by Lconv and wm,
respectively. The activation functions ReLU and Sigmoid are used
for the additional second last convolutional layer and last con-
volution layer, respectively. Note that, convolutional layers L
form a non-interpretable (black-box) part of our model whereas
the generalized convolutional layer pt forms the interpretable
(transparent) part of our model.

Although, convolutional layers of any of the base models can
be used to construct our model, we provide the explanation of
Quasi-ProtoPNet when it is constructed over the convolutional
layers of VGG-16. Let x be an input image. Since the output of
the convolutional layers of VGG-16 has depth 512 and spatial
dimensions 7 × 7, L(x) has depth 512 and spatial dimensions
6 × 6. Note that, the layer pt is a vector of prototypical units, and
each prototypical unit is a tensor of the shape 512×h×w, where
1×1 < h×w < 6×6, that is, h and w together are neither equal to
1 nor 6. Suppose n and m denote the total number of classes and
prototypes for each class, respectively. Let Pc

= {pcl }
m
l=1 be the set

of prototypes of a class c and P = {Pc
}
n
c=1 is set of all prototypes.

For our work n = 3, but we randomly set the hyperparameter
m = 10.

The shapes of L(x) and pt are 512 × 6 × 6 and 512 × h × w,
where h and w lie between 1 and 6 but together they are neither
equal to 1 nor 6. Therefore, each prototype can be thought of as a
part of L(x). The model takes into account the spatial relationship
between L(x) and the prototypical parts, and upsamples the part
of L(x) (the part of L(x) that is at the smallest distance from a
rototypical part) to the input image x to identify the patch on
that resembles similar to a prototype. The green rectangles

n the source images are the parts of the source images from
here the prototypes are actually projected. The source image of
he prototypes p11, p

2
1 and p310 are also shown in Fig. 2. Similar

to ProtoPNet (see Section 1.1), Quasi-ProtoPNet computes the
similarity scores between an input image and prototypes p11−p110,
p21−p210 and p31−p310, see Fig. 2. The prototypes p11, p

2
1 and p310 have

similarity scores 2.8001, 0.7889 and 1.0233, and the similarity
score of p11 is greater than the other two similarity scores. The
complete list of similarity scores obtained from our experiments
is given in the matrix sm, see Section 2.3.

In the dense layer w, the matrices wm and sm are multiplied
to obtain the logits. The logits for the classes C , N and P are
38.0688, 10.1137 and 11.1361, respectively. The interpretabil-
ity/transparency of our model comes into play when an image is
classified into a certain class. Our model is able to tell the reason
of the classification of the image to that class, and the reason is
that the image has some patches more similar to certain learned
prototypes related to that class and it shows those learned pro-
totypes. The learned prototypes are projected from the training
images, so they are the patches of the training images.
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Fig. 2. Quasi-ProtoPNet architecture.
Fig. 3. The explanation of the reasoning process of the model.
.2. Training of Quasi-ProtoPNet

Quasi-ProtoPNet uses the generalized version d of the Eu-
clidean distance function, and in this section we show that d is a
generalization of the Euclidean distance function. Consider Quasi-
ProtoPNet with base model VGG-16. Let x be an input image.
Therefore, the shape of L(x) is 512 × 6 × 6 as described in
ection 2.1. Let p be any prototype with shape 512 × h × w,

where 1 ≤ h, w ≤ 6, and h and w together are neither equal
to 1 nor 6. The output O(= L(x)) of the convolutional layers L has
(7− h)(7−w) patches of dimensions h×w. Hence, square of the
distance d(Pij, p) between p and (i, j) patch Pij (say) of O is:

d2(Pij, p) =
h∑ w∑ 512∑

∥O(i+l−1)(j+m−1)k − plmk∥
2
2. (1)
l=1 m=1 k=1

181
Note that, if p has prototypes of spatial dimensions 1 × 1, that
is, h = w = 1, then d2(Pij, p) =

∑512
k=1 ∥Oijk − p11k∥22, which

is the square of the Euclidean distance between p and a patch
of O, where p11k ≃ pk. Therefore, the function d is a generaliza-
tion of the Euclidean distance function. The prototypical unit pt
calculates the following.

pt (O) = max
1≤i≤7−h, 1≤j≤7−w

log
(
d2(Pij, p)+ 1
d2(Pij, p)+ ϵ

)
.

