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Abstract—Deep learning has exploded in the public conscious-

ness, primarily as predictive and analytical products suffuse our

world, in the form of numerous human-centered smart-world

systems, including targeted advertisements, natural language

assistants and interpreters, prototype self-driving vehicle systems,

etc. Yet to most, the underlying mechanisms that enable such

human-centered smart products remain obscure. In contrast,

researchers across disciplines have been incorporating deep

learning into their research to solve problems that could not

have been approached before. In this paper, we seek to provide

a thorough investigation of deep learning in its applications and

mechanisms. Specifically, as a categorical collection of state-of-

the-art in deep learning research, we hope to provide a broad

reference for those seeking a primer on deep learning and its

various implementations, platforms, algorithms, and uses in a

variety of smart-world systems. Furthermore, we hope to outline

recent key advancements in the technology, and provide insight

into areas, in which deep learning can improve investigation,

as well as highlight new areas of research that have yet to see

the application of deep learning, but could nonetheless benefit

immensely. We hope this survey provides a valuable reference

for new deep learning practitioners, as well as those seeking to

innovate in the application of deep learning.

Index Terms—Human-centered Smart Systems, Deep Learn-

ing, Platform, Neural Networks, Emergent Applications, Internet

of Things, Cyber-Physical Systems, Survey, Networking and

Security.

I. INTRODUCTION

Along with Big Data and Analytics [149], [79], Cloud/Edge
Computing-based Big Computing [155], [120], and the In-
ternet of Things (IoT)/Cyber-Physical Systems (CPS) [125],
[143], [148], [82], [80], [161], [127], [147], the topic of Deep
Learning has come to dominate industry and research spheres
for the development of a variety of smart-world systems, and
for good reason. Deep learning has shown significant potential
in approximating and reducing large, complex datasets into
highly accurate predictive and transformational output, greatly
facilitating human-centered smart systems [25], [98]. In con-
trast to complex hard-coded programs developed for a sole
inflexible task, deep learning architectures can be applied to all
types of data, be they visual, audio, numerical, text, or some
combination. In addition, advanced deep learning platforms
are becoming ever more sophisticated, often open source and
available for widespread use. Furthermore, major companies,
including Google, Microsoft, Amazon, Apple, etc., are heavily

Corresponding Author: Prof. Wei Yu (Email: wyu@towson.edu).

investing in deep learning technologies to supply hardware and
software innovations that can further improve deep learning
performance, which can be used for next generation smart-
world products [4].

Though regression analysis and auto-encoding are not new
topics in the field of machine learning, deep learning imple-
mentations can provide higher accuracy and better predictive
performance, and are more flexible and configurable. As one
of the largest areas of deep learning applications, supervised
learning tasks for classification have far outstripped even
human abilities in areas like handwriting and image recogni-
tion [99], [73]. In addition, unsupervised learning on datasets
without any particular labels has shown the potential for
the extraction of unforeseen analytical and commercial value
in the form of clustering and statistical analysis. Potentially
the most interesting yet, reinforcement learning provides the
potential for deep learning without human supervision, through
feedback from a connected environment. This type of deep
learning has been heavily applied to the field of robotics and
computer vision [19].

With the unceasing growth of IoT and smart-world systems
driven by the advance of CPS, in which all devices are network
connected and able to communicate sensed data and monitor
physical objects, larger and larger datasets are becoming avail-
able for the application of deep learning, poised to materially
impact our daily lives [161], [82], [143], [91], [144], [81],
[36], [89]. For example, smart transportation systems will
interconnect self-driving vehicles and infrastructure networks
to revolutionize daily mass transit, virtually eliminating col-
lisions and enabling secondary electrical grid storage. Smart
cities shall enable the optimization of resource management
via command and control in nearly all domains, from elec-
tricity, communications, and other utilities, to construction,
transportation, and emergency response. Smart wearables and
tele-health devices collecting diagnostic data may reveal trends
that could prolong human life through disease and pattern
discovery, creating a research population of unimaginable
scale. Smartphones have afforded the massive creation of rich
textual, audio, and visual data from various social media
applications and embedded sensors, and likewise massive
location and population movement data via embedded GPS
modules. It is clear that all of these applications, alone or in
combination, generate unprecedented Big Data. As a solution
to the processing, dimensionality reduction, compression, and
extraction of such Big Data, deep learning provides the most
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immediately relevant and appropriate tools, enabling the rapid
analysis of complex data that spans a variety of modalities.

The primary contributions of this paper are summarized
below:

• We provide an overview of deep learning technologies,
commenting briefly on the history of machine learning
and distinguishing deep learning from constituent shallow
learning techniques. We introduce a definition of deep
learning, describe the basic operations of neural networks,
and further describe some basic types of neural networks
applied generally.

• We categorize deep learning by learning mechanism (e.g.,
supervised, unsupervised, and reinforcement learning).
Each learning mechanism is presented, along with the
subcategories of output tasks, and common algorithmic
examples.

• We provide brief descriptions of prominent deep learning
platforms, commenting on their intended applications,
utility, and some implementation specifics. We note useful
properties of extensibility and interoperability, and high-
light benchmarked platform comparisons.

• We provide a thorough and detailed investigation into the
numerous areas where deep learning has been broadly
applied. In particular, we demonstrate that deep learning
has advanced the state-of-the-art in image and video
processing, audio processing, text analysis and natural
language processing, autonomous systems and robotics,
medical diagnostics, computational biology, physical sci-
ences, finance and economics, and cyber security, among
others. Furthermore, we note advances in algorithmic and
architectural mechanisms in deep learning research.

• Having reviewed areas of deep learning advancement, we
provide insights into areas where deep learning has not
been applied, or has been applied minimally. Of prime
importance, deep learning acceleration and optimization
will hasten the realization of in-device IoT and mobile
deep learning. In addition, distributed deep learning for
IoT and CPS must implement schemes to operate under
an edge computing paradigm to better serve constrained
devices. Applications of deep learning for network oper-
ation, management, design, and control remain relatively
unexplored, yet technologies are advancing to allow in-
ference on continuous high-throughput streams. Finally,
the security of implemented deep learning networks and
models, and specifically their resilience to attacks, is a
critical issue given the rapid adoption of deep learning
technologies coupled with prominent examples of their
subversion.

In addition, compared to other survey works on the topic
of deep learning [109], [67], [98], [68], [19], [38], our work
takes a broad view of all fields/applications to which deep
learning has been applied, and their contributions to the study
and improvement of deep learning. Particularly, other works
focus primarily on the advances and needs of a single learning
mechanism or modality [109], [19], or towards improvements
in a single application [38], [67], [68], [98]. Instead, in this
paper, we primarily focus on a sweeping evaluation of deep

learning applications and mechanisms to illuminate areas, in
which deep learning has yet to make significant contributions.

The remainder of this paper is as follows. In Section II, we
provide a brief overview of deep learning. In Section III, we
categorize deep learning objectives, mechanisms, and algorith-
mic approaches. In Section IV, we outline various common
platforms for implementing deep learning architectures. In
Section V, we present a broad review of the applications of
deep learning. In Section VI, we highlight areas of future deep
learning application and research. Finally, in Section VII, we
provide concluding remarks.

II. OVERVIEW OF DEEP LEARNING

Machine learning incorporates a vast array of algorithmic
implementations, not all of which can be classified as deep
learning. For example, singular algorithms, including statis-
tical mechanisms like Bayesian algorithms, function approxi-
mation such as linear and logistic regression, or decision trees,
while powerful, are limited in their application and ability
to learn massively complex data representations. Deep learn-
ing has developed from cognitive and information theories,
seeking to imitate the learning process of human neurons and
create complex interconnected neuronal structures. As one of
the key concepts of computing neurons and the neural model,
the ability for a generic neuron to be applied to any type of
data and learn indiscriminately is a powerful concept [99]. In
essence, there is no singular structure for each application, but
instead a generally applicable model for all applications.

Inherent to the process of machine learning are the concepts
of training (iterative improvement in learning) and inference
(the extraction of output of a trained model from some
practical input). In training a model, a volume of data is split
into training and testing sets, and likely a validation set as
well. A machine learning algorithm is given the training data
to learn some representation of, which could be in the form of
a function approximation of the given feature distributions or
as a set of decisions based on the contributions of each feature,
among others. The validation set would also be used during
training, but as a method to validate the effectiveness of the
training process, the result of which is applied to tune learning
parameters of the algorithm and improve the final accuracy.
The test set would then provide a previously unobserved set
of data to determine the final accuracy of the trained model,
and is generally the source of the reported accuracy scores
and other effectiveness metrics. The term inference, then, can
be considered as the process of inputting a data item into a
trained and implemented machine learning model and getting
an inferred output.

With the advancement of computing technologies, the im-
plementation of large collections of neurons was possible, giv-
ing rise to neural networks. Indeed, though neural networks are
becoming commonplace, they are actually an old technology
[44] that fell out of favor because of complexity and computing
deficiencies. Nonetheless, this has clearly changed, thanks in
no small part to the applications at which neural networks
have excelled. Examples include winning the ImageNet object
recognition competition [73], in which neural networks can
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exceed even human accuracy, or beating humans in the game
of Go without having received any direct input or game
sessions against human players [123].

By definition, deep learning is the application of multi-
neuron, multi-layer neural networks to perform learning tasks,
including regression, classification, clustering, auto-encoding,
and others. Conceptually, the most basic computational neu-
ron, the sigmoid neuron, can be considered as a single logistic
node (though there are many other algorithms that can be im-
plemented as activation functions). Each neuron is connected
to the input ahead of it, and a loss function is used to update
the weights of the neuron and optimize the logistic fit to the
incoming data. As part of a neural network layer, multiple
parallel neurons initiated with different weights learn on the
same input data simultaneously. In the application of multiple
layers of multiple nodes, each node learns from all the outputs
of the previous layers, stepwise reducing the approximation of
the original input data to provide an output representation set.
Thus, the complexity of multiple interconnected neurons is
evident.

