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Abstract—The growing polularity of Android based smart-
phone attracted the distribution of malicious applications de-
veloped by attackers which resulted the need for sophisticated
malware detection techniques. Several techniques are proposed
which use static and/or dynamic features extracted from android
application to detect malware. The use of machine learning is
adapted in various malware detection techniques to overcome
the mannual updation overhead. Machine learning classifiers are
widely used to model Android malware patterns based on their
static features and dynamic behaviour.

To address the problem of malware detection, in this paper
we have proposed a machine learning-based malware detection
system for Android platform. Our proposed system utilizes the
features of collected random samples of goodware and malware
apps to train the classifiers. The system extracts requested
permissions, vulnerable API calls along with the existence of
app’s key information such as; dynamic code, reflection code,
native code, cryptographic code and database from applications,
which was missing in previous proposed solutions and uses
them as features in various machine learning classifiers to build
classification model. To validate the performance of proposed
system, ”RanDroid” various experiments have been carriedout,
which show that the RanDroid is capable to achieve a high
classification accuracy of 97.7 percent.

Keywords: Android Mobile Security, Malware Analysis, Ma-
chine Learning

I. INTRODUCTION

The smartphone has rapidly become an extremely prevalent

computing platform and they are becoming the preferred

choice in electronic gadgets due to their portability, ease of

use, innovation in network technologies(4G and 5G), large

applications base and rich functionalities. Nearly 1.5 billion

unit of smartphones had been sold to end users in 2016

and Google’s Android extends its leads in smartphone OS

market by occupying approx 82% of total market in 2016 [1].

The swift adoption and changes in the Android operationg

system, apps, and real-world implementation have resulted

in widespread use with little or no malware protection in

many cases. The popularity of Android and implementation

flaws due to rapid change has not gone unnoticed by malware

authors. Avast reported [2] that cyberattacks against android

operationg system are increasing by 40% year-over-year since

2016. To stop the propagation of malware in Android platform

there is an urgent need for effective and precise malware

detection system and techniques.

Malware detection solutions based on static or dynamic

analysis are not suitable method for malware detection as

these methods are suffered from manual overhead and require

heavy instrumentation. In such situation machine learning

becomes promising approach for detecting malware, which

can automatically infer detection pattern from apps features

obtained from static and/or dynamic analysis of malware.

There are approaches [4], [6] and [15] which uses static

analysis while other approach [5] uses combination of static

and dynamic analysis.

Drebin [4] and DroidMat [6] uses large feature set while

Li-Dai [15] uses only permission and API calls. Moreover,

most of the mentioned approaches doesnot consider presence

of key features like dynamic code, reflection code, native

code, database and cryptographic code as potential features.

Malware writers do uses dynamic and reflection code to make

application statically undetectable also uses crypto code for

code obfuscation. Native code allow developer to access some

of processor features and run directly on operating system

hence making static and dynamic analysis approaches for

mobile apps unusable. These techniques usually inspect only

data flow in Dalvik bytecode (i.e. the java component of the

app) and miss the data in native code components, which are

becoming more and more prevalent [21].

In this paper, proposed RanDroid system employs vari-

ous machine learning techniques ie; Support Vector Machine

(SVM), Decision Tree (DT), Nave Bayes (NB) and Random

Forest (RF) to perform malware classification. It makes use

of comprehensive static analysis approach of application. The

system uses permissions, API calls along with presence of

key app’s information which were not considered in most of

previous proposed approaches, such as: crypto code, dynamic

code, native code, reflection code, and database as a features

set to generate binary vector from Android application samples

of identified malware and goodware applications and adopt

machine learning to perform malware classification.

Contribution: In this paper we have used use of app’s

important information presence as part of feature set and em-

ployed machine learning techniques to avoid mannual crafting

of detection patterns. Proposed system is able to achieve F-

measure equal to 0.9795 which is better than many previous

proposed approaches.
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A. Android OS

The Android operating system developed by google is based

on Linux kernel, which handle connectivity to the hardware

and basic OS functionality, designed for advanced RISC

machine (ARM) architecture. The Android stacks consists

of four layers that manage the whole system starting from

hardware sensors to the users high-level apps. The detailed

Android operating system arhitecture is shown in Figure 1.

