
ORIGINAL ARTICLE

Model based test case prioritization using UML behavioural
diagrams and association rule mining

Prateeva Mahali1 • Durga Prasad Mohapatra1

Received: 1 June 2017 / Revised: 12 January 2018 / Published online: 21 July 2018

� The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and

Maintenance, Lulea University of Technology, Sweden 2018

Abstract In software development life cycle, maximum

effort is spent on the maintenance phase. This is due to the

retesting carried out in this phase to ensure that any mod-

erationmade to the system under test (SUT) does not hamper

the unchanged components of the SUT. This retesting is a

part of regression testing which is performed in the main-

tenance phase. But in the retesting approach, all the old test

cases are re-executed which leads to increase in cost and

time of testing. So, test case prioritization technique is

widely used to overcome this problem i.e. to keep the testing

cost and time down. Test case prioritization techniques

schedule the test cases for regression testing in an order that

improves rate of fault detection, coverage percentage etc. To

improve the fault detection rate, we propose an approach for

prioritizing the test cases by using multiple modified func-

tions and association rule mining. Since, we are doing

model based testing, UML (Unified Modelling Language)

behavioural diagrams such as activity diagram and sequence

diagram are used to model the system. An activity sequence

graph (ASG) is generated taking into account the combined

features of activity diagram and sequence diagram. Then,

test scenarios are generated by traversing the graph. The

affected nodes and corresponding modified nodes are found

out using forward slicing algorithm. The details of modified

nodes and corresponding affected nodes are stored in a

project repository. Then, association rule mining (ARM) is

applied to the historical data to generate the frequent pattern.

Finally, test cases are prioritized based on business criti-

cality test value (BCTV) and frequent pattern. We have also

verified the effectiveness of proposed approach by deter-

mining the percentage of fault detection.

Keywords Association rule mining � Regression testing �
Test case prioritization � UML � Business criticality test

value

1 Introduction

Software testing or program testing is a very indispensable

phase of Software Development Life Cycle (SDLC). In

SDLC, this phase consumes minimum 40% of total

development effort and cost (Chauhan 2016; Mall 2014).

When the software testers completely test the system, it is

delivered to the customer and then feedback for the system

are collected. After receiving the feedback, the system

undergoes modifications which include enhancement of

requirements, modification of existing requirements etc.

When the modifications are implemented, the performance

of the existing system improves. After making the required

changes, the system is again completely retested to ensure

that the modification does not affect the existing func-

tionalities of the system. The retesting of the system is

called Regression Testing (www.ieeexplore.ieee.org;

Chauhan 2016; Mathur 2008). Regression testing is per-

formed in software maintenance phase. Approximately

60% of organizational software effort is spent in mainte-

nance phase for retesting of the system (Chauhan 2016;

Mall 2014; Mathur 2008). For complex and critical sys-

tems, the estimated effort and cost may be increased.

& Prateeva Mahali

prateevamahali@gmail.com

Durga Prasad Mohapatra

durga@nitrkl.ac.in

1 Department of Computer Science & Engineering, National

Institute of Technology, Rourkela, India

123

Int J Syst Assur Eng Manag (October 2018) 9(5):1063–1079

https://doi.org/10.1007/s13198-018-0736-7

http://orcid.org/0000-0002-7649-0945
https://www.ieeexplore.ieee.org
http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-018-0736-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-018-0736-7&domain=pdf
https://doi.org/10.1007/s13198-018-0736-7

Therefore, a suitable technique is necessary to scale down

the testing time and cost.

To depreciate the regression testing time, cost and effort,

various techniques can be used for test case selection, test

suite minimization and test case prioritization (Chauhan

2016). The aim of test case selection technique is to choose

a group or subset of test cases from the existing test suite to

decrease the test suite size. Test suite minimization tech-

nique permanently eliminates the redundant test cases from

the test suite. But, test case prioritization attempts to reduce

both testing time and cost by reordering of test cases so that

the most beneficial test case will be executed first without

affecting the performance of a system (Rava and Wan-

Kadir 2016; Wang and Zeng 2016; Solanki 2017). The

reordering of test cases is done by accrediting a priority

value to each test case and the priority is decided as per

different criteria like early fault detection rate, coverage

rate, risk coverage etc. (Aggrawal et al. 2004; Askarunisa

et al. 2010; Pandey and Shrivastava 2011; Garg et al.

2012; Tyagi and Malhotra 2015).

We have carried out the survey on different approaches

of test case prioritization proposed by various researchers.

We have observed that the defects present in test data are

also responsible for the failure of the system. In this

research work, we discuss a technique for TCP which takes

historical data of the system as input and generates a fre-

quent pattern using ARM.

The remaining of this paper is structured as follows:

Sect. 2 presents basic concepts and the related work is

explained in Sect. 3. Section 4 discusses the detail of

proposed approach and Sect. 5 explains illustration of our

approach with a case study of Hospital Management Sys-

tem (HMS). Section 6 discusses comparison of our

approach with related work and Sect. 7 reports the con-

clusions of this research and states future works.

2 Basic concepts

Most of the software products are not accepted by the

customers because they fail to satisfy the user require-

ments. After delivery of the product, the manufacturing

company collects user feedback to enhance the speciality

of the product. Then modification of the product is done as

per the collected feedback in the existing product, during

the maintenance phase. The modification includes addition

of functionalities, changes in the existing functionalities,

rechecking the performance of functionalities with the new

environment etc. (Mall 2014). The modified product is

again retested with the old TCs to assure that the modifi-

cation is not affecting the existing product. This kind of

retesting process is called regression testing. Regression

testing includes three techniques i.e. test case selection, test

suite minimization and test case prioritization (Chauhan

2016; Mall 2014). Test case selection technique selects a

group of test cases and test suite minimization technique

permanently eliminates the redundant test cases to decrease

the test suite size. The first technique reduces the testing

time and the second technique reduces the testing cost. But

test case prioritization technique reduces both testing time

and cost by prioritizing the test cases to maximize the

objective function like early fault detection rate, maximum

path coverage and risk coverage etc.

Test case prioritization can be applied in both code

based testing and model based testing (Korel and Koutso-

giannakis 2009). In CBT, the system source code or lines

of code is passed as input to generate the TCs and those test

cases are again used for prioritization process. Similarly, in

model based testing, the system is used as input to develop

TCs and that TCs are passed for prioritization process. In

most of the companies, software developers prefer Unified

Modelling Language (UML) diagrams to design the system

model, because UML diagrams are easy to visualize,

design and document.