That is,

pt (L(x)) = max
P ∈ patches(L(x))

log
(
d2(P, p)+ 1
d2(P, p)+ ϵ

)
. (2)

Eq. (2) exhibits that a prototype p is more similar to the image
x if the reciprocal of the distance between p and a latent patch of
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is smaller. Quasi-ProtoPNet is trained using the following two
teps.

.2.1. Optimization of all layers before the dense layer
Let X = {x1 . . . xn} and Y = {y1 . . . yn} be sets of images and

associated labels, respectively, and D = {(xi, yi) : xi ∈ X, yi ∈ Y }.
Then our objective function is:

min
P, Lconv

1
n

n∑
i=1

CrosEnt(h ◦ pt ◦ L(xi), yi)+ λClstCost, (3)

where ClstCost is given by the equation

ClstCost =
1
n

n∑
i=1

min
j:pj∈Pyi

min
P∈patches(L(xi))

d2(P, pj). (4)

Eq. (4) discloses that the drop in the cluster cost (ClstCost)
eads to the clustering of prototypes around their respective
lasses. The reduction in cross entropy leads to better classifica-
ions, see the objective function (3). The hyperparameter λ is set
qual to 0.7. Since wm is the weight matrix for the dense layer,
(i,j)
m is the weight assigned to the connection between logit of ith

class and similarity score of jth prototype. Therefore, for a class
c , we put w

(i,j)
m = 1 for all j with pij ∈ P i, and for all pcj ̸∈ P i with

̸= i, m(c,j)
w = 0. The non-negativity of the distance function and

ptimization of all the layers before the last layer with optimizer
GD help Quasi-ProtoPNet to learn important latent spaces.

.2.2. Projection of prototypes
Let x be an input image. At the second step, Quasi-ProtoPNet

rojects the prototypes onto the patches of x that are more
imilar to the prototypes. That is, a patch of x that is at a smaller
istance from a prototype gets projected, and the distance must
e at least 93rd percentile of all the inverted distances of the
rototype from all the images. For this purpose, Quasi-ProtoPNet
akes the following update:

c
j ←− arg min

{P:P ∈ patches(L(xi)) ∀i such that yi=c}
d(P, pcj ).

.3. Explanation of Quasi-ProtoPNet

In this section, we explain our model with an example of an
nput image as given in Fig. 3.

In Fig. 3, the image in the first column belongs to the class
ovid. In the second column of the figure, the green rectangle
n the image is enclosing the patches of the image that give the
ighest similarity score to the prototypes in the third column. In
he fourth column, the rectangles are enclosing the patches on
he source images of the prototypes, that is, the rectangles are
inpointing the patches on the source images from where the
rototypes are projected. In the fifth column, similarity scores
etween the prototypes and patches of the test image are dis-
layed. In the sixth column, the connections between similarity
cores and the logits are given. Since the image belongs to the first
lass C , the similarity scores of the prototypes of the second and
hird class are assigned zero weight. The entries of the seventh
olumn are obtained by multiplying similarity scores and class
onnections, and the logit (38.0688) for the class C is obtained
y adding the entries of the seventh column. The logit for the
lass C can also be computed by multiplying the first row of wm
ith matrix sm. The logits for the classes N and P are 10.1137
nd 11.1361, respectively, and can be computed by multiplying
econd and third row of wm with matrix sm.
The transpose of the weight matrix wm and similarity score

atrix s that we obtain from our experiments are as follows:
m M

182
T
m =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and sm =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.8001
2.8001
2.8001
3.2050
2.8001
1.9548
2.4170
8.7579
7.3285
3.2050
0.7889
1.7505
0.7889
0.7889
1.7363
0.8233
0.7889
0.7889
0.7889
1.0701
1.9261
1.0942
0.9336
0.9524
1.0003
1.1130
0.9112
1.0463
1.1354
1.0233

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

. Results

In this section, we present the metrics given by our model and
ompare the performance of our model with the performance of
he other models.

