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An Efficient Fuzzy C-means Approach Based on Canonical
Polyadic Decomposition for Clustering Big Data in IoT

Fanyu Bua,∗

aDepartment of Biomedical Informatics, Inner Mongolia University of Finance and Economics, Hohhot, China.

Abstract

Mining smart data from the collected big data in Internet of Things which attempts to better human
life by integrating physical devices into the information space. As one of the most important clus-
tering techniques for drilling smart data, the fuzzy c-means algorithm (FCM) assigns each object
to multiple groups by calculating a membership matrix. However, each big data object has a large
number of attributes, posing an remarkable challenge on FCM for IoT big data real-time cluster-
ing. In this paper, we propose an efficient fuzzy c-means approach based on the tensor canonical
polyadic decomposition for clustering big data in Internet of Things. In the presented scheme, the
traditional fuzzy c-means algorithm is converted to the high-order tensor fuzzy c-means algorithm
(HOFCM) via a bijection function. Furthermore, the tensor canonical polyadic decomposition is
utilized to reduce the attributes of every objects for enhancing the clustering efficiency. Finally,
the extensive experiments are conducted to compare the developed scheme with the traditional
fuzzy c-means algorithm on two large IoT datasets including sWSN and eGSAD regarding clus-
tering accuracy and clustering efficiency. The results argue that the developed scheme achieves a
significantly higher clustering efficiency with a slight clustering accuracy drop compared with the
traditional algorithm, indicating the potential of the developed scheme for drilling smart data from
IoT big data.

Keywords: Big data, Internet of Things, Smart data, Fuzzy c-means algorithm, Canonical
polyadic decomposition

1. Introduction

Recent years has witnessed the broad ap-
plication of Internet of Things (IoT) with the
goal of enhancing the human life by integrat-
ing physical devices into the information space
[1,2]. Specially, the representatively success-
ful application domains of IoT include smart c-
ity management, industrial manufacturing, in-

∗Corresponding author: bufanyu@imufe.edu.cn.

trusion prevention system and so on. The typ-
ical architecture of an IoT system consists of
three layers from bottom to up, namely physi-
cal layer, network layer and application layer,
presented in Figure 1.

In the physical layer, a large number of
physical devices for instance sensors, global
positioning system (GPS) and cameras are u-
tilized to collect raw data. For example, some
sensors are utilized to collect the parameter-
s such as temperature and pressure of various
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Figure 1: Architecture of an IoT system with three lay-
ers.

physical devices which work in the industri-
al manufacturing. In particular, the volume of
the raw data collected from Internet of Things
is so large that it is usually called IoT big da-
ta. The network layer aims to transfer the IoT
big data from the physical layer to the applica-
tion layer by various networks such as wire-
less sensor network and Internet. Specially,
the collected parameters of the physical de-
vices in the industrial manufacturing will be
transferred to the data center. The application
layer mines drills smart data from IoT big data
to provide all kinds of services such as intelli-
gent decisions. For example, once the anoma-
ly state of the physical devices in the indus-
trial manufacturing is detected by analyzing
the collected parameters in the data center, we
can take immediate actions to prevent any pos-
sible disaster and destruction. According to
the architecture of an IoT system, the key is

to drill smart data from big data for Internet
of Things to offer various intelligent services
[3,4]. Commonly utilized techniques include
data compression, machine learning, correla-
tion analysis and clustering for data processing
and analytics in IoT [3,5].

As one of the most leading big data mining
approaches for drilling smart data, clustering
attempts to divide the raw objects into multiple
different groups depending on a specific simi-
larity metric such that the objects clustered in-
to the same group have as many similar fea-
tures as possible [6]. One representative clus-
tering approach is the fuzzy c-means algorithm
(FCM) which assigns every object to multiple
clusters by computing a membership matrix
[7,8]. Specially, FCM can achieve an accu-
rate clustering result and reflect the clustering
model of data objectively, so it has obtained a
lot of successful applications in weather fore-
casting and agriculture natural disaster analy-
sis. However, it is difficult for the fuzzy c-
means algorithm to satisfy the real-time re-
quirements of IoT big data clustering because
each object has a large number of attributes.
Specially, a large number of attributes will
significantly increase the computational cost
of the fuzzy c-means algorithm. In addition,
the whole dataset with all the objects should
be loaded into the memory for the fuzzy c-
means algorithm to yield an accurate cluster-
ing result. So, a high-performance server is re-
quired to execute the fuzzy c-means algorithm
for IoT big data clustering since it has the e-
nough memory space for IoT big data storage
and a powerful computing unit to satisfy the
real-time requirements of IoT big data cluster-
ing. In other words, the fuzzy c-means algo-
rithm is hard to be utilized for big data cluster-
ing in the IoT systems with low-end comput-
ing devices due to their limited memory and
computing power.