Fig. 1. Android Operating System Architecture

The first layer, the Linux Kernel layer is the most important

layer and located at the bottom; it is responsible for hardware

abstraction and drivers, security, file management, process

management, and memory management. The second layer,

consist of native libraries and android runtime. Native libraries

set written in C/C++ is exposed to the application framework

and to the Android runtime, and the DVM (Dalvik Virtual

Machine). DVM is a mobile optimized virtual machine and is

an instance of the android runtime, where an application runs.

Third layer, the application framework faciliate application

to access native libraries through using its various packages.

Finally, the application layer which is the topmost layer where

the phone functions are provided to the end-user consist

of applications from google & others developers. Android

application typically have four types of components. Figure 2

shows the summary of the Android application components.

Malware of different types named as Ransomware, Botnet,

Worm, Rootkits, Spyware, Backdoor and Trojan attacks smart-

phone for conducting crime, stealing information and to gain

unathorized access. Zhou and Jiang [8] categorises malware

distribution techniques used by android malware to install on

users phone into three catogories; Repackaging, update attack,

and Drive by download.

Fig. 2. Android Application Components

The rest of the paper is organised as follows. Section II

reviews the literature and prior research efforts that have been

made to identify malware to Android platform. In section III

the proposed malware detection system is described in details.

Section IV present the performance evaluation results. Finally,

section V concludes the paper with scope of future work.

II. RELATED WORK

Malware detection in mobile devices is one of the hot topics

in cyber security. Static and Dynamic analysis are the tech-

niques in literature which is used to detect malware. Utilization

of dynamic analysis to effectively identify malware though

behavioural monitoring and traffic analysis of application at

runtime is shown in DroidRanger [7], AppsPlayGround [16],

and CopperDroid [17] but this requires heavy instrumentation.

Kirin [18], stowaway [19], and RiskRanker [20] used static

analysis method to detect malware but suffers from manual

craft and update problem.

In literature researchers extensively used machine learning

techniques to model Android malwares patterns based on

their static features and dynamic behaviour to avoid difficulty

of manually craft and update detection pattern for android

malware and successfully discriminate Android malware sam-

ples form benign application. Drebin [4], MobileSandBox [5],

DroidMat [6], and Li-Dai [15] perform static and/or dynamic

analysis to extract features (such as permission and API calls)

from applications and employ machine learning techniques to

perform malware classification.

Li et al. [15] presents an SVM-based approach to detect

malware in android platform. It is based on static analysis and

uses risky permission combination and vulnerable API calls

as feature to train SVM algorithm.

DREBIN [4] proposed a static analysis based framework

that extracts a set of features from the apps AndroidMani-

fest.xml and disassembled code to generate features vector.

SVM was applied on the dataset to learn a separation between

the two-classes of apps (benign and malicious). The system

was tested with 123,453 benign and 5,560 malwares.

MobieSandBox [5] system is based on combination of static

and dynamic analysis where results obtains from static analysis

are used to guides dynamic analysis and extend execution code

coverage. It also uses techniques to log native calls and is

successful to claim that 24% of all applications in Asian third

party market uses native call in their code.

DROIDMAT [6], based on static analysis detects malware

through analyzing AndroidManifest.xml and tracing systems

calls. It first extracts different features from the apps android-

Manifest.xml such as: permissions, and intent messages. Then,

it marks the apps components; activity, service, and receiver

as initial points to trace the API calls that are related to the

permissions. DroidMat uses permissions, components, intents,

and usage of the API calls as feature set and applies K-means

algorithm to model malware while the number of clusters are

determined by singular value decomposition (SVD).
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III. SYSTEM OVERVIEW

In this paper we have proposed, Android malware detection

system which extract suitable features to be used in machine

learning classifying algorithms for classifying the benign and

malicious Android application. The system design and func-

tioning is devided into two parts, the first part present the

research methodology adapted during the system design and

second part explain the classification model used in the system.

Fig. 3. Research methodology used in RanDroid design

Phase I is the process of reverse engineering where, the

apps apk files were decompiled into their source code in

the forms of AndroidManifest.xml and java classes by using

Androguard malware analysis tool [10]. Androguard is a

static analysis tool for third-party Android applications which

disassembles apps and access their components using its API.