The general structure of deep neural networks is shown in
Fig. 1 and Fig. 2, in which an input layer representing the raw
input data (blue) feeds into multiple hidden layers of varying
types (yellow), finally exiting as some output (white), which
can represent regressive values, classification values, etc. Many
types of neurons can be implemented, and likewise there are
many types of layers depending on the necessary or desired
function thereof. The most basic layer is a fully-connected
layer, in which all neurons are fully connected to all input,
as demonstrated in Fig. 1a. In contrast, to reduce over-fitting,
some connections are removed, usually in a random manner
by some percentage. This type of layer is called a dropout
layer, as demonstrated in the two hidden layers of Fig. 1b.

Fig. 2 represents a convolutional neural network (CNN), as
opposed to a more general recursive neural network (RNN). In
RNNs, some form of optimization is used to recursively update
the weights of the neurons based on the loss function results
after each learning step. In CNNs, alternating convolution
and pooling layers are added prior to fully-connected or
dropout layers. Convolutional layers are used to filter large
multidimensional matrices, such as the Red, Green, and Blue
channels of an 2-dimensional image, into feature map. The
pooling layer then spatially reduces the size of the feature
map into a smaller and more manageable matrix. In essence,
the convolution layers reduce the complexity of the image
by some filter (identity, edge detection, sharpening, etc.), and
the pooling layers reduce the size of each filtered result.
Notice that multiple filters are typically applied to extract
parallel and complementary features [131]. In addition, not
all networks have this progressively reductive layer shape.
Stacked autoencoders (SAEs) [38], for example, typically have
an hourglass shape, first reducing dimensionality, and then
expanding beck to a larger feature set. Similarly, generative
adversarial networks (GANs) [45] are composed of generator
and discriminator networks, where the output of the generator
network is typically the same feature set as the input, and
the final layers may be deconvolutional, complementing the
convolutional layers of the input.

III. CATEGORIZATION OF DEEP LEARNING

We now provide a categorical review of deep learning
architectures by learning mechanism and learning output task,
and provide brief descriptions of the many algorithmic im-
plementations of each. The primary learning mechanisms are
supervised learning, unsupervised learning, and reinforcement
learning. In general, learning mechanisms are classified by the
type of input data that they operate upon. Output tasks include
classification, regression, dimensionality reduction, clustering,
and density estimation [38].

A. Supervised Learning
Supervised learning is so named because of the requirement

that the data investigated be clearly labeled, and thus the
result of the output can be supervised, or classified as correct
or incorrect. In particular, supervised learning is used as a
predictive mechanism, in which a portion of the data is learned
upon (otherwise known as the training set), another portion is
used to validate the trained model (cross-validation), and the
remainder is used to determine the accuracy and effectiveness
in prediction. Though accuracy is an important metric, other
statistical mechanisms, such as precision, recall, and F1 score,
are used to assess the ability of a trained model to generalize
to new data. The two primary learning tasks in supervised
learning are classification and regression.

Classification: In classification, the output of the learning
task will be of a finite set of classes. This can take the form
of binary classification of only two classes (0 or 1), multi-
class classification resulting in one class out of a set of three
or more total classes (red, green, blue, etc.), as multi-label
classification, where objects can belong to multiple binary
classes (red or not red, and car or not car), and even as
all pairs classification, in which every class in a finite set
is directly compared to every other class in a binary way
[103]. In all pairs classification, comparing red, green and
blue, the resulting output would be test: red vs. green, red
vs. blue, and green vs. blue. Examples for deep learning
applications of classification include binary output in malware
detection (Malicious and Benign) [48], as well as non-binary
classification of handwritten numbers, as in the MNIST dataset
[99].

Regression: In contrast to classification, the output of
regression learning is one or more continuous-valued numbers.
Regression analysis is a convenient mechanism to provide
scored labels equivalent to multi-label classification, where
each item of a set has a probability of belonging (i.e., 0.997
red, 0.320 green, 0.008 blue). Regression has been applied in
various areas, including monocular image object recognition
for outdoor localization [97], among others.

B. Unsupervised Learning
In unsupervised learning, datasets provided as input for

machine learning are not labeled in any way that determines
a correct or incorrect result. Instead, the result may achieve
some broader desired goal, be judged on the ability to find
something that is easily human-discernible, or provide a com-
plex application of a statistical function to extract an intended
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(a) (b)

Fig. 1. Representative neural networks, where (a) is fully connected, and (b) includes dropout

Fig. 2. Convolutional neural network for image recognition

value. For instance, clustering algorithms may cluster data into
hard or fuzzy groups as desired, but, without an appropriate
visual representation, it may be difficult to tell whether the
clustering was indeed appropriate. Similarly, density estima-
tion provides just that, an estimation, which may or may not
be appropriate to the dataset, and auto-encoders can reduce
and encode data efficiently, to be used for compression or
dimensionality reduction. Nonetheless, the ability to extract
the compressed representation accurately may still need to be
tested to determine the appropriateness of the implementation
[38].

Dimensionality Reduction: Dimensionality reduction can
be carried out in various ways, including different forms of
component and discriminant analysis. As an example, auto-
encoders can transform input data into a reduced or encoded
output for the purposes of data compression or storage space
reduction. Examples of dimensionality reduction include the
reduction of sequential data, such as video frames, to reduce
noisy or redundant data while maintaining important features
of the original data [126], or the use of deep belief networks to
reduce dimensionality of hyperspectral (400-2500 nm) images
of landscapes to determine plant life content [18].

Clustering: Clustering algorithms are used to statistically
group data. Generally speaking, this occurs through the alter-
nating selection of cluster centroids, and cluster membership.
For example, k-means and fuzzy c-means clustering utilize
the least mean square error of the distances between clusters
and centroids [28], [26]. In the latter, fuzzing allows data
membership in multiple cluster centroids, making the edges
of the clusters “fuzzy". Other clustering algorithms utilize
the Gaussian Mixture Model (GMM), or other statistical and
probabilistic mechanisms, instead of Euclidean Distance, as a

means to make cluster selection [111], [150]. In addition, deep
neural network architectures can provide deep learning im-
plementations for cluster analysis [38]. Examples include the
use of Self-Orienting Feature Maps (SOFMS) to satisfy real-
time image registration [42], and the TSK_DBN fuzzy learning
network that combines the Takagi-Sugeno-Kang (TSK) fuzzy
system with a Deep Belief Network (DBN) [163], among
others.

Density Estimation: Density estimation, in general, is the
statistical extraction or approximation of features of a data
distribution, such as the extraction of densities of subgroups
of data to evaluation correlations, or the approximation of the
data distribution as a whole. Examples of density estimation
include the estimation of power spectral density for noise
reduction in binaural assisted listening devices [92], and
intersection vehicle traffic density estimation utilizing CNNs
on heterogeneous distributed video [152].

C. Reinforcement Learning

Reinforcement learning can be considered as an intermedi-
ate between supervised and unsupervised learning, because,
though data is not explicitly labeled, a reward is supplied
upon the execution of an action. More specifically, the learning
architecture in reinforcement learning interacts with the envi-
ronment directly, such that a change in the environment returns
a specific reward. The goal of the reinforcement learning
system is to maximize the reward of every state transition
by learning the best actions to take at each given state.
This is embodied by the perception-action-learning loop, as
demonstrated in Fig. 3. This loop can occur for infinite time,
or can be applied in sessions, to learn to maximize the outcome



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2830661, IEEE Access

5

of each session. In addition, the feedback can come directly
from the environment, such as in the form of a numerical
counter in a visual environment, or can be supplied as the
result of some calculation or function. The two primary means
of reinforcement can be divided between policy search and
value function approximation, though hybrids of both have
been introduced [19].

Fig. 3. Reinforcement Learning Model

Policy Search: Policy search can be carried out by gradient-
based (via backpropagation) or gradient-free (evolutionary)
methods, to directly search for an optimal policy. These typi-
cally output parameters for a probability distribution, either for
continuous or discreet actions, resulting in a stochastic policy
[19]. Though prior implementations of Google’s AphaGo pro-
gram, which were the first to beat a professional human player
without handicap [122], were a hybrid of policy search and
value function approaches, the most recent implementation,
AlphaGo Zero, is entirely policy search-based, learned without
any human input, and significantly outperforms the prior
implementations.

Value Function: Value function methods operate by esti-
mating the expected return of being in a given state, attempting
to select an optimal policy, which chooses the action that
maximizes the expected value given all actions for a given
state. The policy can be improved by iterative evaluation
and update of the value function estimate. The state-action
value function, otherwise known as the quality function, is the
source of Q-learning [19], [21]. An alternative to the quality
function, the advantage function represents relative state-action
values, as opposed to absolute state-action values [19]. As a
seminal work on the application of Q-learning and Deep Q-
Networks (DQN), Mnih et al. [93] implemented a DQN to play
49 different Atari 2600 videogames, observing four frames
as environment data, extracting the game score as reward,
with controller and button combinations encoded as actions.
Their DQN implementation outperformed human users in the
majority of games, as well as outperforming the best linear
learners handily.

IV. DEEP LEARNING PLATFORMS

In this section, we provide an overview of popular open-
source deep learning platforms. This list is not exhaustive, but
is meant to provide a reference for deep learning practitioners.

A. TensorFlow
A relatively new offering in the sphere of deep learning

technologies, TensorFlow was initially released by Google in
late 2015, though version 1.0.0 was released in early 2017.
It includes Java, C++, Go, and Python APIs, and is designed
for computation on data flow graphs, in which graph nodes
represent operations and edges are multidimensional data
arrays (tensors). TensorFlow supports computation on multiple
CPUs and GPUs, with optional CUDA and SYCL extensions
[9]. In addition, TensorFlow Lite is designed for mobile and
embedded machine learning, and provides an Android Neural
Networks API. Recent work by Lane et al. [119] showed that
TensorFlow performs best in server-grade multi-thread (more
than 8) implementations.

B. DeepLearning4J
Deep Learning for Java (DL4J) is a robust, open-source

distributed deep learning framework for the JVM created
by Skymind [5], which has been contributed to the Eclipse
Foundation and their Java ecosystem. DL4J is designed to
be commercial-grade as well as open source, supporting Java
and Scala APIs, operating in distributed environments, such
as integrating with Apache Hadoop and Spark, and can im-
port models from other deep learning frameworks (Tensor-
Flow, Caffe, Theano) [6]. It also includes implementations
of restricted Boltzmann machines, deep belief networks, deep
stacked autoencoders, recursive neural networks, and more,
which would need to be built from the ground up or through
example code in many other platforms.