In this work, we have also considered UML sequence

diagram and activity diagram as input. Here, TCs are

developed from a model dependency graph named ASG

which is developed by combining both the diagrams. Then,

the modified nodes and associated affected nodes are

assembled using an algorithm. The frequent patterns of

affected nodes are produced using a data mining technique

called association rule mining (ARM). Subsequently, BCV

of all the nodes available in the frequent pattern and BCTV

of all the generated TCs are determined. Finally, prioriti-

zation of test case is performed with the help of BCTV.

Association rule is a popular method for determining

exceptional relations, associations and frequent patterns

between data in large database. The aim of this rule is to

determine the consistency between the products in large

scale database. In an association rule mining, a rule is

defined as an implication form M) N where M;N � S

and M \ N ¼ /, S is the itemset (Han and Kamber 2010).

Here, it is required to satisfy two parameters simultane-

ously: user-specified minimum support value and user-

specified minimum confidence value.

– In association rule, the support parameter is written in

the form of M) N. It gives an indication of how

frequently the items appear in the database. Support is

represented in the form of probability notation

P(M [N), which defines the proportion of transactions

in the data set which contain both the itemsets i.e. the

union of itemsets M and N (Han and Kamber 2010).

Mathematically, supportðM) NÞ ¼ PðM [NÞ
– Another measuring parameter for association rule is

confidence. Confidence can be interpreted as an

1064 Int J Syst Assur Eng Manag (October 2018) 9(5):1063–1079

123

estimate of the conditional probability P(N j M) i.e. the

proportion of transactions that contains M which also

contains N (Han and Kamber 2010).

Mathematically,

confidence(M) NÞ ¼ PðNjMÞ ¼ supportðM[NÞ
supportðMÞ

There are two separate steps to generate association rule.

Step-1 Frequent itemsets in a database are determined

by applying minimum support value.

Step-2 The resultant frequent itemsets and minimum or

threshold confidence value are used to form the rules.

Example - For a given database transaction buy(Ap-

ple,‘‘Orange’’))buy(Apple,‘‘Banana’’) with sup-

port ¼ 40% and confidence ¼ 80% leads to the conclusion

that Orange and Banana are purchased simultaneously by

40% of all transactions and 80% of all consumers.

Along with the association rule mining technique, BCV

of all the functions is calculated. It is defined as the extent

of function contribution towards the business process of the

system under test for achieving better result. The BCV of

the function is calculated as follows:

– Identify the functions which are distressed or altered

due to the modification done in the project.

– Determine average interaction of various functions

within the system.

The abbreviations of the terms used in the paper are given

in Table 1.

3 Related work

Here, we discuss few relevant approaches to this proposed

approach. All the approaches are confined to test case

generation and prioritization in model-based testing.

Han et al. (2012) discussed a new heuristic approach for

MBTP in regression testing. The authors have developed

this prioritization technique to detect faults within a short

time period. Then, test cases are prioritized base on fault

detection rate. They have also used APFD metric to com-

pare different TCP methods with this approach. In regres-

sion testing, they have taken Extended Finite State

Machine (EFSM) model and they proposed two heuristic

models for prioritizing the test case.

Khandai et al. (2011) presented a technique for priori-

tization of test cases in MBT. Here, the authors have

maintained a registry which contain the complete infor-

mation of the undergoing project. Then, the latest config-

uration of the project is compared with the older

configuration and a value is assigned to each affected

function, called business criticality value. At last, test case

prioritization was done by calculating BCTV of each test

case. The disadvantage of this approach is that only

functional requirements of the project was taken up for

criticality value calculation. But, some non-functional

requirements are also present in every project and those

requirements may affect the criticality value of test cases.

Acharya et al. (2015) expressed a framework for TCP in

model based testing. Test case prioritization was performed

by developing a pattern using ARM. As per the proposed

approach, the historical data or information of the system

was preserved in a database. The database contained two

types of data such as GD and OD. The GD was gathered

from the model dependency graph. As a result, the modi-

fied nodes and the corresponding affected nodes were

collected and stored in that historical database. That

affected nodes are used as input to generate a pattern. The

pattern was generated by using ARM and used for priori-

tizing the test cases. The TCP was performed by allocating

a priority value to all nodes present in that frequent pattern.

But, there is a limitation present in this framework. They

have considered only single type of modification of the

system. There might have multiple modifications made in

different versions of the project.

Muthusamy and Seetharaman (2014) presented a

methodology for prioritization of test cases by identifying

the critical defects or faults. In this paper, the authors have

considered some practical weight factors to prioritize the

Table 1 List of abbreviations

Sl no. Abbreviation Description

1 AD Activity diagram

2 SD Sequence diagram

3 ASG Activity sequence graph

4 TC Test case/scenario

5 TCP Test case prioritization

6 ARM Association rule mining

7 GD Graph data

8 OD Observation data

9 HMS Hospital Management System

10 MBT Model based testing

11 CBT Code based testing

12 FP Frequent pattern

13 FPAN Frequent pattern affected node

14 BCV Business criticality value

15 BCTV Business criticality test value

16 UML Unified Modelling Language

17 APFD Average percentage of fault detection

18 MBTP Model based test case prioritization

19 GA Genetic algorithm

20 SV Support value

21 CV Confidence value

123

Int J Syst Assur Eng Manag (October 2018) 9(5):1063–1079 1065

test cases. The weight factors are customer allotted priority,

developer observed code execution complexity, change in

requirements, fault impact, completeness and traceability.

Indumathi and Selvamani (2015) discussed some algo-

rithms for test case prioritization using open dependency

structure. In this paper, the authors have considered open

dependency between the functions in a system as input to

the proposed approach. They have found out the exact

number of dependants of each function for test case pri-

oritization. Test cases that are more dependent are assigned

high priority values and accordingly prioritization of test

cases is carried out. The major limitation of this approach

is that they have considered a code based approach for test

case prioritization where it is very difficult to derive the

dependency structure among different functionalities of the

system. They have not addressed the closed dependency

structure that may exist among the functions. In this paper,

first they have found the priority factors for requirements

and risks. The requirement and risk having highest priority

factor are tested first. Then priority of requirements and

risks are calculated by assigning some weight to each

requirement and risk. They have conducted an experiment

by taking an example of Word Counter Software in which

the frequency of words is calculated.

Samanta and Kundu (2008) developed a methodology to

produce TCs using UML activity diagram. Here, the

authors have followed three steps for generating the test

cases. First, an activity diagram is constructed with all

required test information. In the second step, an activity

graph was developed from the AD and lastly test cases are

produced from the graph by traversing all the nodes of the

graph. Here, the authors have discussed different types of

branch coverage and defects.