In this paper, we present an efficient fuzzy
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c-means approach based on the tensor canon-
ical polyadic decomposition scheme for IoT
big data clustering. In the presented method,
each object is converted into its tensor format
from the vector space via a bijection function.
Furthermore, the tensor canonical polyadic de-
composition is utilized to reduce the attributes
of every object greatly. In all the tensor de-
composition schemes, the canonical polyadic
decomposition achieves the highest compres-
sion rate so it can reduce the volume of the
raw data to the greatest extent [9,10]. Spe-
cially, assuming that every object is represent-
ed by a N -order tensor, the volume of the at-
tributes increases exponentially with N in the
raw tensor format. the volume of the attributes
in the canonical polyadic decomposition for-
mat increases linearly regarding N . Therefore,
after using the canonical polyadic decomposi-
tion to compress every object, the whole vol-
ume of the dataset will be reduced greatly,
which makes the fuzzy c-means approach po-
tential to cluster big data in the IoT systems
with low-end devices. Another reason for the
use of the canonical polyadic decomposition is
that the canonical polyadic decomposition is
easily implemented by existing decomposition
methods for instance alternating least squares
[10,11]. Finally, the traditional fuzzy c-means
approach is extended to a high-order fuzzy c-
means approach for clustering the compressed
objects in the tensor space. Since the attributes
of every object are reduced significantly by the
canonical polyadic decomposition, the high-
order fuzzy c-means approach can cluster IoT
big data efficiently. Two typical IoT large
datasets including eGSAD and sWSN are em-
ployed to carry out the extensive experiments
in which the developed approach is compared
with the traditional fuzzy c-means approach
regarding clustering accuracy and clustering
efficiency. Based on the experimental result-
s, a higher clustering efficiency is achieved

by the developed approach while it yields al-
most the same clustering accuracy with the tra-
ditional fuzzy c-means approach, which indi-
cates the potential of the developed approach
to cluster big data for drilling smart data in In-
ternet of Things.

To sum up, the paper presents the following
contributions:

• The raw data collected from Internet of
Things is so large that the fuzzy c-means
algorithm is difficult to be executed in the
IoT systems with low-end computing de-
vices. Aiming at this issue, we propose
to utilize the tensor canonical polyadic
decomposition to reduce the attributes of
every object greatly before loading the
dataset into the memory.

• We convert every object to the tensor for-
mat via a bijection so that the canonical
polyadic decomposition can compress the
attributes. Furthermore, we extend the
fuzzy c-means approach to a high-order
fuzzy c-means method to make the clus-
tering operations executed on the com-
pressed objects in the tensor space.

• Two typical large IoT datasets including
eGSAD and sWSN are employed to con-
duce the experiments in which the pre-
sented efficient fuzzy c-means approach
is compared with the traditional fuzzy c-
means method regarding clustering effi-
ciency and clustering accuracy. Further-
more, we discuss the experimental result-
s.

To present the developed efficient fuzzy c-
means approach clearly, we will provide the
preliminaries about the fuzzy c-means method
and the tensor canonical polyadic decomposi-
tion in Section 2. Afterwards, the details about
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the developed scheme will be provided in Sec-
tion 3. Section 4 compares the experimental
results between the developed approach and
the traditional fuzzy c-means method and the
last section concludes the paper.

2. Preliminaries

The preliminaries, including the traditional
fuzzy c-means approach (FCM) and the tensor
canonical polyadic decomposition, utilized for
the proposed scheme are presented in this sec-
tion. FCM is introduced firstly, followed by
the tensor polyadic decomposition.