C. Theano
Theano is a highly popular deep learning platform designed

primarily by academics which, unfortunately, is no longer
supported after release 1.0.0 (November, 2017). Initiated in
2007, Theano is a Python library designed for performing
mathematical operations on multi-dimensional arrays and to
optimize code compilation [10], primarily for scientific re-
search applications. More specifically, Theano was designed to
surpass other Python libraries, like NumPy, in execution speed
and stability optimizations, and computing symbolic graphs.
Theano supports tensor operations, GPU computation, runs on
Python 2 and 3, and supports parallelism via BLAS and SIMD
support.

D. Torch
Torch is also a scientific computing framework, however

its focus is primarily on GPU accelerated computation. It
is implemented in C and provides its own scripting lan-
guage, LuaJIT, based on Lua. In addition, Torch is mainly
supported on Mac OS X and Ubuntu 12+, while Windows
implementations are not officially supported [11]. Nonetheless,
implementations have been developed for iOS and Android
mobile platforms. Much of the Torch documentation and im-
plementations of various algorithms are community driven and
hosted on GitHub. Despite the GPU-centric implementation,
a recent benchmarking study [119] demonstrated that Torch
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does not surpass the competition (CNTK, MXNet, Caffe) in
single- or multi-GPU computation in any meaningful way, but
is still ideal for certain types of networks.

E. Microsoft Cognitive Toolkit (CNTK)
The Microsoft Cognitive Toolkit, otherwise known as

CNTK, began development in Mid-2015. It can be included
as a library in Python, C#, and C++ programs, or be used as
a standalone with its own scripting language, BrainScript. It
can also run evaluation functions of models from Java code,
and utilizes ONNX, an open-source neural network model
format that allows transfer between other deep learning frame-
works (Caffe2, PyTorch, MXNet) [8]. Conceptually, CNTK is
designed to be easy-to-use and production-ready for use on
large production scale data, and is supported on Linux and
Windows. In CNTK, neural networks are considered as a series
of computational steps via directed graphs, and both neural
network building blocks and deeper libraries are provided.
CNTK has emerged as a computationally powerful tool for
machine learning with performance similar to other platforms
that have seen longer development and more widespread use
[119].

F. Caffe and Caffe2
Caffe was designed by Berkeley AI Research (BAIR) and

the Berkeley Vision and Learning Center (BVLC) at UC
Berkeley to provide expressive architecture and GPU support
for deep learning and primarily image classification, origi-
nating in 2014 [2], [62]. Caffe is a pure C++ and CUDA
library, which can also be operated in command line, Python,
and MatLab interfaces. It runs on bare CUDA devices and
mobile platforms, and has additionally been extended for use
in the Apache Hadoop ecosystem with Spark, among others.
Caffe2, as part of Facebook Research and Facebook Open
Source, builds upon the original Caffe project, implementing
an additional Python API, supports Mac OS X, Windows,
Linux, iOS, Android, and other build platforms [3].

G. MXNet
Apache MXNet supports Python, R, Scala, Julia, C++, and

Perl APIs, as well as the new Gluon API, and supports both
imperative and symbolic programming. The project began
around Mid-2015, with version 1.0.0 released in December of
2017. MXNet was intended to be scalable, and was designed
from a systems perspective to reduce data loading and I/O
complexity [1]. It has proven to be highly efficient primarily
in single- and multi-GPU implementations, while CPU imple-
mentations are typically lacking [119].

H. Keras
Though not a deep learning framework on its own, Keras

provides a high-level API that integrates with TensorFlow,
Theano, and CNTK. The strength of Keras is the ability to
rapidly prototype a deep learning design with a user-friendly,
modular, and extensible interface. Keras operates on CPUs and
GPUs, supports CNNs and RNNs, is developer-friendly, and

can integrate other common machine learning packages, such
as scikit-learn for Python [7]. In addition, it has been widely
adopted by researchers and industry groups over the last year.

V. APPLICATIONS OF DEEP LEARNING

In this section, we review the primary applications of deep
learning. A significant body of work toward the application
of deep learning has grown steadily in the last few years.
Particularly, the primary advances have been in the application
of deep learning toward multimedia analysis, including image,
audio, and natural language processing, which has afforded
significant leaps in the state of the art for autonomous systems.
Indeed, machine learning is fundamentally concerned with
data fitting, the primary uses of which are optimization, dis-
crimination, and prediction. In addition, advances in big data
and cloud computing have created the potential for machine
learning to flourish, enabling the requisite data collection and
dissemination, as well as the computational capacity to execute
deep models [26], [155], [79], [156], [120]. The existence
of the data, and the nature of its potential have directly
necessitated more accurate, generalized, and efficient learning
mechanisms.

As shown in Fig. 4, we categorize the deep learning ap-
plications into two groups: mature applications and emerging
applications. In this paper, we consider mature applications
to be those with significant breadth and depth of research,
such that many works exist not only across the particular field,
but also within narrow subfields as well. For example, in the
realm of image and video recognition, we can consider object
detection, image classification, and image generation to be
representative subfields which each have significant work. In
contrast, we consider emerging applications as those with only
breadth or depth, but not both, as well as applications that have
neither. Notice that in our classification, clear subcategories
exist, yet many works can be considered multi-disciplinary,
belonging to multiple classes or subclasses. In the following,
we review some typical examples of mature applications,
reserving emerging applications for Section VI.

A. Image and Video Recognition/Classification
As generally the largest area of deep learning investigation,

image and video processing, recognition, and detection have
seen explosive growth in recent years. This is in no small
part due to the many machine learning competitions, such
as ImageNet [73]. In image and video processing, typical
deep structures are convolutional neural networks, which first
convolve multiple channels of images and then pool the image
layers, layer by layer reducing the size of the image or frame
field, before passing the results to fully-connected layers.
Image and video processing has been applied to many fields
of study, including autonomous systems, medical imaging,
astrophysics, biometric analysis, etc.

For example, in the area of bioinformatics, Thammasorn et
al. [129] created a three-layered extractor or triplet network of
CNNs, fed into a comparator network, to extract features from
gamma images, in which no known suitable features exist.
These images, and the resulting feature, can be utilized to
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Fig. 4. Deep Learning Applications

detect potential errors in radiation therapy delivery. To carry
out human action recognition, Ijjina et al. [59] utilized RGB-
D camera data from ConvNet, NATOPS, and other datasets to
develop learned temporal templates for pattern recognition via
CNN.

Other examples in category of human action recognition
include [124] and [54]. Particularly, Srinivasa et al. [124]
utilized Long Short Term Memory (LSTM) for regression
analysis of facial expression responses of individuals watching
advertisements. Using the Affectiva-MIT Facial Expression
Dataset, the authors train a model to extract expressiveness
over a group of frames to better understand the advertise-
ment’s impact on the viewer. The authors additionally cluster
the results to extract meaningful user states during viewing.
Hong et al. [54] extracted 3-dimensional hand poses from 2-
dimensional images, known as Hand Pose Recovery (HPR).
The authors implement semi-supervised learning (combining
labeled and unlabeled data), using low rank representation
to map unlabeled data into labeled data space achieved via
autoencoders, and utilize a ReLU activated neural network to
perform classification.

As applied for general object recognition tasks, Guo et al.
[47] developed an approach to improve 3D object recognition
based on multi-view 2D images. Specifically, the authors
increase intra-object variation and reduce inter-object varia-
tion through the application of a Deep Embedding Network
supervised by triplet and classification loss. This framework
converts the problem to a set-to-set matching problem, and
the resulting DeepEm(M) implementation outperforms thirteen
other methods on the MV-RED-721 dataset, and significantly
improves upon precision and recall. In addition, Hickson et al.
[52] investigated semantic classification of objects in images
via weak supervision, and proposed a fully differentiable
unsupervised deep clustering model. In their study, K-means
clustering was used to learn parameters of the network, build-
ing features while simultaneously learning to cluster them,
and storing cluster means as weights. Data was provided
as objects vs. background using segmentation masks, and
clustering was performed only on foreground objects. Another
object recognition example is the image-based search engine
developed by retraining a pretrained GoogleNet Inception-v3
CNN model using transfer learning [61]. In this study, the
network was applied as a feature extractor for nearest neighbor

comparison, using Euclidean distance as the similarity metric
of the last-but-one fully connected layer, which was taken as
the feature vector.

In considering the reconstruction of compressed data, Iliadis
et al. [60] demonstrated the use of deep neural network archi-
tecture for compressed video sensing. Their proposed schemes
for trained fully-connected networks outperform competing
schemes in reconstructing compressed high-definition video.
Similarly, Adler et al. [12] applied deep learning to block-
based compressed sensing (BCS) for simultaneous learning of
a linear sensing matrix and non-linear reconstruction operator.
As a means to reconstruct sparse signals that have linear
transforms from high-dimensional images and video, their
proposed method outperforms comparable BCS mechanisms
in terms of peak signal to noise ratio vs. sensing rate, as well
as in execution time.

Various works have also explored the improvement of deep
image learning networks through variations on architectures
and constrains. For example, Higgins et al. [53] developed a
deep unsupervised generative framework for disentangled fac-
tor learning on raw image data. The authors applied constraints
inspired by neuroscience (i.e., data continuity, redundancy
reduction, and statistical independence), and demonstrated
that disentangled representations enable zero-shot inference
and can individually encode factors of variation. Likewise,
He et al. [50] explored significantly increasing DNN depth,
which causes accuracy degradation and high training error.
In response, the authors developed a deep residual learning
architecture, in which layers fit a residual of the previous
mapping via shortcut connections. The layers learn residual
functions, which are referenced to layer inputs, are easy to
optimize, and gain accuracy and reduce error. Borkar and
Karam [23] investigated the impact of image distortion on
pre-trained convolutional filters used in deep learning neural
network and designed an approach, called DeepCorrect to
improve the robustness of deep learning neural network against
image distortion. In addition, Dodge and Karam [33] inves-
tigated issue of performance impact of several deep learning
neural network on image classification when quality distortion
is in place.
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B. Audio Processing

Audio signal processing is typically concerned with noise
reduction and data compression that maintains the maximum
value for human listeners, highly relevant to the field of
audiology. Deep auto-encoders have shown great promise in
this area, and the ability to discriminate voices, languages,
and background noise from multiple and singular microphone
input is a significant gain that deep learning has the potential to
realize. In addition, natural language processing is concerned
with the detection, comprehension, and also the translation
of spoken language. Widely used smart assistants have only
increased in complexity, and translation applications are be-
coming ever more sophisticated.