Huang et al. (2012) discussed a technique for cost-

cognizent test case prioritization. The test cases prioriti-

zation is done on the basis of historical records. As per the

proposed framework, the documented records were col-

lected from current regression testing. After that, the

authors had developed a new GA to detect highly efficient

order of test cases. Prioritization was performed on the

basis of historical data to provide high test effectiveness

during the testing process.

Khalilian et al. (2012) discussed the enhancement of test

case prioritization technique by using performance data of

the historical test cases. In that technique, the author have

considered an equation for test case prioritization. The

equation directly computes the priority of each test case by

using historical information of test case. But, they have

proposed a new prioritization equation with variable

coefficients gained according to the available historical

performance data. The historical performance data of a

program acts as a feedback from the previous test sessions.

Finally, they have compared the proposed approach with

their previous technique by measuring the effectiveness

using APFD metric.

Shahid and Ibrahim (2014) presented a new algorithm

for test case prioritization that is based on the code cov-

erage of the test cases. In this paper, the authors introduced

a new regression test case priority technique that arranges

the selected test cases based on their code coverage per-

centage. The test cases which cover more code are selected

at the top of the list. It is observed that the proposed

approach reduce the time to find faults earlier. They also

proposed a new algorithm for test case prioritization and

implemented their algorithm using a case study of On-

Board Auto-mobile (OBA) and found that the test cases

which covers more methods have more chances to detect

faults earlier.

4 Proposed framework

Here, we have discussed a heuristic technique for test case

prioritization and the architecture of the proposed frame-

work is shown in Fig. 1. In the the first step, we collect the

modified requirements and model the system with new

requirements. Since, we carry out model based testing, so

we construct the system model by using Unified Modelling

Language (UML) diagrams. In this research work, we have

taken AD and SD as system model and an model depen-

dency graph named ASG is developed from these two

diagrams. ASG is developed by combining behavioural

features and functionalities of both the diagrams. Then, the

ASG is traversed from source to destination to generate

linearly independent paths and that paths are considered as

test cases / scenarios. We have used the terms ‘‘test case’’

and ‘‘test scenario’’ interchangeably throughout the paper.

Simultaneously, the details of the graph is stored in a

database named Project Repository. The project repository

comprises the detail information of the project like Project

ID, Total number of Nodes, Modified Nodes and Corre-

sponding Affected Nodes, Test cases, business criticality

value of nodes and business criticality test value.

After that, we generate a frequent pattern called FPAN

using association rule mining (ARM). For frequent pattern

generation, all the modified nodes and associated affected

nodes are imported as input and we get a pattern consisting

of nodes, as the result. Here, we have used a forward

slicing algorithm to find out the affected nodes for partic-

ular modified node. Then, these nodes are imported to

ARM technique in terms of an adjacency matrix. To gen-

erate a frequent pattern using ARM, two parameters are

required i.e. support value and confidence value. First, the

SV of individual items (i.e. nodes) and combination of

items are determined. Then, the final value is compared

with the minimum or threshold support value and the

123

1066 Int J Syst Assur Eng Manag (October 2018) 9(5):1063–1079

derived itemset is known as frequent itemset. Similarly, the

CV of each frequent itemset is determined and also com-

pared with threshold CV. Then, the generated final pattern

is known as Frequent Pattern of Affected Node (FPAN).

In the last step, test cases are prioritized by using

BCTV. BCTV of test case is determined by taking the

summation of BCV of all nodes executed by the test case.

The TC containing highest BCTV is considered as highest

priority TC and the TC with lowest BCTV is considered as

lowest priority TC. The test cases are prioritized based on

the priority of BCTV of TCs. Lastly, the prioritized test

suite is stored in the project repository for subsequent

implementation.

In this proposed work, we have considered multiple

number of modified nodes and corresponding affected

nodes. These nodes are represented in a adjacency matrix.

The frequent pattern is developed by using ARM taking the

modified and affected nodes as input. We have considered

different support values and confidence values to get an

efficient frequent pattern.

The detailed procedure to execute the proposed frame-

work for TCP using ARM is given below:

Let us consider, the AD and SD for the given system

constructed earlier. We have done some modification to the

existing system. As per user demand, we have added and

modified few requirements in the existing system. Now, we

discuss the steps of our proposed approach:

Step-1: Construct the Modified Activity and Sequence

Diagrams

Construct the modified AD and SD by adding the new

features to the old version of the system.

Step-2: Construct the Activity Sequence Graph (ASG)

from Activity Diagram and Sequence Diagram

Collect the related features of Activity Diagram (AD)

and Sequence Diagram (SD). Consider the similar feature

as a single activity and construct an intermediate graph

named Activity Sequence Diagram (ASG). During the

conversion, each node in the ASG represents the activity

information along with the message transmitted related to

that activity. The connectors between the activities (i.e.

transitions or edges in AD) expressed as edges in the

activity sequence graph. Then, this graph is traversed to

generate the test scenarios.

Step-3: Generate test scenarios by traversing the

Activity Sequence Graph

The ASG is traversed by using a graph traversal algo-

rithm to find out the linearly independent paths. These

independent paths serve as the test scenarios.

Step-4: Generate graph data and observation data from

ASG

Fig. 1 Architecture of the proposed approach

123

Int J Syst Assur Eng Manag (October 2018) 9(5):1063–1079 1067

Identify all the modified nodes for the respective chan-

ges (requirement modifications) and affected nodes with

respect to all modified nodes using the proposed forward

slicing algorithm given in Algorithm 1 and store the

information in the project repository. The collected data

from Activity Sequence Graph (ASG) is termed as Graph

Data (GD). Simultaneously, collect the information from

the domain experts based on their observation which is

referred to as observation data, during the execution of the

application and store them in the project repository. This

data is termed as Observation Data (OD).

Algorithm 1 takes the activity sequence graph of the

given system as the initial input. It also takes all the

modified nodes as input and stores them in an array. Then,

the dependent nodes are determined by traversing the graph

using the graph traversal algorithm (Coremen et al. 2010)

and are stored in an array and treated as the set of affected

nodes.

Step-5: Generate frequent pattern using association rule

mining (ARM)

Next, the frequent pattern of nodes are developed by

applying ARM on the project repository. The project

repository contains both GD and OD . Identify specific

support and confidence value for the mining operation. The

frequent pattern is generated as per the confidence value.

Step-6: Determine BCV of all node

The BCV of all nodes present in the frequent pattern is

determined by using the formula given in Eq. 1.

BCVðNÞ ¼ Number of times the node encountered

Total no: of nodes being affected
ð1Þ

Step-7: Generate prioritized test cases using BCTV

TCP is performed by using the BCTV of each test case.

The BCTV of each test case is the summation of BCV of

all nodes executed by the test case.