.1. The metrics and confusion matrices

Suppose TP, TN, FP and FN denote the true positives, true neg-
tives, false positives and false negatives for the Covid class. The
etrics accuracy, precision, recall and F1-score are (Wikipedia
ontributors, 2021a, 2021b, 2021c):

Accuracy =
TP + TN

TP + TN + FP + FN
, Precision =

TP
TP + FP

.

(5)

Recall =
TP

TP + FN
, F1-score =

2
Precision−1 + Recall−1

.

(6)

In Figs. 4–9, the confusion matrices of Quasi-ProtoPNet with
he base models are given. For example, in Fig. 4, the confu-
ion matrix M (say) of Quasi-ProtoPNet with baseline VGG-16
s provided. Hence, the numbers M[0][0], M[1][1] + M[2][2],
[0][1] +M[0][2] and M[1][0] +M[2][0] are the TP, TN, FP and
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Fig. 4. Base VGG-16.

Fig. 5. Base VGG-19.

Fig. 6. Base ResNet-34.

Fig. 7. Base ResNet-152.

Fig. 8. Base DenseNet-121.

FN of the class Covid. Therefore, by Eqs. (5) and (6), for Quasi-
ProtoPNet, the accuracy, precision, recall and F1-score are equal
to 99.05, 0.98, 0.99 and 0.98, respectively.

3.2. The performance comparison of the models

The series of ProtoPNet models are constructed over the con-
volution layers of the base models. Although, the accuracies of the
series of ProtoPNet models and the base models become stabilize
prior to 35 epochs (see Section 3.4), but we trained and tested
the models for 100 epochs.

The performance comparison in the metrics is provided in Ta-
ble 1. We see from the third column of Table 1 that when we build
183
Fig. 9. Base DenseNet-161.

ur model on the convolutional layers of VGG-16 then the accu-
acy, precision, recall and F1-score given by Quasi-ProtoPNet are
9.05, 0.98, 0.99 and 0.98, respectively. The accuracy, precision,
ecall and F1-score given by the models ProtoPNet, NP-ProtoPNet,
en-ProtoPNet, Ps-PrortoPNet with base model VGG-16, and the
ase model itself (Base only) are 90.84, 0.89, 0.91 and 0.90;
8.23, 0.93, 0.95 and 0.94; 95.85, 0.93, 0.95 and 0.94; 98.83, 0.96,
.98 and 0.97; and 99.03, 0.98, 0.99 and 0.98, respectively. The
ighest accuracies obtained with different base models are in
old. Moreover, we see from the Table 1 that accuracies given
y Quasi-ProtoPNet are even better than the accuracies given
y the base models when Quasi-ProtoPNet is constructed over
he convolutional layers of VGG-16, VGG-19 and DenseNet-121.
urthermore, the highest accuracy (99.48%) achieved by Quasi-
rotoPNet with base model DenseNet-121 is equal to the high-
st accuracy (99.48%) achieved by the non-interpretable model
enseNet-161.
In addition to achieving excellent accuracy, Quasi-ProtoPNet

an explain why an input image is classified into a certain class,
hereas such explanations are not possible with black-box mod-
ls. That is, our model exhibits some prototypes from the image
lass that are similar to some patches of the classified image. In
ther words, if an image is classified to a certain class then it
ust have some patches similar to the prototypes of that class.
he model also gives prototypes that can be manually compared
ith some patches of the classified image to know why a certain
lass has been assigned to the image.