As mentioned previously, Marquardt and Doclo [92] con-
ducted noise power spectral density estimation for binau-
ral noise reduction. They exploited the direction of arrival
to improve noise reduction, as demonstrated in their sim-
ulation. Also relevant to noise reduction and enhancement,
Zhang [164] proposed a cost-sensitive deep ensemble learning
mechanism based upon a cost-sensitive objective function,
cost-sensitive oversampling, and cost-sensitive undersampling,
to improve multi-condition (i.e., multi-environment) training.
Specifically, as applied to speech separation in varyingly noisy
environments, the influence of low signal-to-noise ratio (SNR)
on training error can be improved via varying the learning
objective and sampling with SNR. In addition, Sainath et al.
[112] applied a deep neural network framework to jointly
perform multichannel enhancement and acoustic modeling for
automatic speech recognition (ASR). The acoustic model was
trained by applying a convolutional filter network to reduce
multiple microphone signals, and then the acoustic model
was learned in a convolutional LSTM network. A neural
adaptive beamforming model was additionally developed to
allow adaptation to changing conditions during decoding.

Toward the classification of audio signals, Sharan and Moir
[118] compared SVM and DNN performance in classifying
environmental noise and sound. Despite increased training
time in DNNs, which more than doubled the testing time
of the SVM implementation, the accuracy of the DNN was
greater in all scenarios. In a relevant but distinct task, Luo
et al. [84] applied DNN with dropout and SAE to detect and
classify audio recordings as original versus captured. A means
to determine whether some audio recording might have been
illegally re-recorded, samples are normalized and segmented
into 20 or 40 non-overlapping frames for evaluation. Both
methods are able to reduce error to approximately 7.5 %, and
after applying majority voting all frames in a 2-second clip,
the detection rate can reach over 99 %.

Finally, regarding the synthesis of audio signals, and in
particular, human speech, Gonzalez et al. [43] presented a
technique for synthesizing audible speech from sensed artic-
ulator movement. Based on permanent magnet articulography
(PMA), the authors synthesize speech from learned biosignals
via Gaussian Mixture Model and RNNs, achieving 92 %
intelligibility. In addition, Saito et al. [113] utilized GANs
for statistical parametric speech synthesis to alleviate common
over-smoothing effects. Through a series of subjective AB and

XAB evaluations, the proposed GAN model outperforms the
conventional minimum generation error DNN training method.

C. Text Analysis and Natural Language Processing

Massively adopted mobile devices have enabled continuous
on-demand computing from anywhere. The social applications
that comprise up the bulk of common user interactions create
continuous massive data, which can be harvested and analyzed
for sentiment and social understanding. Text and natural lan-
guage processing affords the potential for on-the-fly language
translation and the communication of humans and computer
systems via natural speech.

Related to sentiment classification through text analysis,
there have been a number of research efforts. For instance,
Araque et al. [17] developed a deep learning sentiment clas-
sifier and proposed two ensemble techniques to aggregate the
baseline classifier with other widely used surface classifiers.
Combining both surface and deep features, the authors merge
information from several common sources and conduct a
performance evaluation, which confirms that the performance
of the proposed models surpass that the baseline. In addition,
Severyn et al. [116] utilized deep learning to re-rank short text
pairs for optimal representation and similarity approximation
without curated feature engineering. Convolutional networks
were used to learn query and sentence documents separately,
and then joined with additional similarity matching score into
the fully connected network. Experiments demonstrated excep-
tional performance on the TREC: QA dataset, and comparable
performance in tweet re-ranking.

Other types of classification of textual data have been
accomplished, such as by Majumder et al. [90], who imple-
mented deep CNNs to extract personality traits from stream of
consciousness essays, combining n-gram and document-level
features. Each of five major traits were trained in an individual
CNN with binary output, and experiments on minor variations
of their model showed increased accuracy on individual traits,
with only one model outperforming on a majority of traits
versus the state of the art. Similarly, Kowsari et al. [71]
proposed a hierarchical deep learning architecture for text-
based document classification, in which each deep learning
model is constructed of fully connected DNN, RNN with gated
recurrent units (GRUs) and LSTM, and CNN. The framework
employs a parent model trained on a set of global classes,
which output to child models that each learn on a distinct set
of subclasses belonging to a single global class.

Deep learning has also been applied toward the generation
of convincing conversational and labeling texts. For example,
Li et al. [75] applied deep reinforcement learning for natural
dialog simulation. In their study, an LSTM encoder-decoder
architecture is applied to simulate two virtual agents and
optimize long term reward via policy gradient. The reward
combines the constraint of subsequent responses based on
the prior responses (forward-looking), penalization of repe-
tition (informativity), and mutual information between prior
responses and the current response (grammatical coherency).
Additionally, Zhang et al. [162] utilized CNNs for image
detection and classification from aerial landscapes, and then
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constructed natural language descriptions, utilizing the class
labels via a recurrent neural network language model. Their
results showed 67 % correct and 30 % partly correct descrip-
tions.

D. Autonomous Systems and Robotics

The field of robotics has seen incredible strides in the abil-
ity to create free-standing, un-tethered autonomous walking
robots, as well as in autonomous flight, driving, and naviga-
tion, among others. Deep learning has been widely applied
to enable diverse sensory input to assist in the workings
of autonomous machines in manufacturing and commercial
spaces, and these cannot be wholly removed from video
recognition an most cases.

In the area of robotic manipulation, deep learning has
produced significant strides toward the rapid training of robotic
arms for repetitive manufacturing tasks in a variety of ways.
For instance, Gu et al. [46] utilized deep reinforcement learn-
ing and off-policy updates to train robotic arms on manual
tasks without human intervention or demonstration. They also
utilized multiple robotic arms as simultaneous workers to
increase learning efficiency. In contrast, Senft et al. [115] im-
plemented an interactive machine learning architecture called
SPARC (Supervised Progressively Autonomous Robot Com-
petencies), in which a human user interactively guides the
robot as it learns. This is in the form of reinforcement learning,
in which the human teacher has full control over the actions
of the learning machine, and positive feedback is supplied to
the robot for every action that it completes.

Unlike direct user manipulation training, or human-free
training, Yang et al. [146] developed a deep learning pipeline
for generalized non-backdrivable humanoid robots through
teleoperation training. The model uses a deep convolutional
autoencoder for image feature extraction and encoding and
applies a time-delay neural network for temporal sequence
evaluation with image and motor angle data to generate a con-
tinuous operational task. Furthermore, Polydoros et al. [106]
developed a deep learning framework for real-time learning
of robotic controls through modeling the inverse dynamics
of robotic manipulator joint torques from sensory data. Their
model employed a self-organized layer to decorrelate inputs
and a recursive reservoir to provide fading memory, which
require no hyperparameter optimization or kernel selection.
They additionally recorded and tested new datasets for inverse
dynamics model learning, and demonstrated the adaptability of
their model to changes in the inverse dynamics model.

A subfield of robotics, robotic vision affords autonomous
systems with situation awareness via object detection. As
applied to robotic manipulators, Mahler et al. [88] developed
a Grasp Quality Convolutional Neural Network (GQ-CNN)
model, called Dex-Net 2.0, to predict the probability of
success of grasps from depth images. The authors developed a
synthetic dataset of 6.7 million point clouds of 1,500 3D object
models and grasp quality metrics. The model achieves a high
success rate on both known and unknown objects, and is three
times faster than the competing method. In addition, targeting
more generalized detection for robotic vision, Poirson et al.

[105] developed a model for simultaneous 3D object detection
and pose estimation in a single deep CNN, greatly increasing
the efficiency of detection and pose estimation over other state-
of-the-art systems. They implemented a variant of the single
shot detection (SSD) network with additional pose outputs,
and conducted tests on the Pascal 3D+ dataset to verify
design choices, such as shared pose output across objects, and
combined Pascal and ImageNet annotated data with coarse-
grained training for increased accuracy.

As applied in particular to autonomous vehicle systems,
Dairi et al. [30] developed an unsupervised object detection
system based on a hybrid implementation of deep Boltzman
machines (DBMs), auto-encoders (AEs), and support vector
machines (SVMs), utilizing stereovision as input. In their sys-
tem, the DBMs and AEs are combined for feature extraction
and encoding, and the SVMs are used for anomaly detection.
In addition, Kahn et al. [64] presented a generalized compu-
tational graph-based deep reinforcement learning framework
that combines value-based and model-based mechanisms, and
applied this model to autonomous navigation using monocular
images. The model was tested both in simulated and in real
environments, and experiments were conducted to evaluate
appropriate model horizons and bootstrapping efficacy, sample
efficiency of classification and regression for value versus col-
lision probability predictions, and performance against various
double Q-learning approaches. Furthermore, in a rather unique
application, Rajesh and Mantur [108] applied a deep CNN
to eye movement and blink tracking for the control of an
electric wheelchair. Trained on the Eye-Chimera dataset and
implemented via head-mounted camera, the achieved accuracy
is upwards of 99 %.

E. Medical Diagnostics

Highly influenced by advances in image analysis, medical
diagnostics have benefited significantly from the rapid im-
provements in deep learning. Considerable work has been done
toward improving the detection of diseases, tumors, and other
abnormalities from MRI images, CT scans, etc. In addition,
IoT devices for medical applications can provide autonomous
monitoring of patients and extract useful data on medical
populations.

In utilizing data from widely deployed smart IoT devices,
advances have been made in increasing the accuracy of remote
sensor metrics. For example, Jindal [63] utilized deep learning
to increase the accuracy of heart rate estimation via photo-
plethysmography (PPG) by smartphones and wearables during
exercise. The authors fuse PPG and accelerometer data, and
utilize deep belief networks composed of Restricted Boltzman
Machines (RBMs) implemented in the cloud to classify the
PPG signals into subgroups. The PPG signal then undergoes
particle filtering to predict the heart rate over time, achieving
an average error of 4.88 %. Similarly, Ravì et al. [110] applied
deep learning to human activity recognition using inertial
sensor data from wearable devices. In their learning model,
the authors combine deep convolutional learning in parallel
with shallow feature extraction, converging in a fully con-
nected network for more accurate classification. Their model
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is implemented in Torch for Android and as an embedded
algorithm for the Intel Edison Development Platform. Like-
wise, Schirrmeister et al. [130] investigated deep learning for
the classification of electroencephalography (EEG) pathologies
by signal analysis. Specifically, CNNs were developed and
automatically optimized using Sequential Model-based Algo-
rithm Configuration (SMAC), resulting in higher accuracy and
specificity.