Phase II is the process of features extraction where the

required features are parsed form the source code using

python module, and stored in document-oriented MongoDB

database. The extracted features include requested permis-

sions, API calls, along with presence of key information

such as: is crypto code; is dynamic code; is native code;

is reflection code and is database which are used to construct

a binary vector for each app in the sample. Table I explain the

investigated features.

Phase III is to transform the extracted features from

each app into a binary vector that can be applicable for

machine learning algorithms; each app is represented as a

single instance with binary vector of features and class label

indicates whether the app is benign or malicious. System

extracts the desired features form each application in the

corpus. Each application X is represented as a vector X =
[x1, x2, ..., xm]wherexi ∈ 0, 1, ∀i = 1, ...,m are the random

variable indicating a particular characteristic feature of the an-

droid application. RanDroid consider the api call, permission

and presence of other key information as the characteristic

features. If a particular api call/permission/presence of key

Fig. 4. Applications binary vectors

TABLE I
ANDROID APPLICATION FEATURES

Features Name Description
Permission The model of security in android is mainly

based on permissions. A set of permission is
required by application to perform its intended
task. Permission are used to allow or restrict
an application access to restricted APIs and
resources, and granted by the users at instal-
lation or runtime. Malicious software tends to
request more permission then required. Thus,
250 different permissions were identified and
are used during binary vector generation. If
a specific permission; e.g. SEND SMS, is
requested by the app; it represented by 1 in
its binary vector while it is represented by 0 if
it is not requested by the app.

API Calls APIs are classes and interfaces that enable
apps to interact and lunch functionality of the
underlying android system. Certain API call al-
low access to sensitive data or resources of the
smartphone and are frequently found in mal-
ware samples. Such malicious API were iden-
tified and comprehensive list of 70 such API is
prepared few of them are as follows; getDevi-
ceId(), getSubscriberId(), sendTextMessage(),
Runtime.exec(), cipher.getInstance() etc.

is crypto code IS CRYPTO CODE is set to 1 during binary
vector generation phase if it detects cryptogra-
phy related code in the apps. The encryption
process of cryptography is used for obscuring
information to make it unreadable without
special knowledge.

is dynamic code IS DYNAMIC CODE field value is True if it
detects dynamic loading of a class.

is native code IS NATIVE CODE field value is the indica-
tion of an application using native libraries.
Native libraries contain native code which is
compiled to binary codes and run directly on
operating System. Native code allow developer
to access some of processor features which are
not accessible through Android SDK.

is reflection code IS REFLECTION CODE value is set to True
if application uses reflection to dynamically
call methods. Reflection code is commonly
used by programs to achieve the ability to
examine or modify the runtime behaviour of
application running in DVM.

is database IS DATABASE value is set to True if appli-
cation uses database

TABLE II
MACHINE LEARNING CLASSIFIERS

Classification
Algorithm

Description

Support Vec-
tor Machine
(SVM)

Support vector machine is a non-probabilistic bi-
nary linear classifier that assigns training data into
one category or more.

Decision Tree
(DT)

A decision tree is a predictive machine learning
model that decide the target value of a new sample
based on various attribute values of the available
data.

Random For-
est (RF)

An ensemble learner method that generate set of
DT and aggregates the result from DT to decide
the final class of the test object.

Nave Bayes
(NB)

The NB classifier is based on Bayes theorem. It
makes use of all the features contained in the data,
and analyses them individually as though they are
equally important and independent of each other.
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feature is present in the application, then the corresponding

features xi is defined as 1 otherwise as 0. The Figure 4 shows

the instances of the dataset.

Phase IV aims at modeling the classifiers by training four

supervised machine learning algorithms; SVM, RF, DT and

NB with the binary vectors of the sample apps. In supervised

learning pre-labelled data is used to train the system. The

annotated data is read by the system then memorized and then

that data is used to distinguish alike malware. Table II shows

the brief description of the classifier used in the system.

Fig. 5. Classification Model used in the system design

The Classification Model adopted in malware detection

system design shown in Figure 5 consists of two phases;

Training phase and prediction phase. In training phase, a set

of features are parsed and extracted from the source code

of a training set sample of malware and Goodware apps;

The extracted features are then represented in binary vector

format; next the set of binary vector of apps along with label

information is passed into learning module where various

machine learning algorithms are trained with the data set to

build classification model. In the prediction phase, the same set

of features are extracted from source code and binary vector

is generated for testing set sample of goodware and malware.