2.1. Fuzzy c-Means Approach (FCM)
The standard fuzzy c-means approach was

firstly introduced by Beadek et al. [7]. Assum-
ing that X= {x1, x2, . . . , xN} is the dataset to
be clustered and every object has m attributes,
the standard fuzzy c-means approach assigns
every object xi(1 ≤ i ≤ N) to c clusters with a
c×N membership matrix U = {uij} in which
uij denotes the membership of the j-th object
belonging to the i-th group. In particular, the
standard fuzzy c-means approach is defined by
the following equations:

U ∈ Rc×N |uij ∈ [0, 1], (1)

0 <
∑N

j=1
uij < N, (2)

∑c

i=1
uij = 1. (3)

Thus, the goal of the standard fuzzy c-mans
approach is to compute the membership ma-
trix and to compute the cluster centers V =
{v1, v2, . . . , vc} given the dataset X . To this
end, the standard fuzzy c-means approach ran-
domly initializes the membership matrix and
then updates the membership matrix and the
cluster centers by minimizing the objective Jm

as follows:

Jm(U, V ) =
c∑

i=1

N∑

j=1

um
ikdik, (4)

where m is a fuzziness constant and dik de-
notes the distance between xk and vi, typically
the Euclidean distance:

dik = ||xk − vi||2. (5)

To minimize the objective Jm, the updating
equations for the membership matrix and the
cluster centers are as follows:

uik = [
c∑

j=1

(
dik

djk

)

1
m−1

]−1, (6)

vi =

∑N
k=1 (uik)

mxk∑N
k=1 (uik)

m
. (7)

Overall, the standard fuzzy c-means ap-
proach is described in Algorithm 1.

Algorithm 1: The Standard Fuzzy c-
Means Approach.
Input: X= {x1, x2, . . . , xN}, c, m,

maxiter
Output: U = {uij}, V = {vi}

1 Initialize U = {uij} randomly. for
iteration = 1, 2, ..., maxiter do

2 for i = 1, 2, ..., c do
3 Utilize Eq.(7) to update the cluster

center vi;

4 for i = 1, 2, ..., c do
5 for k = 1, 2, ..., N do
6 Utilize Eq.(6) to update the

membership uik;

From Algorithm 1, the major steps of the
standard fuzzy c-means approach is updating
of the cluster centers with a computation com-
plexity of o(c) and updating of the member-
ship matrix with a computational complexity
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of o(cN). So, the total computational com-
plexity is approximately o(kcN) with k itera-
tions.

Some enhanced fuzzy c-means approach-
es were introduced to cluster big data in the
past decades [8,12]. For instance, the en-
hance fuzzy c-means approach based on ran-
dom sample (rseFCM) samples a subset of ob-
jects from the raw whole dataset and then u-
tilizes the standard fuzzy c-means approach
to calculate the centers of the sampled subset
[13]. Afterwards, the centers are employed to
cluster the whole dataset. Overall, the rseFCM
algorithm can be described in Algorithm 2.

Algorithm 2: The Enhanced Fuzzy c-
Means Approach Based on Random Sam-
ple.
Input: X= {x1, x2, . . . , xN}, c, m,

maxiter
Output: U = {uij}, V = {vi}

1 Sample a subset of objects from X
randomly, called Xp. Initialize Up for Xp

randomly. for
iteration = 1, 2, ..., maxiter do

2 for i = 1, 2, ..., c do
3 Utilize Eq.(7) to update the cluster

center vi;

4 for i = 1, 2, ..., c do
5 for k = 1, 2, ..., N do
6 Utilize Eq.(6) to update the

membership u(p)ik
;

7 Utilize Eq.(6) to extend the partial
result (Up, V ) for X .

In the standard fuzzy c-means approach, ev-
ery object has the same importance. Some
weighted fuzzy c-means approaches were in-
troduced recently [14]. Specially, a typical
weighted fuzzy c-means approach was de-
scribed by assigning a weight wj to each ob-

ject xj , in which the weight wj defines the
importance of xj , leading to the objective
Jmw(U, V ):

Jmw(U, V ) =
c∑

i=1

N∑

k=1

wkuikdik. (8)

Minimizing the objective Jmw(U, V ) results
in an updating function for the cluster centers:

vi =

∑N
k=1 wk(uik)

mxk∑N
k=1 wk(uik)

m
. (9)

The weighted fuzzy c-means approach is
described in Algorithm 3.