In addition to diagnostic for continuous sensed data, the
application of deep learning to diagnostic scans and exam
artifacts has produced significant results. For instance, Wang et
al. [136] implemented deep learning for automated detection
of metastatic breast cancer from lymph node biopsy images as
part of the Camelyon Grand Challenge 2016. Their framework
assessed patch level predictions via CNN, and aggregated
patches to produce tumor probability heatmaps for localization
prediction. Additionally, Gulshan et al. [133] applied deep
learning for carrying out the detection of diabetic retinopathy
and macular edema from retinal fundus images automatically.
Their implemented framework, consisting of an ensemble of
10 CNNs with pre-initialized weights first trained on the
ImageNet dataset. Also, Wang et al. [138] proposed a multi-
scale rotation-invariant CNN architecture for classifying lung
tissues from high-resolution computed tomography (HRCT)
scans. The authors applied Gabor filtering and local binary
pattern (LBP) feature extraction prior to CNN learning of
interstitial lung disease (ILD) classes, and further implemented
a mechanism to handle unbalanced data effectively.

F. Computational Biology
Though similar to applications for medical diagnostics,

nonetheless we consider deep learning as applied to biological
sciences an altogether different category. Specifically, these
applications intersect the domain of chemical and molecular
interactions, and investigate processes inherent to various
micro- and macro-organisms. These can be considered ap-
proaches toward fine-grain understanding of the continuous
mechanisms that produce a result.

There have been a number of research efforts in this
area, as outlined by Angermueller et al. [16]. In their work,
they presented a comprehensive review of deep learning
mechanisms as applied to computational biology, and detail
important areas in which deep learning has been applied.
These include the prediction of DNA mutation affects and
multi-trait prediction, and cellular and tissue image analysis.
Considering predictive examples, Angermueller et al. [15]
applied deep learning methods to predict methylation states in
individual cells. The designed schemes are used to recognize
known and de novo predictive sequence motifs. They applied
a multi-network framework consisting of a DNA CNN module
and a bidirectional gated RNN CpG module, which learns
relationship between DNA sequence patterns and methylation
states, as well as between neighboring CpG sites within and
across cells.

Additional predictive uses of deep learning include [86] and
[107]. Particularly, Ma et al. [86] presented DeepRT, a deep
learning model for peptide retention time prediction for liq-
uid chromatography-tandem mass spectrometry experiments.

In their model, features are learned directly from peptide
sequences in parallel CNN and LSTM networks, and further
reduced via an ensemble of support vector regression, random
forest, and gradient boosting. In addition, Qu et al. [107]
presented a deep learning approach to predict DNA-binding
proteins solely from their primary sequences using CNNs
to detect function domains and LSTM to discover long-term
dependencies. Their model demonstrated superior performance
on both equalized and asymmetric datasets.

In use for image processing, deep learning has been applied
to enhance various analytical tools. For instance, Kraus et
al. [72] applied CNNs for the localization of subcellular
components of yeast cells in high-content microscopy, and
implemented activation maximization to visualize the learned
feature morphology by applying and incrementally updating
randomized green pixel channels to maximize the feature
activation. They also tested their model on unseen yeast cell
morphologies, and implemented a transfer learning process
to incorporate additional features and apply the model to
distinctly different microscopy techniques, which performed
significantly better than from-scratch training. Also, Eulenberg
et al. [37] applied a deep CNN with nonlinear dimensionality
reduction for reconstructing continuous biological processes
and t-distributed stochastic neighbor embedding (tSNE) vi-
sualization of flow cytometry images. Their method outper-
formed a comparable boosting-based approach, and the authors
further applied their model to the progression of diabetic
retinopathy from fundus images

G. Physical Sciences
Deep learning has significant potential for enhancing phys-

ical sciences via dimensionality reduction and the ability to
achieve fine-grained analyses with expansive data in a gener-
alized way. Indeed, astrophysical, geological, environmental,
and quantum-mechanical sciences have benefited greatly, to
name a few.

Regarding particle physics modeling and detection applica-
tions, Barberio et al. [20] expanded upon prior work to test the
CP state of the Higgs boson via H ! ⌧⌧ decays using deep
neural network. In particular, they investigated the effects of
detector resolution and the systematics of ⌧ decay modeling
on the sensitivity of the deep learning result, which remains
largely stable. Likewise, Komiske et al. [69] tested CNNs for
discriminating quark and gluon jet deposits in comparison with
traditional observables designed by physicists. The resulting
experiments showed that the CNN configuration is generally
insensitive to the event generator (Pythia or Herwig). Deep
learning has also been used in modeling atomic and molecular
interactions in chemical and material sciences as well. For
example, Schutt et al. [114] developed SchNet, a deep tensor
neural network architecture for modeling atomic interactions
for the prediction of potential-energy surfaces and exploration
of chemical space. SchNet was trained on molecular proper-
ties, formation energies, chemical potentials, and was applied
to path-integral molecular dynamics (PIMD) simulations with
the MD17 benchmark set.

In the realm of astrophysics, deep learning has been applied
to model and monitor various cosmological phenomena, as
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well as for image analysis of dense telescope data. For
instance, Gabbard et al. [40] investigated the use of deep
convolutional learning to detect gravitational waves produced
by binary black hole (BBH) mergers. Simulated data was
generated of Gaussian noise negative cases, and Gaussian
noise plus BBH wave signal positive cases, for training and
testing, and tests demonstrated that the CNN framework
is closely aligned with the more computationally expensive
matched-filtering technique. In addition, Ma et al. [87] applied
deep multimodal learning for solar radio burst classification,
specifically treating different frequency channel spectrums as
differing modes. The model is composed of autoencoders
(AEs) for each channel mode, structured regularization for
connecting the AEs to the fully connected network, concluding
with softmax for classification into coarse burst, non-burst, and
calibration classes.

Given the vast body of work validating human-caused
climate change, it should be no surprise that the climate,
geographic, geological, and meteorological fields have also
employed deep learning. For example, Shao et al. [117]
utilized stacked sparse autoencoders (SSAE) for wall-to-wall
forest above-ground biomass (AGB) prediction. Their model
combined discrete and simulated LiDAR-derived data as an
AGB reference map, replacing traditional forest inventory,
with optical and synthetic aperture radar (SAR) data from
Landsat 8 OLI and Sentinel-1A satellite images. In addition,
Ducournau and Fablet [35] applied a super-resolution CNN
(SRCNN) to reconstruct high resolution images from low
resolution ocean remote sensing data for satellite-derived sea
surface temperature (SST) mapping. Evaluation was conducted
to compare the mean peak signal-to-noise ratio (PSNR) gain of
different CNN models, and further evaluation against compa-
rable reconstruction methods (e.g., bicubic interpolation, EOF-
based) showed improved performance.

H. Finance, Economics, Market Analysis and Others

As mechanisms for prediction and analysis, deep learning
tools have the capacity to learn from stochastic data and
recognize trends, such that machine learning-based systems
have been widely developed for market prediction. In addition,
verification and validation of monetary transactions greatly
benefits from the potential data generated by users, and can
be used to detect anomalous behavior.

The ability to accurately predict market fluctuations pro-
vides a material advantage in stock trading and investment.
As a powerful predictive tool, deep learning for market and
economic analysis has been highly investigated. For example,
Korczak and Hernes [70] presented financial time-series fore-
casting utilizing deep learning architectures. Compared with
multilayer perceptron (MLP), their CNN implementation in the
H2O framework significantly decreases the forecasting error
rate when trading on the FOREX market, and increases the
average rate of return per transaction. In addition, Heaton et
al. [51] considered deep learning for financial prediction and
classification, particularly in the application of deep models
over shallow models for high-dimensionality data reduction,
high-dimensionality feature extraction for risk analysis, and

event analysis classification. They also provide and example,
namely smart indexing, to approximate a stock index through
a subset of stocks.

Additionally, the wide variety of deep network architectures
and data sources afford strikingly varied implementations. For
instance, Fischer and Krauss [39] deployed long short-term
memory (LSTM) networks, which are used to carry out the
prediction of out-of-sample directional movements for S&P
500 stocks from 1992 to 2015. Yielding daily returns of
0.46 percent, their LSTM networks outperformed memory-
free classification (random forest, DNN, etc.). Nonetheless,
analysis of the results also reveals returns fluctuating around
zero after about 2009, due to low exposure of the LSTM
to systemic risks. Also, Hu et al. [55] deployed a Hybrid
Attention Network (HAN) for the prediction of stock trends
based on news reports. Their framework embedded attention
values into news vectors, input multiple news vectors for
temporal analysis in RNN, and further applied attention values
to and RNNs for sequential modeling, and further applied
temporal attention encoding and trend prediction. In addition,
a self-paced learning training mechanism increased accuracy
over the basic HAN, and both mechanisms outperformed
competing methods in trading simulations.

Furthermore, Ding et al. [31] investigated event-driven stock
market prediction through the implementation of a neural
tensor network to learn event embeddings, and deep CNNs
for short-, medium- and long-term event analysis. Their model
significantly improved accuracy and profit in both individual
stock prediction and market simulation experiments when
compared to baseline neural network methods, especially for
low fortune ranking companies for which news is less avail-
able. Also, Zhao et al. [166] introduced a deep learning en-
semble approach for crude oil price forecasting using stacked
deep autoencoders trained on bootstrap aggregation or bag-
ging. Training and testing were conducted on the West Texas
Intermediate (WTI) crude oil spot price series, and experi-
ments demonstrated the improvements of bagging/ensemble
architectures for improving neural network and SAE accuracy
and error, with the designed SDAE-B performing the best.