Then generated binary vector is passed into classifier module

where classification happens with the help of classification

models built in the training phase. The result is available in

the form of predicted label as Goodware or Malware.

IV. EXPERIMENT

A. Data Sets

It comprises of 120 top rated benign android application

acquired from Google play store [11] and 175 malicious

Android application acquired from standard sample database

[12], out of this 20 Goodware and 25 malware application are

used as testing set to evaluate the effectiveness of proposed

malware detection system and rest are used as a training set.

Entire data set is random which signifies that sample collection

is not based on any specific categories or criteria.

B. System setup and Configuration

The experiment is performed using Python version 2.7 along

with required module for 64-bit Window OS version which

runs on desktop Workstation with Intel Xeon 2.40 GHz CPU

and 4 GB of RAM. Required key modules are PyMongo,

SciKit-Learn and Androgurad.

C. Evaluation Metrics

To evaluate the effectiveness of proposed method, confusion

matrix shown in Table III is used which provide summary of

prediction results on a classification problems.

TABLE III
CONFUSION MATRIX

Predicted as Malicious Predicted as Benign
Actual Malicious True Positive False Negative
Actual Benign False Positive True Negative

Recall rate is the rate of correctly sensing an instance as

malicious whereas false positive rate(FPR) is defined as the

false identification of benign application as malicious. The

Accuracy value define how precise the classifier classifies the

instance in the right class while the F-measure is the harmonic

mean of Recall and Precision.
Accuracy = TP+TN/TP+TN+FP+FN

Recall rate=TP/TP+FN

false positive rate=FP/TN+FP

Precision=TP/TP+FP

F-measure=2*Recall*Precision/(Recall+Precision)

D. Results

In order to evaluate the performance of the proposed system

various experiments have been conducted on testing samples

as well as on training samples which were used to train

the classifier. The experiments facilitate better view on the

prediction performance of various machine learning classifiers

in the form of measure metrics which consist of accuracy,

true positive rate (or recall), false positive rate, and F-measure.

Table IV and Table V depicts the performed experiments result

on training samples and testing samples respectively, where

measure metrics is presented corresponding to each classifier

used in the experiment.

The experiment results achieved for the mentioned training

set serve as a bases for comparison with the results obtained

from experiment performed using Testing set. The classifier

TABLE IV
RESULT ON TRAINING DATA

Measures
Classifiers

SVM DT NB RF

Accuracy 0.8880 1.0000 0.7360 0.9960
Recall 0.9000 1.0000 0.5666 1.0000
FPR 0.1300 0.0000 0.0100 0.0100
Precision 0.9121 1.0000 0.9883 0.9933
F-measure 0.9060 1.0000 0.7203 0.9966
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TABLE V
RESULT ON TESTING DATA

Measures
Classifiers

SVM DT NB RF

Accuracy 0.9555 0.9777 0.8444 0.8888
Recall 0.9200 0.9600 0.7200 0.8800
FPR 0.0000 0.0000 0.0000 0.1000
Precision 1.0000 1.0000 1.0000 0.9166
F-measure 0.9583 0.9795 0.8372 0.8979

Fig. 6. Top 15 requested permission

outperforms in the experiment on both sample set is Decision

tree, which is able to achieve classification accuracy of 97.7

percent on testing sample set and 100 percent accuracy on

training samples. SVM emerge as the second best classifier

with classification accuracy of 95.5 percent on the testing

sample set. Random forest performance is average while Nave

bayes perform worst on both sample set.

Figure 6, represent top 15 permission requested by Mal-

ware and Goodware to verify the fact that malware request

more permission then required. The permission are the most

important and common features that have been used in de-

tecting malware in the Android environment. The malicious

application tends to request more permission than required.

Figure 7, shows the presence of key features in malware and

Goodware apps. It shows clearly that benign apps uses above

mentioned feature more than the malicious apps but is it also

certain that malicious apps do uses these feature. An author

Fig. 7. Presence of features in Apps

of an app can potentially hide many malicious actions inside

the native part of application which runs directly on operating

system hence makes static and dynamic analysis approaches

unusable, similarly crypto code can be used for obfuscation

and dynamic & reflection code can be used to load classes

& methods at runtime. The existence of these features in an

application does not necessarily imply a higher probability that

the app is malicious.