.3. The test of hypothesis for the accuracies

Since an accuracy is the proportion of correctly classified im-
ges among all the test images, the test of hypothesis concerning
ystem of two proportions can be applied to determine whether
he differences between the accuracies are statistical significant.
et nd be the size of test dataset. Let x1 and x2 be the number
f images correctly classified by models 1 and 2, respectively. Let
˜1 = x1/nd and p̃2 = x2/nd. The statistic for the test concerning
ifference between two proportions (accuracies) is as follows
Richard, Miller, & Freund, 2017):

=
p̃1 − p̃2√

2p̃(1− p̃)/nd
, where p̃ = (x1 + x2)/2nd. (7)

Suppose the models 1 and 2 give the accuracies p1 and p2.
hen, our hypothesis:
H0 : (p1 − p2) = 0 (null hypothesis)
Ha : (p1 − p2) ̸= 0 (alternative hypothesis)
Let the level of confidence (α) be 0.05. Therefore, to reject the

ull hypothesis, the p-value must be less than 0.025 because we
ave two-tailed hypothesis. Suppose p1 represents the accuracy
iven by Quasi-ProtoPNet and the accuracies given by the other
odels are represented by p2. The values of test statistic Z are
btained by the above formula, see Eq. (7). We use the stan-
ard normal table to obtain the associated p-values, and list the
-values in the Table 2.
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Table 1
The comparison of performances of the models while experimented over the dataset of CT images.
Base Metric Quasi-

ProtoPNet
Ps-ProtoPNet
(Singh & Yow, 2021b)

Gen-ProtoPNet
(Singh & Yow, 2021a)

NP-ProtoPNet
(Singh & Yow, 2021c)

ProtoPNet
(Chen et al., 2018)

Base only

VGG-16 Accuracy 99.05 98.83 95.85 98.23 90.84 99.03
Precision 0.98 0.96 0.93 0.93 0.89 0.98
Recall 0.99 0.98 0.95 0.95 0.91 0.99
F1-score 0.98 0.97 0.94 0.94 0.90 0.98

VGG-19 Accuracy 99.15 98.53 98.17 98.23 96.54 98.71
Precision 0.98 0.97 0.95 0.91 0.93 0.98
Recall 0.99 0.99 0.99 0.96 0.95 0.99
F1-score 0.98 0.98 0.97 0.93 0.94 0.98

ResNet-34 Accuracy 99.29 ±
0.04

98.97 ±
0.05

98.40 ±
0.12

98.45 ±
0.07

97.05 ±
0.06

99.24 ±
0.10

Precision 0.99 0.97 0.96 0.96 0.95 0.99
Recall 0.99 0.99 0.99 0.99 0.96 0.99
F1-score 0.99 0.98 0.97 0.97 0.96 0.99

ResNet-152 Accuracy 99.26 ±
0.05

98.85 ±
0.04

95.90 ±
0.09

98.48 ±
0.06

88.20 ±
0.08

99.40 ±
0.05

Precision 0.98 0.97 0.93 0.99 0.87 0.99
Recall 0.99 0.98 0.93 0.99 0.87 0.99
F1-score 0.98 0.97 0.93 0.99 0.87 0.99

DenseNet-
121

Accuracy 99.44 ±
0.04

99.24 ±
0.05

98.97 ±
0.02

98.83 ±
0.10

98.81 ±
0.07

99.32 ±
0.03

Precision 0.99 0.98 0.98 0.99 0.98 0.99
Recall 0.99 0.99 0.99 0.98 0.98 0.99
F1-score 0.99 0.98 0.98 0.98 0.98 0.99