5 Case study: Hospital Management System

To explain the detail functioning of the proposed frame-

work, we have used a case study of Hospital Management

System (HMS). Hospital Management System is a software

which automates the activities in a hospital such as patient

registration, visitor interaction, fixing appointment with

medical representatives, revert to phone queries etc. Patient

registration includes checking the schedule of all doctors,

taking appointment of doctor, admission of patient into

ward, undergo operation, conduct pathological tests and

update the required tests and reports etc. Now, the steps of

our proposed framework is explained in detail by using the

given case study.

– Construct the Modified AD and SD

First, we construct the modified AD and SD for HMS

(given in Figs. 2 and 3) with the new features of the

system.

– Construct the activity sequence graph (ASG) from AD

and SD

Now, both the diagrams are converted into a model

dependency graph called ASG. This graph is developed

by combining the features and functionalities of AD

and SD. For example, the function of Do operation of

patient and operate() is similar. For that reason we have

combined these two activities as a single node i.e. A23,

S13 in the activity sequence graph. During the conver-

sion, each node in the ASG represents the activity

(from AD) along with the message transmitted (from

SD) related to the activity. The activity flow is

represented as edges between two nodes in the ASG

(given in Fig. 4).

– Generate TCs from activity sequence graph using

graph traversal algorithm

Now, the activity sequence graph of HMS (given in

Algorithm 1 Forward slicing algorithm
Input: Activity Sequence Graph(AG) and total no. of modified nodes (n)
Output: Set of affected nodes for each modified node
1: for p = 0 to n do
2: scanf(“%d”,A[p]); // A[p] stores the address of modified nodes and n is the total

number of modified nodes.
3: end for
4: for i = 0 to n do
5: tnode = A[i]; // tnode = target node
6: Traverse the graph from tnode using graph traversal algorithm to find the depended

nodes (N1, N2, N3,);
7: AN←− {N1, N2, N3,Nm}; // AN is the set of affected nodes for the modified

nodes present in A[i] and m is the total number of affected nodes.
8: printf(”%d”,AN);
9: end for

123

1068 Int J Syst Assur Eng Manag (October 2018) 9(5):1063–1079

Fig. 2 Activity diagram of Hospital Management System

123

Int J Syst Assur Eng Manag (October 2018) 9(5):1063–1079 1069

Fig. 4) is used for test scenarios generation by applying

graph traversal algorithm. The graph generates 31 test

scenarios and these test scenarios represent single paths

in the activity sequence graph. The generated test

scenarios are considered as TCs and are given in

Table 2. Further the test scenarios are used for

prioritization process after finding the frequent pattern

of the modified nodes present in the activity sequence

graph.

– Generate graph data (GD) and observation data (OD)

from activity sequence diagram

In this phase, all the modified nodes and the corre-

sponding affected nodes are identified. These nodes are

found by using the proposed forward slicing algorithm

(given in Algorithm 1). Then, the modified information

is saved in the project repository. The information that

are collected from activity sequence graph are termed

as Graph Data (GD). In the new version of project, we

have considered five types of changes which are

represented as C1, C2, C3, C4 and C5. These sets of

nodes are called itemset. At the same time, Observation

Data (OD) are collected from domain experts by

observing the projects during the execution time. GD

and OD for the given project are shown in Fig. 5 which

are used to generate the frequent pattern using associ-

ation rule mining. The modified nodes and the corre-

sponding affected nodes with respect to different types

of changes are given in Table 3. The database schema

for the project repository contains all information about

the developed application like Project-ID, Project-

Name, Project-Type, Total-No-of-Nodes, Total-No-of-

Modified-Nodes, Total-No-of-Affected-Node.

– Generate frequent pattern using association rule min-

ing (ARM)

This phase gives a detailed description of generation of

frequent pattern. After storing GD and OD in the

project repository, the concept of data mining is used to

generate the frequent pattern. There are different

Fig. 3 Sequence diagram of Hospital Management System for giving prescription to patient

123

1070 Int J Syst Assur Eng Manag (October 2018) 9(5):1063–1079

methodologies available to find out frequent patterns

like association rule, apriori algorithm, FP growth etc.

(Han and Kamber 2010). We have considered associ-

ation rule mining to generate frequent patterns. To

generate frequent pattern, computation of two param-

eters are required i.e. support and confidence values. In

the first step, SV of individual and combination of

items is calculated from the whole itemset. The final

SV is compared with user-specified minimum or

threshold SV to generate frequent itemset. This frequent

itemset is used for calculation of confidence value and

compared with the user-specified minimum or threshold

CV. The developed pattern is called Frequent Pattern of

Affected Node (FPAN). Here, we have implemented

the itemsets in MATLAB R2012a to produce the

frequent pattern by taking minimum support value as

40% and minimum confidence value as 80%. The FPAN

matrix from the implementation is shown in Fig. 6. The

node sequence (FPAN) found from the matrix is given

as:

FPAN = {AD17, AD18, AD9, AD20, AD21, AD22,

AD23, AD24, AD25, AD26, AD27, AD28, AD29,

AD30, AD31, AD37, AD38, AD39, AD40, AD41,

AD42, AD43,AD44, AD46, AD47, AD48, AD49,

AD50, AD51, AD52}

– Calculate the BCV of all nodes

In this phase, BCV of all nodes present in the FPAN is

determined by using the formula given in Eq. 1. The

BCV of each nodes present in the pattern (i.e. FPAN) is

given in Table 4. Then, we calculate the BCTV for

each test cases, by taking the summation of business

criticality values of all nodes executed by the TCs.

For example, BCTV for test case TC4 is calculated as

follows:

BCTV of TC4 = 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0? 0? 0 ?

0 ? 0.033 ? 0.033 ? 0.033 ? 0.1 ? 0.1 ? 0.1 ? 0.133

? 0.133 ? 0.133 ? 0.133 ? 0.133 ? 0 = 1.064

– Generate prioritized test scenarios using BCTV

Here, prioritization of test cases is done using BCTV.

The BCTV of a test case is determined by taking the

summation of BCV of each node present in FPAN. If

the node is present in the FPAN, then the value is

retrieved form Table 4, otherwise the value is zero. The

BCTV of all test cases are given in Table 5. The TCs

are prioritized as per BCTV. The test case containing

higher business criticality test value is considered as

Fig. 4 ASG of Hospital Management System

123

Int J Syst Assur Eng Manag (October 2018) 9(5):1063–1079 1071

Table 2 Generated test cases for HMS

SL no.