E. Limitation

• Proposed system is built on concept of static analysis and

lacks dynamic inspection.

• The quality of the detection model of the system critically

depend on the availability of representative malicious and

benign application.

• Small and random set of applications consisting of mal-

ware and goodware is used for building classification

model and testing. The results of proposed system may

vary with increasing size of training and testing data

sample set.

V. EVALUATION AND DISCUSSION

TABLE VI
PROPOSED SYSTEM RESULT ALONGWITH RESULTS OF SIMILAR WORK

PUBLISHED IN PAST

Publication Description Results
DroidMat [6] Android malware detec-

tion through Manifest and
API Call Tracing

F-measure:
0.9183

Androguard [10] Powerful tool to disassem-
ble and to decompile An-
droid apps

F-measure:
0.6611

PUMA [13] Permission Usage to de-
tect Malware in Android

Accuracy:
83.32%

Drebin [4] Performs a broad static
analysis, gathering as
many features of an
application as possible.

Accuracy:
94%

Android malware
analysis approach
based on CFG and
ML algorithms
[14]

Detecting malicious ap-
plication in Android sys-
tem based on control flow
graphs and machine learn-
ing algorithms

Accuracy:
96.26%

Detecting malware
for Android
Platform: An SVM
based Approach
[15]

Malware detection scheme
for Android platform us-
ing an SVM-based ap-
proach , which uses com-
bination of risky permis-
sion and vulnerable API
as features in the SVM
algorithms.

Accuracy:
86%

Android malware
detection
using Random
machine learning
classifiers

System detect malicious
apps in Android system
by employing ML tech-
niques for building de-
tection models and uses
permission, API, and
presence of key apps in-
formation as features.

Accuracy:
97.77% F-
measure:
0.9795

To evaluate presented approach, a comparison is made with

the result of well-known Android malware detection tools and

techniques proposed by the researchers over the period of
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time. Table VI shows the description and results published

by various authors, whose work is in similar domain along

with the result achieved by presented system.

It is evident that proposed system is able to achieve better

classification accuracy among the approaches presented in the

above table. Next subsection discuses the comparision of the

proposed system with the system proposed by Li et al. [15]

whose work serve as the basis for this system design.

A. Proposed System Vs Li et al. [15]

In [15], Li et al. used risky permission and vulnerable API

calls as feature to train SVM classifier to detect malware

in android application. It uses set of 400 android apps (200

malwares, 200 Goodware) to train a SVM model. Then it uses

set of 300 apps (150 malwares, 150 Goodware) as testing set

to evaluate the accuracy of classification model. The accuracy

achieved by SVM classifier in [15] and proposed system is

listed in Table VII along with set of features used.

TABLE VII
ACCURACY OF SVM-BASED CLASSIFIERS

S. No. Features Used Accuracy of SVM
Classifier

1 Dangerous API Calls and
Risky Permission Combination

86%

2 Dangerous API Calls and
Risky Permission along
with Presence of other key
features such as dynamic
code, reflection code, native
code, cryptographic code,
database etc.

95.5%

The second entry in Table VII, with bold letter highlight the

feature set used and accuracy achieved by proposed system.

The utilization of app’s key informations presence as features

help us to achieve accuracy of 95.5 percent which is approx.

10 % higher than the accuracy achieve by Li-Dai in [15].

This significant rise in accuracy clearly verify the fact that the

inclusion of presence of key app’s information in feature set

is right decision.

VI. CONCLUSION

In this paper, Android malware detection system is proposed

which uses permission, APIs, and presence of others key apps

information such as, dynamic code, reflection code, native

code, cryptographic code, database etc. as features to train and

build classification model by using various machine learning

techniques which can automatically distinguish malicious An-

droid apps (malware) from legitimate ones. Experiment result

shows that the proposed system is able to identify malware

in accurate manner. It also verify the fact that the use of

mentioned informations in feature set helps to achieve better

result.

In the presented system we missed out many features which

can be useful for deciding behavior of any given application

as malicious or benign. Broadcast receivers, Filtered Intend,

Control flow graph (CFG) analysis, deep native code analysis,

and dynamic analysis are main topic of concern for future

work which will help us to achieve better accuracy. Another

area which require focus in future is in-depth understating of

machine learning algorithms and feature engineering so that

an efficient classification model can be built.
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