DenseNet-
161

Accuracy 99.37 ±
0.02

99.02 ±
0.03

98.87 ±
0.02

98.88 ±
0.03

98.76 ±
0.07

99.41 ±
0.07

Precision 0.98 0.96 0.98 0.97 0.97 0.99
Recall 0.99 0.99 0.99 0.99 0.99 0.99
F1-score 0.99 0.97 0.98 0.97 0.98 0.99
Table 2
The p-values obtained with the test of hypothesis for system of two proportions (accuracies) between our proposed model
and each of the other models.
Base Ps-ProtoPNet

(Singh & Yow, 2021b)
Gen-ProtoPNet
(Singh & Yow, 2021a)

NP-ProtoPNet
(Singh & Yow, 2021c)

ProtoPNet
(Chen et al., 2018)

Base only

VGG-16 0.00755 0.00002 0.00002 0.00002 0.40905
VGG-19 0.00002 0.00002 0.00002 0.00002 0.00002
ResNet-34 0.00005 0.00002 0.00002 0.00002 0.44828
ResNet-152 0.00002 0.00002 0.00002 0.00002 0.02169
DenseNet-
121

0.00480 0.00002 0.00002 0.00002 0.03836

DenseNet-
161

0.00002 0.00002 0.00002 0.00002 0.08692
In particular, when convolutional layers of VGG-16 are used
o construct the models, we get the p-values from the accuracy
iven by Quasi-ProtoPNet along with the accuracies given by
s-ProtoPNet, Gen-ProtoPNet, NP-ProtoPNet, ProtoPNet and VGG-
6 equal to 0.00755, 0.00002, 0.00002, 0.00002 and 0.40905,
espectively. The null hypothesis for all the p-values that cor-
espond to the series of ProtoPNet models got rejected, because
he p-values are less than 0.025, see the Table 2. Therefore, the
ccuracies given by Quasi-ProtoPNet with different base models
re statistically significantly (with 95% confidence) better than
he accuracies given by the ProtoPNet models. However, the p-
values given in the last column of Table 2 corresponding to the
base models VGG-16, ResNet-34, ResNet-152, DenseNet-121 and
DenseNet-161 are greater than 0.025. So, the accuracies given
by these base models are not significantly different from the
accuracies given by our model.

3.4. The graphical comparison of the accuracies

In Figs. 10–15, graphical comparison of the accuracies given by
Quasi-ProtoPNet and the other models is provided. Although, the
accuracies given the models become stable before 35 epochs, the

models are trained and tested for 100 epochs over the dataset

184
Fig. 10. Quasi-ProtoPNet with VGG-16.

(Gunraj et al., 2021b), and the graphical comparisons of the
accuracies are provided over 50 epochs.

Fig. 10 provides a comparison of the accuracies given by the
models when they are constructed over the convolutional layers
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Fig. 11. Quasi-ProtoPNet with VGG-19.

Fig. 12. Quasi-ProtoPNet with ResNet-34.

Fig. 13. Quasi-ProtoPNet with ResNet-152.

of VGG-16. Although, it is difficult to see the difference between
the accuracies in Figs. 10–15, the difference is clear before the
models stabilize.

3.5. The effect of the projection of prototypes

In this section, we prove a theorem similar to Chen et al. (2018,
Theorem 2.1). The theorem (Chen et al., 2018, Theorem 2.1)
assumes that the negative connections between similarity scores
185
Fig. 14. Quasi-ProtoPNet with DenseNet-121.

Fig. 15. Quasi-ProtoPNet with DenseNet-161.

nd incorrect classes can be made equal to zero during the train-
ng process. As mentioned in Section 1.1, our experiments show
hat it is hardly possible to make the negative connections zero
uring the training process. However, we do not need to make
his assumption because our model uses only positive reasoning
rocess, and the suspension of the convex optimization of the
ast layer of our model keeps the connection between similarity
cores and incorrect classes zero. Furthermore, (Chen et al., 2018,
heorem 2.1) is proved with the Euclidean distance function,
hereas our theorem is neither restricted to the Euclidean dis-
ance function nor to its generalized version d, but the distance
function can be replaced with any positive-valued function that
satisfies the triangular inequality and has an appropriate domain.
However, we present the theorem with a hemimetric, a distance
function more general than the distance function d.