Algorithm 3: The Weighted Fuzzy c-
Means Approach.
Input: X= {x1, x2, . . . , xN}, c, m,

maxiter
Output: U = {uij}, V = {vi}

1 Initialize U = {uij} randomly. for
iteration = 1, 2, ..., maxiter do

2 for i = 1, 2, ..., c do
3 Utilize Eq.(7) to update the cluster

center vi;

4 for i = 1, 2, ..., c do
5 for k = 1, 2, ..., N do
6 Utilize Eq.(9) to update the

membership uik;

To cluster high-dimensional data, the ker-
nel fuzzy c-means approaches [15,16] project
each object to the kernel space via: ϕ : x →
ϕ(x). Most commonly used kernel functions
include polynomial kernel and radial basis k-
ernel:

k(xi, xj) = (xT
i xj + 1)p, (10)

k(xi, xj) = exp(σ||xi − xj||2). (11)
5



The kernel fuzzy c-means approach updates
the membership matrix as:

uij = [
c∑

k=1

(
dk(xi, vj)

dk(xi, vk)
)

1
m−1

]−1, (12)

where dk(xi, vj) denotes the kernel distance
between xi and vj .

The cluster centers are updated via:

ϕ(vi) =

∑N
k=1 (uik)

mϕ(xk)∑N
k=1 (uik)

m
. (13)

Furthermore, Havens et al. [12] present-
ed a weighted kernel fuzzy c-means approach
to cluster very large data by combining the
weighted fuzzy c-means approach and the k-
ernel fuzzy c-means approach. The weight-
ed kernel fuzzy c-means approach updates the
membership matrix and cluster centers via the
following two equations.

ϕ(vi) =

∑N
k=1 wk(uik)

mϕ(xk)∑N
k=1 wk(uik)

m
, (14)

uij = [
c∑

k=1

(
dw

k (xi, vj)

dw
k (xi, vk)

)

1
m−1

]−1. (15)

The weighted kernel fuzzy c-means ap-
proach can be described in Algorithm 4.

More recently, Zhang et al. [17] introduced
a distributed fuzzy c-means approach based on
MapReduce to cluster big data by defining two
variables for the Map function:

ξ
(t)
i =

N/p∑

k=1

um
ikxk, (16)

λ
(t)
i =

N/p∑

k=1

um
ik, (17)

Algorithm 4: The Weighted Kernel Fuzzy
c-Means Approach.
Input: X= {x1, x2, . . . , xN}, c, m,

maxiter
Output: U = {uij}, V = {vi}

1 Initialize U = {uij} randomly. for
iteration = 1, 2, ..., maxiter do

2 for i = 1, 2, ..., c do
3 Utilize Eq.(14) to update the

cluster center vi;

4 for i = 1, 2, ..., c do
5 for k = 1, 2, ..., N do
6 Utilize Eq.(15) to update the

membership uik;

where p is the number of the computers in the
cloud computing platform.

The Reduce function aims to compute the
centers via:

vi =

∑p
t=1 ξ

(t)
i∑p

t=1 λ
(t)
i

. (18)

To cluster heterogeneous data, Li et al.
[18] developed a high-order fuzzy c-means ap-
proach based on tensors. Other representative
enhanced fuzzy c-means approaches include
single-pass fuzzy c-means approach [19] and
online fuzzy c-means approach [20] which are
based on the incremental manner for big data
clustering.

2.2. Tensor Canonical Polyadic Decomposi-
tion Scheme

From a mathematical point of view, a vector
and a matrix can be viewed as a 1-order ten-
sor and 2-order tensor, respectively, while a 0-
order tensor is a scalar [21]. Figure 3 presents
an example of a 3-order tensor.

Specially, tensors can represent the het-
erogeneous data. For instance, an objec-
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Figure 2: Example of a 3-order tensor.

t with m attributes can be represented by a m-
dimensional vector while a gray image can be
denoted by a matrix Rh×w with h and w are the
height and weight, respectively. Furthermore,
an image in the RGB color space is usually
represented as a 3-order tensor Rh×w×c where
c denotes the color channel.