(path)

Test case

id

Independent path/Test Scenario

1 TC1 AD1 ! AD2 ! AD6

2 TC2 AD1 ! AD3 ! AD6

3 TC3 AD1 ! AD4 ! AD6

4 TC4 AD1 ! AD5 ! AD7 ! AD8 ! AD9 ! AD10 ! AD11 !AD14 ! AD15 ! AD16, SQ3 ! AD17, SQ9 ! AD18 ! AD19 ! AD20 !
AD37!AD38 ! AD39!AD40 ! AD42!AD43 ! AD44 ! AD6

5 TC5 AD1 ! AD5 ! AD7 ! AD8! AD9 ! AD10!AD11 ! AD14!AD15 ! AD16, SQ3!AD17, SQ9 ! AD18 ! AD19 ! AD20 !
AD37 ! AD38 ! AD39 ! AD41! AD42 ! AD43 ! AD44 ! AD6

6 TC6 AD1 ! AD5!AD7 ! AD8 ! AD9 ! AD10 ! AD11 ! AD14 ! AD15 ! AD12, SQ12 ! AD21 ! AD22 ! AD23,

SQ13 ! AD24 ! AD25 ! AD28 !AD29 ! AD30 ! AD31 ! AD20 ! AD37 ! AD38 ! AD39 ! AD40 ! AD42 ! AD43 ! AD44 ! AD6

7 TC7 AD1 ! AD5 ! AD7 ! AD8 ! AD9 ! AD10 ! AD11 ! AD14 ! AD15 ! AD12, SQ12 ! AD21 ! AD22 ! AD23,

SQ13 ! AD24 ! AD25 ! AD28 !AD29 ! AD30 ! AD31 ! AD20! AD37 ! AD38 ! AD39 ! AD41 ! AD42 ! AD43!AD44 ! AD6

8 TC8 AD1 ! AD5 ! AD7 ! AD8 ! AD9 ! AD10 ! AD11 ! AD14 ! AD15 ! AD12, SQ12 ! AD21 ! AD22 ! AD23,

SQ13 ! AD24 ! AD26 ! AD28 !AD29 ! AD30 ! AD31 ! AD20! AD37 ! AD38 ! AD39 !AD40 ! AD42 ! AD43 ! AD44 ! AD6

9 TC9 AD1 ! AD5!AD7 ! AD8!AD9 ! AD10 ! AD11 ! AD14 ! AD15 ! AD12, SQ12 ! AD21 ! AD22 ! AD23,

SQ13 ! AD24 ! AD26 ! AD28 !AD29 ! AD30 ! AD31 ! AD20! AD37 ! AD38 ! AD39 ! AD41!AD42 ! AD43 ! AD44 ! AD6

10 TC10 AD1 ! AD5!AD7 ! AD8 ! AD9 ! AD10! AD11 ! AD14 ! AD15 ! AD12, SQ12 ! AD21 ! AD22 !AD23,

SQ13 ! AD24!AD27 ! AD28 ! AD29 ! AD30 ! AD31 ! AD20 ! AD37 ! AD38!AD39 ! AD40 !AD42 ! AD43 ! AD44 ! AD6

11 TC11 AD1 ! AD5 ! AD7 ! AD8 ! AD9 ! AD10 ! AD11 ! AD14 ! AD15 ! AD12, SQ12 ! AD21 ! AD22 ! AD23,

SQ13 ! AD24 ! AD27 ! AD28 ! AD29 ! AD30 ! AD31 ! AD20 ! AD37 ! AD38 ! AD39 ! AD41 ! AD42 ! AD43 !AD44 ! AD6

12 TC12 AD1 ! AD5 ! AD7 ! AD8 ! AD9 ! AD10 ! AD12, SQ12 ! AD21 ! AD22 ! AD23,

SQ13 ! AD24 ! AD25 ! AD28 ! AD29 ! AD30 ! AD31 ! AD20 ! AD37 ! AD38 ! AD39 ! AD40 ! AD42 ! AD43 ! AD44 ! AD6

13 TC13 AD1 ! AD5!AD7 ! AD8 ! AD9 ! AD10 ! AD12, SQ12 ! AD21 ! AD22 ! AD23,

SQ13 ! AD24 ! AD25 ! AD28 ! AD29 ! AD30 ! AD31 ! AD20 ! AD37 ! AD38 ! AD39 ! AD41 ! AD42 ! AD43 !AD44 ! AD6

14 TC14 AD1 ! AD5 ! AD7 ! AD8 ! AD9 ! AD10 ! AD12, SQ12 ! AD21 ! AD22 ! AD23,

SQ13 ! AD24 ! AD26 ! AD28 ! AD29 ! AD30 ! AD31 ! AD20 ! AD37 ! AD38 ! AD39 ! AD40 ! AD42 ! AD43!AD44 ! AD6

15 TC15 AD1 ! AD5 ! AD7 ! AD8 ! AD9 ! AD10 ! AD12, SQ12 ! AD21 ! AD22 ! AD23,

SQ13 ! AD24 ! AD26 ! AD28 ! AD29 ! AD30 ! AD31 ! AD20 ! AD37 ! AD38 ! AD39 ! AD41 ! AD42 ! AD43 ! AD44 ! AD6

16 TC16 AD1 ! AD5 ! AD7 ! AD8 ! AD9 ! AD10 ! AD12, SQ12 ! AD21 ! AD22 ! AD23,

SQ13 ! AD24 ! AD27 ! AD28 ! AD29 ! AD30 ! AD31 ! AD20 ! AD37 ! AD38 ! AD39 ! AD40 ! AD42 ! AD43 ! AD44 ! AD6

17 TC17 AD1 ! AD5 ! AD7 ! AD8 ! AD9 ! AD10 ! AD12, SQ12 ! AD21 ! AD22 ! AD23,

SQ13 ! AD24 ! AD27 ! AD28 ! AD29 ! AD30 ! AD31 ! AD20 ! AD37 ! AD38 ! AD39 ! AD41 ! AD42 ! AD43 ! AD44 ! AD6

18 TC18 AD1 ! AD5 ! AD7 ! AD8! AD9 ! AD10 ! AD13 ! AD32 ! AD33 ! AD34,