Theorem 3.1. Let f be a hemimetric. Suppose f and the distance
function d have the same domain, and f 2 denotes the square of f .
Let h ◦ pt ◦ L be a Quasi-ProtoPNet. For a class k, let aki and bki be
the values of ith prototype for class k after the projection of pki and
efore the projection of pki , respectively. Let x be an input image that

is correctly classified by Quasi-ProtoPNet before the projection, and
k be the correct class label of x. Let Ok

i be the patch of L(x) closest to
aki . Suppose there exists some δ with 0 < δ < 1 such that:

1. for all k′ ̸= k and i ∈ {1, . . . ,mk′}, we have f (ak
′

i , bk
′

i ) ≤

θ f (Ok′
i , bk

′

i )−
√

ϵ, where θ = min(
√
1+ δ−1, 1−

1
√ )

2− δ
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and ϵ is given by

pt (L(x)) = maxP ∈ patches(L(x)) log
(
f 2(P, p)+ 1
f 2(P, p)+ ϵ

)
;

2. for all i ∈ {1, . . . ,mk}, we have f (aki , b
k
i ) ≤ (

√
1+ δ −

1)f (Ok
i , b

k
i ) and f (Ok

i , b
k
i ) ≤
√
1− δ.

Then after projection,

1. the output logit ∆k (say) for the correct class k can decrease at
most by m log(1+δ)(2−δ), that is, ∆k ≥ −m log(1+δ)(2−δ);

2. the output logit ∆k′ (say) for incorrect classes k′ can increase
at most by m log(1+δ)(2−δ), that is, ∆k′ ≤ m log(1+δ)(2−
δ).

roof. For any class c , let Gc(x, {pci }
m
i=1) be the output logit for

nput image x, where {pci }
m
i=1 denote the prototypes of class c. The

onnection between similarity score and incorrect classes is zero,
nd the suspension of the convex optimization of the dense layer
eep these connections fixed. Therefore,

Gc(x, {pci }
m
i=1) =

∑m
i=1 log

(
f 2(Oc

i , p
c
i )+ 1

f 2(Oc
i , p

c
i )+ ϵ

)
.

Let ∆c be the difference between the output logit of class
after the projection and before the projection of prototypes.
uppose Gc(x, {aci }

m
i=1) and Gc(x, {bci }

m
i=1) denote the logits after the

projection and before the projection, respectively. Therefore, we
have
∆c = Gc(x, {aci }

m
i=1)− Gc(x, {bci }

m
i=1)

=

m∑
i=1

log
(
f 2(Oc

i , a
c
i )+ 1

f 2(Oc
i , b

c
i )+ 1

·
f 2(Oc

i , b
c
i )+ ϵ

f 2(Oc
i , a

c
i )+ ϵ

)
.

(8)

Assume,

Ψ c
i =

f 2(Oc
i , a

c
i )+ 1

f 2(Oc
i , b

c
i )+ 1

×
f 2(Oc

i , b
c
i )+ ϵ

f 2(Oc
i , a

c
i )+ ϵ

. (9)

Therefore,

c =

m∑
i=1

logΨ c
i . (10)

First, to prove 1, that is, to find the lower bound of ∆k, assume
= k in Eqs. (9) and (10), where k is the correct class of x.
From the inequality given in assumption 2, we have

f 2(Ok
i , a

k
i )+ 1

f 2(Ok
i , b

k
i )+ 1

≥
1

f 2(Ok
i , b

k
i )+ 1

≥
1

2− δ
. (11)

Using the triangular inequality, we have

f 2(Ok
i , b

k
i )+ ϵ

f 2(Ok
i , a

k
i )+ ϵ

≥
f 2(Ok

i , b
k
i )+ ϵ

(f (Ok
i , b

k
i )+ f (aki , b

k
i ))2 + ϵ

. (12)