Tensors have been widely employed in big
data analytics and processing in the past few
years. For example, Zhang et al. [22] present-
ed a tensor deep learning model for big data
feature learning based on the tensor distance.
To enhance the training efficiency, they used
tensor decomposition schemes to reduce the
parameters greatly [11,23]. A tensor decom-
position approach attempts to factorize tensor
to one core tensor and a set of component ma-
trices [5]. The core tensor is used to link the
component matrices over different modes. In
particular, the canonical polyadic decomposi-
tion factorizes an N -order tensor to the sum of
R rank-1 tensors via:

X =
R∑

r=1

a
(1)
r ◦ a

(2)
r ◦ · · · ◦ a

(N)
r

=
[[

A(1), A(2), . . . , A(N)
]] , (19)

where ◦ is the outer product.
A 4-dimensional vector b and a 3-

dimensional vector a will yield a 4 × 3
matrix c via the outer product:

c = b ◦ a =




b1

b2

b3

b4


 [a1, a2, a3]

=




a1b1 a2b1 a3b1

a1b2 a2b2 a3b2

a1b3 a2b3 a3b3

a1b4 a2b4 a3b4




. (20)

By introducing a core tensor, the stan-
dard canonical polyadic decomposition can be
computed via:

X =
R∑

r=1

λrb
(1)
r ◦ b

(2)
r ◦ · · · ◦ b

(N)
r

= Λ×1B
(1)×2B

(2) · · · ×NB(N)

=
[[

Λ; B(1), B(2), . . . , B(N)
]]

. (21)

Figure 3 presents an example of the standard
canonical polyadic decomposition.

Figure 3: Example of canonical polyadic decomposi-
tion.

Given an N -order tensor X , the ap-
proach for the canonical polyadic decomposi-
tion should calculate the matrices A(n)(n =
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1, 2, . . . , N). A representative example
is the Alternating Least Squares algorith-
m that calculates A(n) by solving an opti-
mization problem: min : ||X − X̂|| =

||X −
R∑

r=1

a
(1)
r ◦ a

(2)
r ◦ · · · ◦ a

(N)
r || = ||X −

[λ; A(1), A(2), . . . , A(N)]||.
Other two commonly employed tensor de-

compositions include the Tucker decomposi-
tion and the tensor-train network, presented in
Figure 4 and Figure 5, respectively [10].

Figure 4: Example of Tucker decomposition.

Figure 5: Example of tensor-train network.

Compared with other tensor decomposition-
s, the canonical polyadic decomposition has
a highest compression rate so it is obtaining
some applications in data mining and deep
learning [11].

3. The Efficient Fuzzy c-Means Approach
Based on Tensor Canonical Polyadic De-
composition Scheme

In this section, the efficient fuzzy c-means
approach based on tensor canonical polyadic
decomposition scheme for big data clustering
is described in detail. To utilize the tensor
polyadic decomposition scheme to compress
the dataset, each object to be clustered needs
to be converted into the tensor format.

Assuming that each object oi has M at-
tributes, i.e., oi ∈ RM , we utilize the bijec-
tion f defined in [24] to convert it into the ten-
sor format Oi ∈ RG1×G2×···×GT . In particu-
lar, f defines the bijection between the coor-
dinate g ∈ {1, 2, . . . , M} of oi and the ten-
sor f(g) = (f1(g), f2(g), . . . , fT (g)) of Oi, in
which ft(g) ∈ {1, 2, . . . , Gt}. So, the item
Oig1g2...gT

of the tensor Oi via the bijection:

Oig1g2...gT
= Oif(g) = oig. (22)

Thus, each object is converted into a T -
order tensor.

After converting every object into the T -
order tensor format, a tensor fuzzy c-means
approach can be obtained via the following e-
quations for updating the membership matrix
and the cluster centers.

uik = [
c∑

j=1

(
d(T )ik

d(T )jk

)

1
m−1

]−1, (23)

vig1g2...gT
=

∑N
k=1 (uik)

mOkg1g2...gT∑N
k=1 (uik)

m
, (24)

where d2
(T )ij is the distance between Xj and Vi

via:

d2
(T )ij =

G1···GT∑

g1···gT

(Xjg1···gT
− Vig1···gT

)2. (25)
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Algorithm 5 describes the tensor fuzzy c-
means approach.