SQ8 ! AD35 ! AD36 ! AD20 ! AD37 ! A3D8 ! AD39 ! AD40 ! AD42 ! AD43 ! AD44 ! AD6

19 TC19 AD1 ! AD5 ! AD7 ! AD8 ! AD9 ! AD10 ! AD13 ! AD32 ! AD33 ! AD34,

SQ8 ! AD35 ! AD36 ! AD20 ! AD37 ! A3D8 ! AD39 ! AD41 ! AD42 ! AD43 ! AD44 ! AD6

20 TC20 AD1 ! AD5 ! AD7 ! AD8 ! AD9 ! AD10 ! AD13 ! AD22 !AD23,

SQ13 ! AD24 ! AD25 ! AD28!AD29 ! AD30 ! AD31 ! AD20 ! AD37 ! AD38 ! AD39 ! AD40 ! AD42 ! AD43 ! AD44 ! AD6

21 TC21 AD1 ! AD5 ! AD7 ! AD8 ! AD9 ! AD10 ! AD13 ! AD22 ! AD23,

SQ13 ! AD24 ! AD25 ! AD28 !AD29 ! AD30 ! AD31 ! AD20 ! AD37 ! AD38 ! AD39 ! AD41!AD42 ! AD43 ! AD44 ! AD6

22 TC22 AD1 ! AD5 ! AD7 ! AD8 ! AD9 ! AD10 ! AD13 ! AD22 ! AD23,

SQ13 ! AD24 ! AD26 ! AD28 !AD29 ! AD30 ! AD31 ! AD20 ! AD37 ! AD38 ! AD39 ! AD40 ! AD42 ! AD43 ! AD44! AD6

23 TC23 AD1 ! AD5!AD7 ! AD8! AD9 ! AD10 ! AD13 ! AD22 ! AD23, SQ13 ! AD24 ! AD26 ! AD28!AD29 ! AD30

!AD31 ! AD20 ! AD37 ! AD38 ! AD39 ! AD41!AD42 ! AD43 ! AD44 ! AD6

24 TC24 AD1 ! AD5 ! AD7 ! AD8 ! AD9 ! AD10 ! AD13 ! AD22 ! AD23,

SQ13 ! AD24 ! AD27 ! AD28 !AD29 ! AD30 ! AD31 ! AD20 ! AD37 ! AD38 ! AD39 ! AD40 ! AD42 ! AD43 ! A44!A6

25 TC25 AD1 ! AD5 ! AD7 ! AD8 ! AD9 ! AD10 ! AD13 ! AD22 ! AD23,

SQ13 ! AD24 ! AD27 ! AD28 ! AD29 ! AD30 ! AD31 ! AD20 ! AD37 ! AD38 ! AD39 ! AD41 ! AD42 ! AD43 ! A44 ! A6

26 TC26 AD1 ! AD5 ! AD7 ! AD45 ! AD46 ! AD52, SQ7 ! AD6

27 TC27 AD1 ! AD5 ! AD7 ! AD45 ! AD47 ! AD52, SQ7 ! AD6

28 TC28 AD1 ! AD5 ! AD7 ! AD45 ! AD48 ! AD52, SQ7 ! AD6

29 TC29 AD1 ! AD5 ! AD7 ! AD45 ! AD49 ! AD52, SQ7 ! AD6

30 TC30 AD1 ! AD5!AD7 ! AD45 ! AD50 ! AD52, SQ7 ! AD6

31 TC1 AD1 ! AD5!AD7 ! AD45 ! AD51 ! AD52, SQ7 ! AD6

123

1072 Int J Syst Assur Eng Manag (October 2018) 9(5):1063–1079

higher priority than other test cases. If the BCTV of

some test cases are equal, then random prioritization

technique can be applied to produce the prioritized test

cases. So, the prioritized test suite for our case study

can be written as follows: {TC6, TC7, TC8, TC9,

TC10, TC11, TC12, TC13, TC14, TC15, TC16, TC17,

TC20, TC21, TC22, TC23, TC24, TC25, TC4, TC5,

TC18, TC19, TC30, TC31, TC1, TC2 and TC3}.

After performing the TCP, we have to ensure the

efficiency and effectiveness of TCs to detect maximum

faults or defects. So APFD metric is used to check the

efficiency of the prioritized test suite. APFD metric can

be expressed as follows (Chauhan 2016):

APFD ¼ 1� ðTF1þ TF2þ � � � þ TFiÞ
mn

þ 1

2n
ð2Þ

where T! test suite under evaluation, m! number of

faults contained in the program, n ! total number of

test cases, TFi ! position of first test case in T that

exposes fault i. Due to modification, the current version

of the system detects different types of faults like

message dependency fault, inter/intra activity depen-

dency fault, control dependency fault etc. (given in

Table 6). Table 7 represents the total number of faults

or defects detected by each TC.