Other aspects of market forecasting, include prediction of
specific market segments and cycles, such as in the work by
Zhao et al. [167], who utilized DBNs to predict customer
mobile device or terminal replacement for use in marketing
strategies and targeted sales. The authors utilized a com-
bination of customer business data and collected customer
device data, and compared their DBN results with several
more shallow learning techniques, demonstrating improved
performance. Similar predictive analytics mechanisms have
been applied to various smart and autonomous systems, such
as energy consumption forecasting, traffic prediction, user
geolocation, etc. For example, Yu et al. [153] designed several
machine learning-based schemes (e.g., neural networks and
support vector machines) to carry out the forecasting of
energy usage in the smart grid and conducted performance
comparison using real-world smart meter dataset. Also, Wang
et al. [137] proposed a deep learning scheme using an Error-
feedback Recurrent Convolutional Neural Network structure
(eRCNN) to carry out the prediction of traffic speed and
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congestion.

I. Cyber Security

Given the unprecedented utilization of network connected
devices, and the significant dependence on information com-
munication technology (e.g., software applications, networked
servers and end-user devices) throughout the world, it is no
surprise that nefarious users attempt and occasionally succeed
in subverting credentials, bypassing security systems, or sim-
ply attacking hosts with network traffic. Similar to existing
research applying machine learning to conduct accurate cyber
situation awareness [24], [56], [41], [49], [154], [158], the
use of deep learning technologies for cyber security analysis
and intrusion detection is highly relevant, as the majority of
attacks use families of intrusive software that can be observed
and classified.

Considering the prevalence of malicious software (mal-
ware), propagated by increasingly sophisticated obfuscation
and techniques, the use of deep learning has been widely
applied for highly accurate malware analysis and detection
of previously unforeseen threats. For example, Zhu et al.
[168] presented an Android malware detection tool called
DeepFlow. The designed tool utilizes FlowDroid to obtain
data flows from sensitive sources to sensitive sinks. the SUSI
technique is also leveraged to transform the data flows feature
granularity. They then classify the applications via beep belief
network with the transformed dataflows as input. In addition,
Ding et al. [32] extracted opcode sequences from Windows
PE files for malware classification via DBN. Converting the
opcode features to n-gram representations, the features were
downselected by maximum information gain and document
frequency. The authors demonstrate both the capacity of DBNs
to perform classification, as well as to perform autoencoding
for unsupervised feature selection to enhance the performance
of shallow learning models (K-Nearest Neighbors, Decision
Tree, etc.).

The detection of ongoing attacks in real time is paramount
to enable timely response and mitigation techniques. Work
to secure systems to attacks include that of Uwagbole et al.
[132], who designed a system to detect and prevent SQL in-
jection attacks via hybrid static and dynamic analysis utilizing
deep learning techniques. Their proxy-based system combines
pattern matching with numerical feature encoding for neural
network and logistic regression classification. Similarly, Zolo-
tukhin et al. [170] utilized stacked autoencoders (SAEs) for
the detection of application layer distributed denial-of-service
(DDoS) attacks in encrypted traffic. Without decrypting the
traffic packets, the system extracts and clusters features into
normal traffic patterns, conducting traditional anomaly detec-
tion for trivial DoS attacks. In addition, the SAE to detects
attacks designed to mimic typical browser activity based on the
reconstruction error of vectorized conversation traffic groups
in time intervals. Additionally, Kim et al. [66] developed a
network Intrusion Detection System (IDS) based on an LSTM
recursive neural network. The model is trained on the KDD
Cup 1999 dataset, which includes 22 attacks in 4 categories. In
comparison with other neural networks using the same training

data, the authors’ model has the highest detection rate and
accuracy, particularly on DoS attacks.

Deep learning is also applicable to the security of real-world
interactions, primarily in situation awareness and analysis.
For instance, Wang et al. [139] applied a deep convolutional
architecture for person re-identification as they are viewed by
different non-overlapping cameras. The network was first pre-
trained on the ImageNet dataset, and then further tuned by
training on the CUHK03 re-identification dataset. With only
minor changes to the fully connected layers of the model in
retraining on the second dataset, the authors are able to signif-
icantly improve the matching rate over the existing schemes.
Also, in the realms of validation and authentication, the
security of transactions, identity, and the physical world can
be significantly enhanced through deep learning. For instance,
Niimi [100] investigated the use of deep learning for credit
card approval determination and transaction validation. The
implemented framework is written in R and implemented in
Amazon’s EC2 cloud platform. Their experimental evaluation
demonstrated similar accuracy to various shallow learning
methods, but with higher precision.

J. Architectural and Algorithmic Enhancement
Necessary for the continued enhancement and progress of

deep learning as a generalized framework for diverse appli-
cations, the development of state-of-the-art architectural and
algorithmic implementations of deep networks is paramount.
Particularly, the reduction in training and inference time
through clever design, as well as the improvement of accuracy
through multi-network ensemble approaches and automatic
hyperparameter optimization, are necessary for the realization
of deep learning in mobile, commodity, and IoT hardware.

A variety of efforts have been applied to analyzing the
architectures, activations, optimizers, hyperparameters, etc. of
deep learning models for particular tasks, as well as when
applied more generally. For example, Keskar et al. [121]
investigated the effects of batch size in DNN training via
Stochastic Gradient Descent (SGD), namely that large batches
converge to sharp minima and result in poor generalization.
Further investigating possible remedies, attempts using data
augmentation and conservative training fail to correct problem,
while the most promising solution is dynamic sampling to
gradually increase the batch size. Moreover, Francois Chollet
[27] presented an analysis of depthwise separable convolutions
and their relationship to convolutional inception architecture.
Specifically, the designed extreme inception (Xception) archi-
tecture decouples the mapping of cross-channel correlations
and spatial correlations in convolutional feature maps, and
outperforms the Inception V3 architecture.

In addition, adaptive techniques have been developed to
down-select or fine-tune deep learning models. These can
be helpful in allowing both experts and non-experts to opti-
mize parameters and architectures more quickly. For example,
Cortes et al. [29] developed AdaNet, a set of algorithms
to adaptiveley learn ANN network structure and weights
utilizing explicit Rademacher complexity measures to define
data-dependent learning and generalisation bounds. The al-
gorithms are strongly convex, indicating a global solution,
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and iteratively growing the structure of a neural network,
and balancing complexity with risk minimization. Patel et
al. [102] developed a deep learning framework based on the
Deep Rendering Mixture Model (DRMM), a theoretical frame-
work that explicitly models nuisance variation via rendering
function. The hierarchical generative model can reproduce
the CNN architecture through the relaxation of parameter
constraints, and can improve upon CNN performance without
hyperparameter tuning.

VI. EMERGING RESEARCH TRENDS

Deep learning has thoroughly saturated commercial indus-
tries and suffused business applications. Yet, several primary
needs have arisen and persist without any comprehensive solu-
tion. These emerging research trends, as outlined in Fig. 4 pri-
marily encompass: acceleration and optimization, distributed
deep learning in IoT and CPS, network management and
control, and security in deep learning. These needs can be
seen as highly interdependent, and arise directly from the
emerging IoT/CPS paradigm and trustworthy computing, as
well as due to growing needs for edge computing. In the
following, we present these needs one at a time, elaborating
upon the background and characteristics of each, and provide
a sampling of future research.

A. Acceleration and Optimization
Due to the massive adoption of smart mobile and em-

bedded devices that comprise IoT and support smart-world
applications such as smart grid, smart transportation, smart
cities, etc., network congestion and latency are only going to
increase without a diverse array of complementary solutions
[125], [143], [148], [82], [80], [161], [127], [147]. Advances
in edge computing and in-device computing provide avenues
to reduce network congestion by providing computing near to
users and reducing communication needed to reach resource-
rich services. In addition, advances in network infrastructure
and technologies (5G, Software-Defined Networks, etc.) are
also forthcoming [13], [155], [157]. Regarding the former,
the acceleration and optimization of deep learning architec-
tures through thoughtful design of software, hardware, and
algorithms is driven by needs for low energy, low resource,
cheap, and efficient computation. Notwithstanding neural net-
work architecture design and algorithm implementation, which
are continuously evaluated and improved upon, examples
of emerging areas of deep learning acceleration include the
design of programmable computational arrays, bare-hardware
implementation, and stochastic computation mechanisms.

For instance, Lacey et al. [74] investigated the application
of Field Programmable Gate Arrays (FPGAs) as alternative
hardware to GPUs or CPUs for implementing deep learning
networks due to their better performance per watt and flex-
ibility in configuration. The authors consider the strengths
of FPGAs, including the customizable hardware circuits for
multithreading and parallelism, and architectures that can
be tailored for the intended application. Morcel et al. [96]
utilized signal flow graph reduction, fixed-point arithmetic, and
modularity to design a deep learning accelerator to minimize

Field-programmable gate array (FPGA) resource use. Using
AlexNet as the case study, they compared an optimized CPU
implementation with the developed FPGA-based implementa-
tion, realizing increased throughput and reduced energy usage.
Kim et al. [65] explored the design of FPGA systems for
fully-connected neural network hardware, analyzing synthesis
constraints and using the MNIST dataset on Caffe as an
example. Further, Li et al. [78] explored the application of
Stochastic Computing (SC) as applied to the implementa-
tion of deep neural networks. In particular, they investigated
hardware-oriented optimization of feature extraction blocks in
CNNs through SC implementations of convolution, pooling,
and activation, and the arrangement of pooling and activation
with respect to hardware implementation. In addition, they
developed equations to optimize Stochastic tanh calculations,
and demonstrate reduction in absolute error by placing the ac-
tivation ahead of pooling, structurally reverse that of traditional
software-based feature extraction implementations.