Algorithm 5: The Tensor Fuzzy c-Means
Approach.
Input: X= {x1, x2, . . . , xN}, c, m,

maxiter
Output: U = {uij}, V = {vi}

1 Initialize U = {uij} randomly. for
iteration = 1, 2, ..., maxiter do

2 for i = 1, 2, ..., c do
3 Utilize Eq.(24) to update the

cluster center vi;

4 for i = 1, 2, ..., c do
5 for k = 1, 2, ..., N do
6 Utilize Eq.(23) to update the

membership uik;

However, the tensor fuzzy c-means ap-
proach cannot decrease the computational cost
or save the memory space for the standard
fuzzy c-means approach. Therefore, we uti-
lize the canonical polyadic decomposition to
factorize each object Oi ∈ RG1×G2×···×GT via:

Oi =
R∑

r=1

a
(1)
ir ◦ a

(2)
ir ◦ · · · ◦ a

(T )
ir

= [[A
(1)
i , A

(2)
i , . . . , A

(T )
i ]]

, (26)

Alternatively, every item in Oi can be de-
noted by the following format according to the
canonical polyadic decomposition:

Oig1...gT
=

R∑

r=1

A
(1)
i(g1,r) · · · A(T )

i(gT ,r). (27)

Let G = max{G1, G2, . . . , GT }, every ob-
ject requires the storage space of O(GT ) in the
raw format. However, the storage space re-
quired by every object is reduced to O(GTR)

in the format of the canonical polyadic decom-
position.

Generally speaking, the number of cluster
centers is significantly smaller than the num-
ber of the objects in the big dataset. We do not
need to convert the cluster centers into the for-
mat of the canonical polyadic decomposition
since the converting could not reduce the stor-
age cost greatly. More importantly, using the
canonical polyadic decomposition of the clus-
ter centers yields much computation overhead
in the clustering process. Therefore, the clus-
ter centers are not converted into the canonical
polyadic decomposition format in the present-
ed efficient fuzzy c-means approach.

By applying Eq.(27) to Eq.(4), the objective
of the efficient fuzzy c-means approach can be
obtained as follows.

Jm(U, V ) =
c∑

i=1

N∑
j=1

um
ij

I1···IN∑
i1···iN

(
R∑

r=1

A
(1)
j(g1,r) · A(2)

j(g2,r) · · · A(T )
j(gT ,r) − Vig1g2...gT

)2

.

(28)
By minimizing the objective of the efficien-

t fuzzy c-means approach, we can obtain the
functions for updating the membership matrix
and the cluster centers as follows.

uik = [
c∑

j=1

(
dTik

dTjk

)

1
m−1

]−1, (29)

Vig1...gT
=

N∑
k=1

um
ik

R∑
r=1

A
(1)
k(g1,r) · · · A(T )

k(gT ,r)

∑N
k=1 um

ik

,

(30)
where dT ik can be computed via:

dTik =

G1···GT∑

g1···gT

(
R∑

r=1

A
(1)
k(g1,r) · · · A(T )

k(gT ,r) − Vig1···gT
)

2

.

(31)
9



The efficient fuzzy c-means approach is de-
scribed in Algorithm 6.

Algorithm 6: The Efficient Fuzzy c-
Means Approach Based on Canonical
Polyadic Decomposition.
Input: X= {x1, x2, . . . , xN}, c, m,

maxiter
Output: U = {uij}, V = {vi}

1 Initialize U = {uij} randomly. for
k = 1, 2, ..., N do

2 Utilize Eq.(27) to decompose Xk;

3 for iteration = 1, 2, ..., maxiter do
4 for i = 1, 2, ..., c do
5 Utilize Eq.(30) to update the

cluster center vi;

6 for i = 1, 2, ..., c do
7 for k = 1, 2, ..., N do
8 Utilize Eq.(29) to update the

membership uik;

