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Abstract—Automatic speech recognition systems transform
speech audio data into text data, i.e., word sequences, as
the recognition results. These word sequences are generally
defined by the language model of the speech recognition system.
Therefore, the capability of the speech recognition system
to translate audio data obtained by typically pronouncing
word sequences that are accepted by the language model into
word sequences that are equivalent to the original ones can
be regarded as a basic capability of the speech recognition
systems. This work describes a testing method that checks
whether speech recognition systems have this basic recognition
capability. The method can verify the basic capability by
performing the testing separately from recognition robustness
testing. It can also be fully automated. We constructed a test
automation system and evaluated though several experiments
whether it could detect defects in speech recognition systems.
The results demonstrate that the test automation system can

effectively detect basic defects at an early phase of speech
recognition development or refinement.

Keywords-Speech Recognition System, Automated Testing,
Modeling of ASR System Testing

I. INTRODUCTION

Automatic speech recognition (ASR) systems are in-

creasingly being used in practical applications, and there

is a corresponding demand for new systems, including

both general-purpose ASR and domain-specific ASR. For

example, ASRs in smart phones are popular general-purpose

ASRs designed for handling speech data with a wide range

of content in daily use. Domain-specific ASRs are also

starting to be used simultaneously or integrated into general-

purpose ASRs for recognizing audio data obtained from

speech uttered in specific situations or tasks, such as at

ticket vending machines, during voice dialing, or in the ASR

module of smart speakers. Consequently, it would be an

important software engineering project to study ASR system

testing, which is still dependent on individual skill in many

cases, and to create more automatic/systematic test methods

for ASR systems.

In general, recognition capability testing of ASR systems

is used to confirm that each targeted audio data is definitely

transformed into text data, just as designed. These tests

have to handle various kinds of audio data depending on

the characteristics of the speech sound (e.g., female/male or

adult/child) and environment (e.g., in a car or on the phone)

where ASR is used. In brief, we must check that this variety

of audio data can be robustly recognized with satisfactory

accuracy by the ASR system being tested. Such tests are

usually regarded as recognition robustness tests and are a

critical (and maybe the only well-defined) part of practical

ASR testing [1].

At this time, the robustness test is usually difficult to

automate, which makes it a labor-intensive task. This is

partly because it requires collecting various kinds of audio

data for estimating the robustness. Moreover, the robustness

test can only be performed for low coverage of target words

and sentences that are defined in and can be handled by ASR,

since the number of target words and sentences is usually

enormous and it is impossible to collect various speech

data for each word and sentence. For example, a typical

general-purpose ASR sytem defines more than 100,000

words in a lexicon of ASR. Therefore, in the robustness

test, many target words and sentences are left unconfirmed.

For example, if the lexicon of an ASR system does not

contain required words (such as the names of a station,

town, or person), the defects may be left untested and the

ASR may be released without the capability of recognizing

these names. Another example of a defect that is prone to

be left unconfirmed without being detected in the robustness

test is where the pronunciation “dÌrekS(@)n” is registered for

the word “direction” but “daÌrekS(@)n” is not for the

same word in the lexicon. When ASR systems contain such

defects, they cannot recognize sentences involving those

words and pronunciations under any ideal circumstances.

Generally, this type of defect can be thought of as separate

from ones related to recognition robustness.

To examine these types of defects with high coverage

in other words, to test that ASR has the minimum

capability to correctly recognize a large amount of target

words and sentences it is necessary to collect a huge

amount of typical speech data. In the current development of

speech recognition systems, this kind of test is usually being

conducted unsystematically as just one part of the robust-

ness test, without being distinguished from the robustness

test. Moreover, unfortunately, much of the research in the

speech recognition field focuses on improving the recogni-

tion robustness, and it seems that systematic/automated ASR
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Figure 1. Overview of ASR system: Components and model data of ASR system (acoustic model, lexicon, and language model).

testing method has not been extensively studied. Perhaps

due to these situations, the above type of defects occur very

frequently when developing and extending an ASR system.