In addition, Wang et al. [140] proposed Memsqueezer,
an active on-chip memory design for low-overhead deep
learning acceleration. It utilizes active buffers, network weight
and intermediate data compression, and in-memory redun-
dancy detection to boost performance and reduce memory
size of CNN inference. Simulation results demonstrate the
ability to significantly reduce energy consumption. Tang et
al. [128] explored executing convolutional neural networks
in IoT hardware to overcome the limitations of latency in
offloading computation to the cloud. Utilizing a bare-metal
ARM v7 system on a chip (SoC), the authors compare
TensorFlow against the recent ARM Compute Library (ACL).
Implementing a SqueezeNet architecture, and ARM NEON
vector computation optimization, the results show that the
ACL outperforms TensorFlow by nearly 150 ms in execution
time, though memory usage and power consumption are higher
in the ACL. The authors additionally describe their ongoing
work of developing an integrated deep learning IoT ecosystem
consisting of lightweight OS comprised of sensor interfacing, a
compiler based on NNVM to optimized deep learning models,
and a message passing framework based on Nanomsg. Also,
Du et al. [34] proposed a CNN acceleration architecture
for IoT devices using streaming data flows to achieve high
efficiency. In their architecture, convolution can be carried out
in parallel with maximum pooling, and filter decomposition
allows large kernel size with only a small computation unit. In
comparison with other acceleration designs, their architecture
achieves higher peak throughput and greater energy efficiency
on a smaller core area.

Despite these advances, challenges remain in the develop-
ment of accelerators for deep learning, and further investiga-
tion is necessary in several particular areas. First, many of
these studies on acceleration remain largely developmental,
and more work is necessary to refine them for hardware
implementation. While simulation studies can demonstrate the
potential for various improvements, these concepts must be
transferred to hardware to realize the potential benefits in
actuality. Second, the combination and comparison of the
many diverse acceleration mechanisms should be compared
whenever possible, and combined where applicable. To this
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end, various methods of acceleration should be quantitatively
compared with each other, and not simply with CPU or GPU
counterparts. There remains great promise in these areas, as
deep learning is being driven by industry groups to pro-
vide more efficiency and reduce costs, and new experimental
hardware devices are coming to market. In addition, how to
automatically select features and parameters in deep learning
and the development of science of deep learning remain
challenging issues.

B. Distributed Deep Learning in IoT and CPS

We now discuss distributed deep learning applied to IoT
and CPS.

1) Internet of Things: In considering the applications of
deep learning for IoT, significant work has been carried
out toward broadly applying those typical categories men-
tioned above (image/video/audio processing, text analysis,
etc.) across centralized and distributed cloud computing frame-
works, utilizing IoT devices and some novel mechanisms [85],
[67], [95], [142], [134], [160], [101].

For instance, Kim [67] proposed a deep learning system
for use in identifying and tracking motion of individuals via
Channel State Information (CSI) of IoT devices and widely
deployed MIMO enabled access points. Mohammadi et al.
[95] developed a semi-supervised deep reinforcement learning
system to support smart city applications based on both
structured and unstructured data. Utilizing Variational Autoen-
coders (VAEs), the authors studied indoor user localization
using Bluetooth Low Energy (BLE), collecting the received
signal strength indicator (RSSI) from a grid of iBeacon
devices. In addition, Wu et al. [142] developed an efficient
road scene segmentation deep learning model for embedded
devices, termed ApesNet. Via time profiling and analysis, the
authors developed an asymmetric encoder-decoder network,
and limited the size of large feature maps in convolutional
layers. In comparison with a complementary encoder-decoder
network, ApesNet improves accuracy and reduces model size
and runtime when tested on CamVid and Cityscapes datasets.
Valipour et al. [134] developed a deep convolutional network
for parking stall vacancy detection. Designed with existing
parking lot cameras and infrastructure in mind, the system
implemented and provides web and mobile interfaces for users.
Additionally, the inference time of their model running on
embedded Raspberry Pi architecture was only 0.22 seconds.

Despite these and many other works, there remain several
critical issues which have yet to be resolved. Particularly,
while a number of early efforts have shown the potential
to run inference operations in IoT devices, the training of
deep models in IoT hardware remains a practical impossibility.
Nonetheless, local training of distributed and partial neural
network input in IoT devices provides an opportunity to
reduce network overhead and latency in training by offloading
pre-trained feature output for additional training at higher
layers. This would be particularly practical for image and
object recognition processing offloaded to edge computing
nodes, where the dimensionality of transmitted data can be
reduced. Some relevant examples include [160] and [101]. For

example, Yuan and Jia [160] proposed and demonstrated the
use of sparse autoencoder networks on distributed servers to
perform anomaly detection on smart electricity meter data.
The distributed slave nodes perform the anomaly detection
individually, alerting the master node and reducing computing
overhead for the centralized master node, and outperform
complementary learning algorithms. Park et al. [101] designed
a Situation Reasoning framework that extracts multiple low-
level contexts in DNN modules, and combines them in a
higher level Situation Reasoning module based on the Feature
Comparison Model of cognitive psychology. Utilizing the
spatio-temporal contexts of IoT data, the author’s framework
demonstrates good performance in comparison with other
Situation Reasoning methods.

While the examples provided show some promise, signifi-
cant work must still be done. Given that IoT systems facilitate
near-infinite potential for integrating deep learning networks
for innumerable applications, the development of appropriate
paradigms to analyze said data in a timely manner is impera-
tive. While not all applications will require real-time analysis
and inference, those that converge with critical infrastructure
and safety applications surely will. The requirements of such
real-time functionality can be considered from two domains,
distributed deep learning at the network edge, and in-device
deep learning.

In the first case, distributed deep learning is a solution
to the inability to resolve deep learning in-device because
of complexity and processing power. This almost certainly
necessitates the intervention of edge computing to offset net-
work latency that will critically reduce the effectiveness of the
target learning system. To this end, though the edge computing
paradigm has recently seen significant study, the intersection
of edge computing infrastructures with deep learning remains
to be thoroughly investigated. Specifically, parallel simultane-
ous learning network implementations for edge architectures
should be developed and optimized for self-organization and
runtime.

In the second case, we consider that deep learning in-
ference has only recently been realized in IoT hardware,
with scalability at cost still on the horizon. In general, then,
the implementation of deep networks in IoT devices is a
preeminent concern that requires continued investigation. This
development is significantly affected by advances in hardware
and computational capabilities. In addition, in-device deep
learning provides the potential for reductions in network
overhead in terms of data transfer and signaling, the impact
of which has yet to be considered.

2) Cyber-Physical Systems: In addition, Cyber-Physical
Systems (CPS), more than just network connected devices like
IoT, include the vertical layering of IoT devices, networking,
service, applications, and command and control (C&C) plat-
forms. Examples of CPS systems include smart transportation
system with self-driving vehicles, smart cities, smart electrical
grids, etc. [94], [58], [125], [143], [148], [82], [80], [161],
[127], [147], [145], [165]. More specifically, as applied to
power generation, monitoring and control, Mocanu et al. [94]
utilized Factored Four-Way Conditional Restricted Boltzmann
Machines (FFW-CRBMs) and Disjunctive Factored Four-Way
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Conditional Restricted Boltzmann Machines (DFFW-CRBMs)
to carry out energy disaggregation, and flexibility classification
and prediction, on smart appliance data. Likewise, Liangzhi et
al. [58] investigated electrical load forecasting in the smart
grid via deep learning. Utilizing seven years of smart meter
and IoT device data, the designed system first forecasts daily
total consumption via DNN with complex input features, and
then predicts intra-day load variation by applying the daily
consumption prediction, along with a more limited set of
features, to a second DNN. In addition, Zhao et al. leverage
convolutional neural networks to develop a new deep heartbeat
classification system, which can accurately analyzing the raw
electrocardiogram (ECG) signal in healthcare smart-world
system.

As applied to CPS, distributed deep learning takes on a
new dimension, as we consider the distinct layered structure,
and the heterogeneity of the data within. In this case, we
shall integrate the aforementioned distributed IoT context with
multi-modal data fusion. Relevant examples include [141] and
[76], the former of which also seeks to adapt new features to a
pre-trained model to improve the overall system. Particularly,
Wang et al. [141] explored image classification in CPS,
and proposed a fast feature fusion algorithm. The authors
extracted features from various deep and shallow learning
mechanisms in parallel, utilized a Genetic Algorithm (GA) to
convert those features into weights for a fusion feature vector,
and introduced partial selection to choose a classifier. Using
this mechanism, pre-trained neural network models could be
combined with original models, which add new features and
classes to outperform any single constituent model.

Further, Li et al. [76] proposed a deep convolutional compu-
tation model, which is used for conducting hierarchical feature
learning on IoT big data. Utilizing tensor representation,
which preserves raw data structures and thus mutuality and
complementarity, they can better represent hierarchical multi-
modal data. Designing tensor-based convolution, pooling, and
fully-connected layers, as well as high-order back propagation,
the authors demonstrate the effectiveness of their approach
against multi-modal deep learning, as well as deep computa-
tion models on three datasets (CUAVE, SNAE2, and STL-10).
Another relevant work is to adapt the ST-ResNet structure to
predict the hourly distribution of crime in parceled areas in
the city of Los Angeles [135]. In this work, the necessary
spatial and temporal resolutions for optimal prediction were
investigated, and a ternarization of the model was additionally
developed to reduce model size and execution time, with a
minor increase in error.

Finally, in considering CPS, autonomous command and
control can be distributed to the lowest levels necessary via
deep learning for in-time analysis, and can be configured
uniquely for each layer. In this way, resource use can be
reduced throughout the system. Indeed, if IoT enables the
convergence of many technologies (networking, distributed
computing, deep learning, big data, etc.), then CPS compounds
this through the imperative of infrastructure security and
communication. This, then, presents a challenging issue of
how to integrate the various CPS layers that include deep
learning mechanisms. For instance, in considering smart vehi-

cle technologies, autonomous transportation must enable inter-
vehicle communication, but must also communicate both the
smart transportation infrastructure in transit, and smart city
and smart grid infrastructures in locating parking and acting as
secondary electricity storage to enhance grid function. We can
envision many such communication exchanges across different
domains, including in user identification and tracking, au-
tonomous services such as delivery or manufacturing, and even
in localized network and electrical load prediction via massive
fine-grained IoT device transit data. Further investigation is
necessary to understand hierarchically combined deep learning
models and the policies to optimize and secure their use in
critical infrastructure systems, as well as best practices for
managing and updating individual aspects of such a system
using deep learning.