4. Experiments

Two typical IoT datasets including eGSAD
and sWSN [17] are employed to compare
the performance between the standard fuzzy
c-means approach and the efficient fuzzy c-
means approach in the experiments. Two met-
rics are employed to judge the performance
of the efficient fuzzy c-means approach, i.e.,
Adjusted Rand Index (ARI) and E∗. ARI is
employed to evaluate the clustering accuracy
while E∗ is employed to evaluate the clus-
ter centers. Specially, let U and U∗ denote
the actual labels of the objects to be clustered
and the cluster yielded by the specific clus-
tering approach ∗, respectively. ARI(U,U∗)
is widely employed to measure the agreement
between the actual labels and a specific fuzzy
clustering approach. In particular, the higher

ARI(U,U∗) implies a more accurate cluster-
ing result yielded by the clustering approach.
E∗ judges the cluster centers yielded by the
approach ∗ via:

E∗ =

√
c∑

i=1

||vi
ideal − vi

∗||2, (32)

where videal is the actual center set and v∗ de-
notes the cluster center set produced by the
specific clustering algorithm ∗.

According to the extensive studies, m = 2
can lead to good clustering results in most cas-
es. So, the paper sets m = 2 in the experi-
ments.

4.1. Experiments on eGSAD

In general, the clustering results are signif-
icantly affected by the rank R. So, we judge
the performance of the efficient fuzzy c-means
approach with different ranks regarding run-
ning time. Figure 6 presents the experimental
results.

Figure 6: Running time on eGSAD.

Based on the results shown in Figure 6, as
the rank R increases from 4 to 64, the running
time of the efficient fuzzy c-means approach
grows gradually. As the rank increases, the
compression rate of the attributes is reduced,
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so the running time grows. However, the run-
ning time of the efficient fuzzy c-means ap-
proach is less than the standard fuzzy c-means.
For example, when R = 16, the running time
of the efficient fuzzy c-means approach and
the standard fuzzy c-means approach is 460
minutes and 611 minutes, respectively. There-
fore, the presented approach is more efficient
than the standard fuzzy c-means approach for
clustering the eGSAD dataset.

The experimental results regarding cluster-
ing accuracy with different ranks are described
in Table 1 and Table 2.

The clustering accuracy in terms of E∗ and
ARI is presented in Table 1 and Table 2.

From Table 1 and Table 2, as the rank R in-
creases from 4 to 64, the clustering accuracy
of the efficient fuzzy c-means approach grows
gradually regarding E∗ and ARI . When R is
small, a large number of attributes are com-
pressed, so the efficient fuzzy c-means ap-
proach produces the significantly lower clus-
tering accuracy than the standard fuzzy c-
means approach. For example, when R = 8,
the efficient fuzzy c-means approach yields
E∗ and ARI of 26.94 and 0.71, respective-
ly. The standard fuzzy c-means approach pro-
duces E∗ and ARI of 12.98 and 0.89, respec-
tively. However, when R ≥ 32, the efficient
fuzzy c-means approach produces the consid-
erable clustering accuracy compared with the
standard fuzzy c-means approach. In particu-
lar, when R = 64, the efficient fuzzy c-means
approach yields the same clustering accuracy
with the standard fuzzy c-means approach re-
garding ARI . However, such large rank R
is not desirable since the clustering efficien-
cy can not be enhanced greatly in this case.
According to the results from Figure 6, Table
1 and Table 2, R = 32 is large enough for
the eGSAD dataset. In this case, the efficien-
t fuzzy c-means approach yields E∗ and ARI
of 13.69 and 0.87 while the clustering efficien-

cy is enhanced significantly. Such the results
imply that the attributes of the raw objects are
redundant.

4.2. Experiments on sWSN

In this part, we judge the performance of the
efficient fuzzy c-means approach with differ-
ent ranks regarding running time on the sWSN
dataset. Figure 7 presents the experimental re-
sults.

Figure 7: Running time on sWSN.

The clustering results regarding E∗ and
ARI is described in the following two tables.