By assumption 2, we have

(aki , b
k
i ) ≤ (

√
1+ δ − 1)f (Ok

i , b
k
i ), that is,

f (aki , b
k
i )+ f (Ok

i , b
k
i ) ≤ f (Ok

i , b
k
i )
√
1+ δ. (13)

Square inequality (13) and add ϵ to the result, we obtain

(f (aki , b
k
i )+ f (Ok

i , b
k
i ))

2
+ ϵ ≤ (1+ δ)f 2(Ok

i , b
k
i )+ ϵ

≤ (1+ δ)(f 2(Ok
i , b

k
i )+ ϵ).

(14)

On rearranging inequality (14), we have

f 2(Ok
i , b

k
i )+ ϵ

k k k k 2
≥ (1+ δ). (15)
(f (ai , bi )+ f (Oi , bi )) + ϵ

186
By inequalities (12) and (15), we have

f 2(Ok
i , b

k
i )+ ϵ

f 2(Ok
i , a

k
i )+ ϵ

≥ (1+ δ). (16)

Therefore, by Eqs. (11) and (16), we have

k
i =

f 2(Ok
i , a

k
i )+ 1

f 2(Ok
i , b

k
i )+ 1

×
f 2(Ok

i , b
k
i )+ ϵ

f 2(Ok
i , a

k
i )+ ϵ

≥
1

(1+ δ)(2− δ)
. (17)

Hence, by Eqs. (8) and (17), we have

k ≥

m∑
i=1

log
(

1
(1+ δ)(2− δ)

)
, that is, ∆k ≥ −m log(1+ δ)(2− δ).

Second, to prove 2, that is, to find the upper bound of ∆k′ ,
assume c = k′ in the above Eqs. (9) and (10), where k′ is the
incorrect class of x.

By the triangle inequality,

f 2(Ok′
i , ak

′

i )+ 1

f 2(Ok′
i , bk′i )+ 1

≤
(f (Ok′

i , bk
′

i )+ f (ak
′

i , bk
′

i ))
2
+ 1

f 2(Ok′
i , bk′i )+ 1

. (18)

The assumption 1 gives:

f (ak
′

i , bk
′

i ) ≤ (
√
1+ δ − 1)f (Ok′

i , bk
′

i )−
√

ϵ

≤ (
√
1+ δ − 1)f (Ok′

i , bk
′

i ).
(19)

By the inequality (19), we have

(f (Ok′
i , bk

′

i )+ f (ak
′

i , bk
′

i ))
2
≤ (f (Ok′

i , bk
′

i )+ (
√
1+ δ − 1)f (Ok′

i , bk
′

i ))
2

= ((
√
1+ δ)f (Ok′

i , bk
′

i ))
2
= (1+ δ)f 2(Ok′

i , bk
′

i ).

(20)

The inequality (20) gives:

(f (Ok′
i , bk

′

i )+ f (ak
′

i , bk
′

i ))
2
+ 1

f 2(Ok′
i , bk′i )+ 1

≤
(1+ δ)f 2(Ok′

i , bk
′

i )+ 1

f 2(Ok′
i , bk′i )+ 1

≤
(1+ δ)f 2(Ok′

i , bk
′

i )+ 1+ δ

f 2(Ok′
i , bk′i )+ 1

= 1+ δ.

(21)

From the inequalities (18) and (21), we have

f 2(Ok′
i , ak

′

i )+ 1

f 2(Ok′
i , bk′i )+ 1

≤ 1+ δ. (22)

Again, by the triangle inequality, we have

(Ok′
i , ak

′

i ) ≥ f (Ok′
i , bk

′

i )− f (ak
′

i , bk
′

i ). (23)

The assumption 1 implies f (Ok′
i , bk

′

i ) − f (ak
′

i , bk
′

i ) > 0. There-
ore, by the inequality (23), we have

f 2(Ok′
i , bk

′

i )+ ϵ

f 2(Ok′
i , ak′i )+ ϵ

≤
f 2(Ok′

i , bk
′

i )+ ϵ

(f (Ok′
i , bk′i )− f (ak′i , bk′i ))2 + ϵ

≤

(
f (Ok′

i , bk
′

i )+
√

ϵ

f (Ok′
i , bk′i )− f (ak′i , bk′i )

)2

.