For the prioritized test suite,

For the non-prioritized test suite,

Fig. 5 Graph data and observation data of Hospital Management

System

Table 3 Modified nodes and affected nodes derived from Fig. 4

Changes Type of change Modified

nodes

Affected nodes

C1 Addition of new

requirement

AD45 AD45, AD46, AD47, AD8, AD49, AD50, AD51, (AD52, SD7), AD6

C2 Modification in the existing

requirement

AD12,

SQ12

(AD12, SQ12), AD21, AD22, (AD23, SQ13), AD24, AD25, AD26, AD27, AD28, AD29,

AD30, AD31, AD20, AD37, AD38, AD39, AD40, AD41, AD42, AD43, AD44, AD6

C3 Addition of new

requirement

AD24 AD24, AD25, AD26,AD27, AD28, AD29, AD30, AD31, AD20,AD37, AD38, AD39,

AD40, AD41, AD42, AD43, AD44, AD6

C4 Addition of new

requirement

AD39 AD39, AD40, AD41, AD42, AD43, AD44, AD6

C5 Changes in the existing

requirement

AD16,

SQ3

(AD16, SQ3), AD18, AD19, AD20, AD37, AD38, AD39, AD40, AD41, AD42, AD43,

AD44, AD6

APFD ¼ 1� 1þ 2þ 11þ 17þ 3þ 6þ 3þ 7þ 1þ 4þ 6þ 2þ 18þ 15þ 13þ 3þ 2þ 2þ 1þ 1

20� 31
þ 1

2� 31

¼ 1� 0:1903þ 0:0161 ¼ 0:8258

APFD ¼ 1� 1þ 7þ 16þ 24þ 2þ 11þ 4þ 12þ 6þ 2þ 11þ 7þ 5þ 22þ 20þ 6þ 4þ 7þ 6þ 6

20� 31
þ 1

2� 31

¼ 1� 0:2887þ 0:0161 ¼ 0:7274

123

Int J Syst Assur Eng Manag (October 2018) 9(5):1063–1079 1073

Fig. 6 Frequent pattern matrix of Hospital Management System

Table 4 Business criticality value of all nodes present in FPAN

Affected nodes No. of times the

node is encountered

BCV of nodes Affected nodes No. of times the

node is encountered

BCV of nodes

AD17, SQ9 1 0.033 AD37 3 0.1

AD18 1 0.033 AD38 3 0.1

AD19 1 0.033 AD39 4 0.133

AQ20 3 0.1 AD40 4 0.133

AD21 1 0.033 AQ41 4 0.133

AD22 1 0.033 AD42 4 0.133

AD23, SQ13 1 0.033 AD43 4 0.133

AD24 2 0.066 AD44 4 0.133

AD25 2 0.066 AD46, SQ6 1 0.033

AD26 2 0.066 AD47, SQ6 1 0.033

AD27 2 0.066 AD48, SQ6 1 0.033

AD28 2 0.066 AD49, SQ6 1 0.033

AD29 2 0.066 AD50, SQ6 1 0.033

AD30 2 0.066 AD51, SQ6 1 0.033

AD31 1 0.133 AD52, SQ7 1 0.033

123

1074 Int J Syst Assur Eng Manag (October 2018) 9(5):1063–1079

APFD value for the given prioritized test suite is cal-

culated to be 0.8258 and for the non-prioritized test

suite is 0.7274. So, it can be inferred that the prioritized

test cases for our case study are having better capability

to detect more faults early in the software development

process than that of the non-prioritized TCs. Figure 7

shows the APFD values for the prioritized and non-

prioritized TCs for our case study. To further validate

our approach, we have considered four other case

studies i.e. Library Management System (LMS),

Shopping Mall Management System (SMMS), On-line

Examination System (OES), Online-Ticket Booking

System (OTB). The respective APFD values of priori-

tized and non-prioritized TCs for these case studies are

shown in Table 8 and Fig 8. It is observed that the

APFD value of prioritized TCs is greater than the

APFD value of non-prioritized TCs.

6 Comparison with related work

Researchers found many kinds of challenges in code based

testing like difficulties in deriving the dependencies among

different functions and among the classes, extraction of

lines of code from components etc. To eliminate these

problems, researchers came up with the proposal of test

case prioritization in the context of MBT (Sarma and Mall

2007; Swain and Mohapatra 2010; Muthusamy and

Seetharaman 2014; Indumathi and Selvamani 2015). The

dependencies among the different functions or classes are

very much visible in case of model based testing. They

help in test case prioritization to identify the most appro-

priate test cases which reveal maximum number of faults.

In the context of model based testing, (Muthusamy and

Seetharaman 2014) and (Indumathi and Selvamani 2015)

proposed some techniques based on dependency structure

prioritization. But, they have not considered the severity of

faults as a factor for prioritization. Also, the faults which

were detected are not saved in any database for future

reference. So, the behaviour of the previous versions of the

system is not taken into account. After that, researchers

came up with an idea of maintaining a historical data store

and mining the data store to get the frequent patterns and

more appropriate test cases which reveal more number of

faults (Acharya et al. 2015). The APFD value is also

increased in this case. But, all the MBTP techniques are

using single UML diagram for system modeling. So, the

Table 5 BCTV of all test cases

Sl

no.

Test scenario Ids BCTV of test

scenarios

Priority of test

scenarios

1 TC1, TC2, TC3 0 6

2 TC4, TC5 1.064 3

3 TC6, TC7, TC8, TC9, TC10, TC11, TC12, TC12, TC13, TC13, TC14, TC15, TC16,

TC17

1.427 1

4 TC18, TC19 0.965 4

5 TC20, TC21, TC22, TC23, TC24, TC25 1.394 2

6 TC26, TC27, TC28, TC29, TC30, TC31 0.066 5

Table 6 Different types of faults

Fault types Detected Faults

Inter-activity dependency fault FT1, FT5, FT10, FT15

Intra-activity dependency fault FT6, FT7, FT13, FT18, FT20

Synchronization fault FT3, FT8, FT11, FT12

Control dependency fault FT5, FT9, FT16, FT17

Message dependency fault FT2, FT4, FT10, FT19

Operational fault FT1, FT5, FT14, FT15

Fault in loop FT5, FT16, FT17, FT19, FT20

123

Int J Syst Assur Eng Manag (October 2018) 9(5):1063–1079 1075

T
a
b
le

7
T
o
ta
l
n
u
m
b
er

o
f
fa
u
lt
s
d
et
ec
te
d
b
y
ea
ch

te
st
ca
se

in
H
M
S

F
T
1

F
T
2

F
T
3

F
T
4

F
T
5

F
T
6

F
T
7

F
T
8

F
T
9

F
T
1
0

F
T
1
1

F
T
1
2

F
T
1
3

F
T
1
4

F
T
1
5

F
T
1
6

F
T
1
7

F
T
1
8

F
T
1
9

F
T
2
0

T
C
1

�
T
C
2

�
�

T
C
3

�
T
C
4

�
�

T
C
5

�
�

T
C
6

�
�

�
�

T
C
7

�
�

�
�

T
C
8

�
�

�
T
C
9

�
�

T
C
1
0

�
�

T
C
1
1

�
�

�
T
C
1
2

�
�

�
T
C
1
3

�
T
C
1
4

�
�

�
T
C
1
5

�
�

T
C
1
6

�
�

�
�

T
C
1
7

�
�

T
C
1
8

�
�

T
C
1
9

T
C
2
0

�
�

�
T
C
2
1

�
�

�
T
C
2
2

�
�

T
C
2
3

�
�

�
T
C
2
4

�
�

�
T
C
2
5

�
T
C
2
6

�
�

�
T
C
2
7

�
�

T
C
2
8

�
�

T
C
2
9

�
�

�
�

T
C
3
0

�
�

�
T
C
3
1

�
�

123

1076 Int J Syst Assur Eng Manag (October 2018) 9(5):1063–1079

type of faults detected by any test case is limited. So, we

have taken combination of UML diagrams i.e. AD and SD

for system modelling. This will help in identifying dif-

ferent types of faults. In our approach, the prioritized test

sequence is capable of detecting different types of faults

i.e. message dependency fault, fault in loop, synchro-

nization fault etc. and the APFD value is also increased

accordingly. In this work, we have only considered the

functionalities of the system while not taking into account

the non-functional aspects. We have compared our

approach with different related approaches considering the

same case studies. The comparison results with some

related works are summarized in Table 9. The comparison

result is also represented by a graph shown in Fig. 9.

From Table 9 and Fig. 9, it can be observed that our

proposed approach provides higher quality results than

that of others.

7 Conclusion and future work

In this research work, we have presented a technique for

test case prioritization using UML AD, SD and associa-

tion rule mining (ARM). The modified system is modelled

using UML AD and SD. Then, activity sequence graph is

constructed by combining both the diagrams and TCs are

developed from that graph. Simultaneously the detail of

the graph is stored in the project repository. Then, all the

modified nodes and respective affected nodes are traced

by using forward slicing algorithm. After that, a pattern

called FPAN is developed by using ARM. The proposed

framework is explained using a case study named

Hospital Management System (HMS). To verify the effi-

ciency and effectiveness of this approach, we have also

experimented our approach with different support and

confidence values to observe the behaviour of the frequent

patterns during mining the graph data and observation

data. In addition to this, another major criteria i.e. Busi-

ness Criticality Value is added for TCP. The proposed

framework for TCP is also applied on several case studies

and found to be very useful in early fault detection.