From the above experimental results, we can
draw three conclusions. First, the growth of
the rank R increases the running time of the ef-
ficient fuzzy c-means approach for clustering
the sWSN dataset. For example, when the rank
grows from 8 to 32, the running time of the ef-
ficient fuzzy c-means approach increases from
462 minutes to 643 minutes for clustering the
sWSN dataset. However, the efficient fuzzy
c-means approach takes significantly less time
than the standard fuzzy c-means approach to
cluster the sWSN dataset when R is small.
Even when R = 64, the running time of the
efficient fuzzy c-means approach is less than
the standard fuzzy c-means approach. In par-
ticular, in this case, the running time of the effi-
cient fuzzy c-means approach and the standard
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Table 1: Clustering accuracy regarding E∗ on eGSAD
Algorithm/Rank 4 8 16 32 64

Standard Approach 12.98 12.98 12.98 12.98 12.98
Efficient Approach 31.07 26.94 14.21 13.69 13.22

Table 2: Clustering accuracy regarding ARI on eGSAE
Algorithm/Rank 4 8 16 32 64

Standard Approach 0.89 0.89 0.89 0.89 0.89
Efficient Approach 0.64 0.71 0.86 0.87 0.89

Table 3: Clustering accuracy regarding E∗ on sWSN
Algorithm/Rank 4 8 16 32 64

Standard Approach 0.59 0.59 0.59 0.59 0.59
Efficient Approach 1.26 1.07 0.66 0.62 0.61

Table 4: Clustering accuracy regarding ARI on sWSN
Algorithm/Rank 4 8 16 32 64

Standard Approach 0.91 0.91 0.91 0.91 0.91
Efficient Approach 0.73 0.78 0.89 0.89 0.90

fuzzy c-means approach is around 660 min-
utes and 700 minutes, respectively. Therefore,
the presented approach achieves more efficien-
cy than the standard fuzzy c-means approach
for clustering the sWSN dataset. Second, the
growth of the rank R improves the clustering
accuracy of the efficient fuzzy c-means ap-
proach regarding E∗ and ARI . For exam-
ple, when R grows from 4 to 64, the efficient
fuzzy c-means approach reduces E∗ from 1.26
to 0.61 while it increases ARI from 0.73 to
0.90. However, R = 64 is not required since
the clustering efficiency can not be improved
greatly in this case even though the cluster-
ing accuracy is considerable compared with
the standard fuzzy c-means approach. When
R = 32, the efficient fuzzy c-means approach
can obtain the considerable clustering accura-
cy with the standard fuzzy c-means approach.
In this case, the presented approach obtains E∗

and ARI of 0.62 and 0.89 while the standard
obtains E∗ and ARI of 0.59 and 0.91, respec-
tively. This result concludes that the attributes
of the raw dataset is highly redundant. Finally,
the efficient fuzzy c-means approach is more
efficient than the standard fuzzy c-means ap-
proach without a large accuracy drop, proving
the potential of the efficient fuzzy c-means ap-
proach for clustering IoT big data.

5. Conclusion

In this paper, we developed an efficien-
t fuzzy c-means approach based on the ten-
sor canonical polyadic decomposition to clus-
ter IoT big data for drilling smart data. In par-
ticular, the tensor canonical polyadic decom-
position scheme is employed to reduce the at-
tributes of each object in the raw dataset sig-
nificantly. On the one hand, the presented ap-
proach could reduce the amount of the data
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greatly, which makes the fuzzy c-means ap-
proach possible to run in the low-end devices
in the IoT systems. On the other hand, the p-
resented approach could enhance the cluster-
ing efficiency of the fuzzy c-means approach
greatly for IoT big data clustering. Further-
more, we compared the clustering efficiency
and running time between the presented ef-
ficient fuzzy c-means approach and the stan-
dard fuzzy c-means approach on two repre-
sentative IoT datasets, i.e., eGASD and sWS-
N. Results clearly point out that the presented
approach achieved more high efficiency than
the standard fuzzy c-means approach while the
presented approach obtained the considerable
clustering accuracy with the standard fuzzy
c-means approach regarding E∗ and ARI .
Such results proving the potential of the pre-
sented efficient fuzzy c-means approach based
on the tensor canonical polyadic decomposi-
tion. Therefore, we will judge the clustering
accuracy and the clustering efficiency of the
developed approach in the real IoT systems
with low-end computing devices in the future
work. In addition, the fuzzy c-means approach
is generally affected by the initialization, so
the future work will investigate the effective
method to initialize the membership to further
improve the performance of the presented ap-
proach.
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