(24)

Again, by assumption 1, we have

(ak
′

i , bk
′

i ) ≤
(
1−

1
√
2− δ

)
f (Ok′

i , bk
′

i )−
√

ϵ.

On simplifying the above inequality, we obtain
1

√ f (Ok′
i , bk

′

i )+
√

ϵ ≤ f (Ok′
i , bk

′

i )− f (ak
′

i , bk
′

i ).
2− δ
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Ψ

Therefore,

1
√
2− δ

f (Ok′
i , bk

′

i )+
√

ϵ
√
2− δ

≤
1

√
2− δ

f (Ok′
i , bk

′

i )+
√

ϵ

≤ f (Ok′
i , bk

′

i )− f (ak
′

i , bk
′

i ).

(25)

By the inequality (25), we have

f (Ok′
i , bk

′

i )+
√

ϵ

f (Ok′
i , bk′i )− f (ak′i , bk′i )

≤
√
2− δ. (26)

On combining the inequalities (24) and (26), we obtain

f (Ok′
i , bk

′

i )+ ϵ

f (Ok′
i , ak′i )+ ϵ

≤ (
√
2− δ)2 = 2− δ. (27)

On combining the inequalities (23) and (27), we have

k′
i =

f 2(Ok′
i , ak

′

i )+ 1
f 2(Ok

i , b
k
i )+ 1

×
f 2(Ok

i , b
k
i )+ ϵ

f 2(Ok′
i , ak′i )+ ϵ

≤ (1+ δ)(2− δ). (28)

Therefore, by Eq. (10), and inequality (28), we have

∆k′ ≤
∑m

i=1 log(1+ δ)(2− δ) ≤ m log(1+ δ)(2− δ). (29)

Hence, ∆k′ ≤ m log(1+ δ)(2− δ). □

4. Limitations

As mentioned in Section 1.1, Quasi-ProtoPNet gives better
performance than the series of ProtoPNet models when classifi-
cation is to be made over only a few classes. As the number of
classes grows bigger, our model may not give performance better
than the performance of ProtoPNet and Ps-ProtoPNet. However,
there are many cases similar to the case of CT-scan images as
discussed in this paper when we need to classify images over only
a few classes. Therefore, our model can be really useful for such
situations.

5. Discussion

Quasi-ProtoPNet model suspends the convex optimization of
the last layer to keep the connections constant and it uses the
objective function that accommodates only the positive reasoning
process. Also, the suspension reduced the training time of our
model. Quasi-ProtoPNet is closely related to the series of other
ProtoPNet models, but strikingly different from them due to its
reasoning process for the classifications. Quasi-ProtoPNet uses the
positive reasoning process whereas other ProtoPNet models use
the negative reasoning process along with the positive reason-
ing process that leads to decrease in their accuracy, especially
when number of classes is small. In particular, our model can be
useful during this pandemic when deadly mutants of coronavirus
(e.g. omicron variant) are being identified.

6. Conclusions

The use of positive reasoning process along with the use
of prototypes with rectangular spatial dimensions and square
spatial dimensions helped our model to improve its performance
over the series of the other ProtoPNet models. Moreover, as ob-
served in Section 3.2, Quasi-ProtoPNet gives the highest accuracy
(99.48%) when DenseNet-121 is used as the base model, and
the highest accuracy given by Quasi-ProtoPNet is equal to the
highest accuracy (99.48%) given by the non-interpretable model

DenseNet-161.
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