During the whole process, we haven’t considered the non-

functional aspects of the system under test. In future, we

will consider the non-functional aspects while prioritizing

the test cases. Similarly, the other data mining techniques

such as apriori algorithm, FP growth etc. can be used for

TCP.

Fig. 7 APFD values of prioritized and non-prioritized test cases of

our HMS case study

Table 8 APFD values for different case studies

Sl

no.

Project name Number

of test

cases

APFD

value

(prioritized)

APFD value

(non-

prioritized)

1 Hospital

Management

System (HMS)

31 0.8258 0.7274

2 Library Management

System (LMS)

37 0.8576 0.8025

3 Shopping Mall

Management

System (SMMS)

28 0.7786 0.7298

4 On-line Examination

System (OES)

22 0.7339 0.6989

5 On-line Ticket

Booking (OTB)

18 0.7020 0.6563

Fig. 8 APFD values of prioritized and non-prioritized test cases for

different case studies

123

Int J Syst Assur Eng Manag (October 2018) 9(5):1063–1079 1077

References

1990. IEEE Standard Glossary of Software Engineering Terminology.

www.ieeexplore.ieee.org/ IEEE Standard Glossary of Software

Engineering Terminology

Acharya AA, Mahali P, Mohapatra DP (2015) Model based test case

prioritization using association rule mining. Comput Intell Data

Min 3:429–440

Aggrawal KK, Singh Y, Kaur A (2004) Code coverage based

technique for prioritizing test cases for regression testing. ACM

SIGSOFT Softw Eng Notes 29(5):1–4

Askarunisa A, Shanmugariya L, Ramaraj N (2010) Cost and coverage

metrics for measuring the effectiveness of test case prioritization

techniques. INFOCOMP J Comput Sci 9(1):43–52

Chauhan N (2016) Software testing principles : practices, 2nd edn.

Oxford University Press, New Delhi

Coremen TH, Leiserson CE, Rivest RL, Stein C (2010) Introduction

to algorithms, 2nd edn. PHI Learning Private Limited, New

Delhi

Garg D, Datta A, French T (2012) New test case prioritization

strategies for regression testing of web applications. Int J Syst

Assur Eng Manag 3(4):300–309

Han J, Kamber M (2010) Data mining: concepts and techniques.

Morgan Kaufmann Publishers, 500 Sansome Street, Suite 400,

San Francisco, CA 94111, 2nd edition

Han X, Zeng H, Gao H (2012) A heuristic model-based test

prioritization method for regression testing. In: Proceedings of

international symposium on computer, consumer and control,

IEEE, pp 886–889

Huang Y-C, Peng K-i, Huang C-Y (2012) A history-based cost-

cognizent test case prioritization in regression testing. J Syst

Softw 85:626–637

Indumathi CP, Selvamani K (2015) Test case prioritization using

open dependency structure algorithm. In: Proceedings of inter-

national conference on intelligent computing, communication

and convergence (ICCC-2015), Procedia Computer Science, vol

48. Elsevier, pp 250–255

Khalilian A, Azgomi MA, Fazlalizadeh Y (2012) A improved method

for test case prioritization by incorporating historical test data.

Sci Comput Program 78:93–116

Khandai S, Acharya AA, Mohapatra DP (2011) Prioritizing test cases

using business test criticality value. Int J Adv Comput Sci Appl

3(5):103–110

Korel B, Koutsogiannakis G (2009) Experimental comparison of

code-based and model-based test prioritization. In: Proceedings

of IEEE international conference on software testing verification

and validation workshops, pp 77–84

Mall R (2014) Fundamental of software engineering, 4th edn. PHI

Learning Private Limited, New Delhi

Mathur AP (2008) Foundations of software testing, 1st edn. Addison-

Wesley Professional, Boston

Table 9 APFD values of different approaches

Author’s name HMS LMS SMMS OES OTB

Non-prioritized case 0.7274 0.8025 0.7298 0.6989 0.6563

Khandai et al. (2011) 0.6675 0.7654 0.6932 0.6158 0.6351

Muthusamy and Seetharaman (2014) 0.6492 0.6864 0.7318 0.6734 0.6018

Indumathi and Selvamani (2015) 0.7285 0.7591 0.7453 0.6982 0.6578

Acharya et al. (2015) 0.7763 0.7985 0.7521 0.7167 0.6861

Our proposal 0.8258 0.8576 0.7786 0.7339 0.7020

Fig. 9 Graph for APFD values

of different approaches

123

1078 Int J Syst Assur Eng Manag (October 2018) 9(5):1063–1079

http://www.ieeexplore.ieee.org/

Muthusamy T, Seetharaman K (2014) A new effective test case

prioritization for regression testing based on prioritization

algorithm. Int J Appl Inf Syst (IJAIS) 6(7):21–26

Pandey AK, Shrivastava V (2011) Early fault detection model using

integrated and cost-effective test case prioritization. Int J Syst

Assur Eng Manag 2(1):41–47

Rava M, Wan-Kadir WMN (2016) A review on prioritization

techniques in regression testing. Int J Softw Eng Appl

10(1):221–232

Samanta D, Kundu D (2008) A novel approach to generate test cases

from UML activity diagrams. J Object Technol 8(3):65–83

Sarma M, Mall R (2007) Automatic test case generation from UML

models. In: Proceedings of 10th international conference on

information technology, pp 196–201

Shahid M, Ibrahim S (2014) A new code based test case prioritization

technique. Int J Softw Eng Appl 8(6):31–38

Solanki S (2017) A review an advance approach for test case

prioritization for regression testing. Int J Emerg Trends Technol

Comput Sci (IJETTCS) 6(1):62–65

Swain SK, Mohapatra DP (2010) Test case generation from

behavioural UML models. Int J Comput Appl 6(8):5–11

Tyagi M, Malhotra S (2015) An approach for test case prioritization

based on three factors. Int J Inf Technol Comput Sci 4:79–86

Wang X, Zeng H (2016) History-based dynamic test case prioritiza-

tion for requirement properties in regression testing. In:

Proceedings of international workshop on continuous software

evolution and delivery, Austin, pp 41–47

123

Int J Syst Assur Eng Manag (October 2018) 9(5):1063–1079 1079

	Model based test case prioritization using UML behavioural diagrams and association rule mining
	Abstract
	Introduction
	Basic concepts
	Related work
	Proposed framework
	Case study: Hospital Management System
	Comparison with related work
	Conclusion and future work
	References