C. Network Management and Control

In future 5G broadband systems [13], [157] and other
networking systems, as well as evolving traditional network in-
frastructures, complex heterogeneous protocols, interfaces, and
hardware will be massively implemented to realize through-
put and bandwidth gains, supporting a massive number of
users with diverse quality of service requirements. Solutions
to the growing complexity and need for agile service in-
clude software-defined networking (SDN), network function
visualization, and edge computing paradigms. While these
technologies are indeed poised to provide solutions to address
future network challenges, the architecture, management, and
security of these future networks will be highly dependent on
the effective optimization of services and hardware. In this
regard, deep learning offers a viable technique that can effec-
tively learn the characteristics of the network and the behavior
of users, leading to better network management and control
decisions and outcomes. Furthermore, the massive increase in
users, including humans and autonomous machine-to-machine
equipment, will necessitate analysis, density estimation, and
complexity reduction to handle such massive data. With the
continuous developments of deep learning, these challenges
can be resolved, yet thorough research is necessary to achieve
these goals.

In this regard, very little research has been conducted. For
example, Zhu et al. [169] implemented stacked auto-encoders
(SAEs) to realize Q-learning for transmission scheduling in
cognitive IoT relays. Modeling the system as a Markov
decision process, and seeking to maximize system utility, a
simulation evaluation shows improved performance over W -
learning, but not strategy iteration. Nonetheless, strategy itera-
tion considers all states of the system at a given time, instead of
the current state, and is not scalable. Likewise, Lopez-Martin
et al. [83] demonstrated flow statistics-based network traffic
classification via deep neural networks. Using only packet
headers, the authors investigated the use of RNN, CNN, and
combined CNN/RNN models, convolving over the time series
of the incoming data. Their designed models demonstrate good
performance, especially on labels with a frequency higher
than 1 %. It is worth noting that not all CNN/RNN models
outperform the basic RNN. Aminanto et al. [14] developed
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a three-layer Wi-Fi impersonation attack detection system.
In their tiered model, Stacked Autoencoders first performed
feature extraction on the original dataset. Feature selection
was then performed via ANN, SVM, or Decision Tree, on
the original data plus the newly extracted features, and an
ANN was used for final classification. Their system achieves
a 99.918 % detection rate and 0.012 % false positive rate, and
significantly outperforms the comparable systems.

Despite the works outlined here, the majority of applica-
tions for deep learning in network management and control
remain unexplored. Indeed, deep learning has the potential
to fundamentally transform network design, management, and
service through integration with advanced architecture such
as cognitive radio and network function virtualization, as
well as in optimization and analysis to enable adaptability
and autonomy. For instance, deep learning models can be
applied to learn the characteristics of the network and the
behaviors of connected users. In this way, optimal decisions
(e.g., routing optimization and node placement) can be made.
In addition, network traffic analysis could be implemented
in routing devices and utilized for traffic offloading, or im-
plemented to provide hierarchical prioritized relay. While we
have yet to see significant research in this regard, this area
is garnering increased attention. Additionally, this remains a
challenging area, due to the limitations of hardware for deep
learning and the latency that deep learning may introduce into
networking systems, as the smaller time scale necessary for
inference (compared to training) cannot be considered trivial.
Furthermore, traditional network transmission considerations
are aimed at minimizing data size and transmission frequency
to reduce network load. Nonetheless, in the context of deep
learning, additional data generally increases the accuracy of
the learning model. Thus, a balance must be struck that
satisfies the needs of any implemented deep learning system
with those of congestion reduction, quality of service, energy
efficiency, and latency. Furthermore, the automation of net-
work management via intelligent networked systems must be
scalable, secure, and fault-tolerant.

D. Secure Deep Learning

Given the increasing number of devices, operating systems,
and communication protocols that abound in IoT, security is
an ever-ballooning problem [151], [82]. Securing the data,
operation, and mechanisms of deep learning are all the more
relevant in considering edge computing, which can be a viable
computing infrastructure to provision deep learning schemes
[155], supporting a variety of smart-world systems (smart
cities, smart manufacturing, smart grid, smart transportation,
and many others). As computing nodes will be more dispersed
and local to the user, they will also have fewer resources and be
more available to would-be adversaries. The investigation and
application of increasingly sophisticated security mechanisms,
such as homomorphic encryption, are thus significant. For
example, Li et al. [77] proposed multiple schemes for machine
learning on multi-key homomorphic encrypted data in the
cloud. In the first scheme, deep learning is conducted on
multiple users’ data who share the same public key. In the

second scheme, using double decryption, training is performed
on ciphertexts of users with different public keys. While
these are novel methods that leverage the state-of-the-art in
security research, encrypting not only data, but computation
as well, they can still be considered as expansions of traditional
security techniques.

In exception to traditional mechanisms, attacks that seek
to undermine the output of deep learning systems have re-
cently received deeper consideration. Indeed, the widespread
adoption of machine learning is cause for concern, as attacks
that are solely intended to thwart the normal operation of the
learning network can lead to catastrophic harm. For instance,
a recent work by Yuan et al. [159] specifically investigated
the space of these attacks that target only the inference
mechanism through adversarial input. The authors classified
no less than sixteen different attack methods, which have
been shown to be effective against various targets, including
subverting segmentation (removal of objects from detection)
and facial recognition. This is similar to an investigation by
Huang et al. [57] from 2011, which investigated security
in machine learning and provided a taxonomy for causative
and exploratory attacks, and formulated game-theory-based
formalisms to understand each attack. Nonetheless, the latter
focused on the shallow learning methods of the time.

In the interim, Goodfellow et al. [45] proposed the gener-
ative adversarial network, pitting generator and discriminator
networks against one another in a minimax game. Here, a
discriminator is used to discern the data distribution from
the generated model distribution via a learning process, while
a generator learns to better undermine the discriminator,
improving both in the process. A relevant insight observed
from the development of GANs is that they do not necessarily
resolve adversarial examples: those which fail in ways that are
imperceptible to humans, or succeed while not retaining any
of the human-perceptible attributes. Though GANs have been
used to great effect in increasing accuracy in generative and
discriminative networks, they fail to address problems posed
by these corner cases.

While Yuan et al. [159] did point out various defensive
mechanisms against adversarial input, such as network distil-
lation, adversarial retraining, adversarial detection, and input
reconstruction, significantly more work is needed. In addition,
Pei et al. [104] developed DeepXplore, the first whitebox
testing framework for evaluating deep learning systems. Their
work developed the concept of neuron coverage, which is
characterized as the amount of deep network logic or neurons
activated by a given input. They also leveraged multiple
complementary deep networks as cross-referencing oracles,
and formalized the maximization of neuron coverage and
differential behaviors as a joint optimization problem with
gradient ascent. Beyond demonstrating the effectiveness of
their framework in terms of runtime and neuron coverage, they
also leveraged their framework to augment network training to
demonstrably improve accuracy. In addition, Booz et al. [22]
investigated how to fine-tune parameters of deep learning to
improve the accuracy of detecting Android malware.

Though considerations for the limitations of deep learning
go back a few years, and adversarial learning has helped
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increase the accuracy achieved in training models, as well as
the generation of unique data, significant work is still needed
to secure deep learning systems. In particular, further study is
necessary to fully develop standardized testing practices for
deep learning to reveal hidden or unforeseen vulnerabilities.
This should include two primary directions: securing deep
learning models, and securing deep learning systems. While
the latter can be considered within the traditional realm of
security analysis and prevention, nonetheless, deep learning
should be further applied to enhance security detection systems
at all levels. Examples include deep learning for static and
dynamic analysis in intrusion detection to secure deep learning
systems and underlying architectures. In addition, the verifi-
cation of appropriateness and resiliency of the trained deep
learning models, as well as their further improvement, should
be the primary goals of future adversarial investigations.

Of particular interest are attacks against deep models, as
inappropriately or insufficiently tested models may be eas-
ily subverted by and attacker, causing damage to digital or
physical property, and potentially endangering human lives.
Deep learning, like many technologies, is a double-edged
sword that can be used by both adversaries and defenders
in the cybersecurity field. In fact, advancements in deep
learning are likely to have a profound impact on future cyber
attacks, as attackers leverage the technology to enact more
encompassing, effective, autonomous, and potentially novel
attacks. Therefore, systematically investigating threats in the
full lifecycle (training and inference) of deep learning in
its use for cybersecurity, in addition to adversarial input,
becomes critical. Further, understanding the capabilities of
deep learning in detecting cyber threats and investigating how
to optimize deep learning networks to achieve the highest
detection accuracy, dealing with both known and unknown
threats remain challenging issues.

VII. FINAL REMARKS

Deep learning is a technology that continues to mature,
and has clearly been applied to a multitude of applications
and domains to great effect. While the full-scale adoption of
deep learning technologies in industry is ongoing, measured
steps should be taken to ensure appropriate application of
deep learning, as the subversion of deep learning models may
result in significant loss of monetary value, trust, or even
life in extreme cases. In this survey, we have provided an
overview of deep learning operation, distinguishing deep learn-
ing from traditional shallow learning methods, and outlining
prominent structural implementations. We have reviewed deep
learning architectures in detail based on learning mechanisms
(supervised, unsupervised, and reinforcement) and the target
output structures, and provided typical examples in each case.
We have also introduced many common and widely adopted
deep learning frameworks, and considered them from the
perspectives of design, extensibility and comparative efficacy.
It is worth mentioning that each of the frameworks imple-
ments the basic elements of deep learning in different ways
using different libraries, are optimized for different hardware
systems, and provide varying degrees of control over model
design.

Additionally, we have thoroughly investigated the state-of-
the-art in deep learning research. These categories include
multimedia (audio, visual, and text) processing, autonomous
systems, medical diagnostics, biological and physical sciences,
financial applications, security analysis, and algorithmic en-
hancement. Finally, having surveyed the landscape of com-
pleted works, we have highlighted areas in which deep learn-
ing research has yet to make significant strides, or where sig-
nificant advances are immediately forthcoming. These include
acceleration and optimization of deep learning via fundamental
hardware and encoding methods, distributed deep learning for
IoT and CPS, network management and control applications
of deep learning, and, perhaps most importantly, securing deep
learning models and systems. Given the widespread adoption
of deep learning, especially in multimedia fields, and the
inevitability of increasingly sophisticated cyber threats, the
development of mechanisms to harden systems against adver-
sarial data input is imperative. We hope this work provides
a valuable reference for researchers and computer science
practitioners alike in considering the techniques, tools, and
applications of deep learning, and provokes interest into areas
that desperately need further consideration.
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