In this paper, we present a test viewpoint for confirming

the basic recognition capability of an ASR system and

construct an automated test method, which we call a basic

recognition test, on the basis of this viewpoint. Intuitively,

the test viewpoint is to verify whether the ASR system

under test (ASR-SUT) has the capability to recognize typical

speech for target words and sentences under ideal conditions

by separating it from recognition robustness testing. The

proposed test method can automatically detect words and

sentences that are never recognized due to functional defects

of the ASR. Especially, because the test method is fully

automated, it can verify whether every word defined in ASR-

SUT can be recognized at least in an ideal situation.

The two main contriutions of this paper are that it (C1)

formalizes the basic recognition test for ASR and constructs

an automated test system for the basic recognition test,

(C2) shows that functional defects of lexicon and acourstic

model of ASR can be automatically detected by using the

automated test system. We adopt the following approaches

to materialize these contributions:

(I) Comparing formally a conventional test (including

verification of recognition robustness) and the basic

recognition test for ASR systems.

(II) Constructing the automated test system by (a) gener-

ating test sentences from the language model of the

ASR-SUT with coverage criteria, (b) synthesizing a

set of audio data files from each test sentence by

using multiple text-to-speech (TTS) synthesizers with

different speech characteristics, and (c) enabling the

ASR-SUT to recognize every audio data file in the set

to obtain a set of recognition results and verifying that

the resulting word sequences are as a whole equal to

the original test sentence.

Note that, as with the basic recognition test for ASRs,

functional tests on machine-learning-based software suffer

from the same problem as above, and are often difficult to be

systematically performed or automated with high coverage.

This is because, for such type of software, no correct output

may be obtained for each input in advance [2], [3], and

because high coverage test input set is often difficult to be

systematically obtained. Our method can be thought of as a

special case of automation of a functional test on machine-

learning-based software, which is specialized for ASR. In

the ASR cases, we found that the test automation can be

realized because test input speech which may be regarded as

typical under a specific equality judgement can be generated

from each possible output with multiple TTS synthesizers.

Section II of this paper introduces the basic recognition

test for ASR. Section III describes a test automation system

for the basic recognition test. Section IV explains how

we evaluated the test automation system through several

experiments and Section V discusses some practical aspects

of the test automation. Section VI describes related work

and we conclude in Section VII with a brief summary and

mention of future work.

II. BASIC RECOGNITION TEST FOR ASR

This section first outlines the processing and components

of ASR systems from the software engineering perspective

and then introduces and formalizes the test viewpoint for

checking the basic recognition capabilities of ASR.

A. Overview of ASR system

An overview of the components and model data used

in the ordinal ASR systems and their processing is shown

in Fig.1. On the whole, speech is first digitalized as

time sequential signal data (called audio data or audio

sequences here) and transformed by the feature extractor

component into a time series of feature vectors. After that,

the feature vectors are transformed into word sequences

on the recognition language of ASR. Each resulting word

sequence has a score that indicates the probability of the

results, and the word sequence with the best score be-

comes the speech recognition output. For example, suppose

we make an ASR system process speech like sheez D@

flou-er tuh izhous . It transforms this speech into several

candidate sentences with scores such as [She is the

flower to his house: 0.8] and [She is the

flour to his house: 0.1]. The system outputs the

first text as the result because it has the best score.

The recognizer component in Fig.1 is also called a de-

coder. It transforms the time series of feature vectors into
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the resulting word sequence, and its process consists of

three models: an acoustic model, which involves stochastic

mapping from phonemes to the time series of feature vectors,

a lexicon, which contains information on stochastic mapping

from words to phoneme strings (indicating the pronuncia-

tions of each word), and a language model, which expresses

the grammar of the recognition text (i.e., word sequences)

and the probability of each text matching the grammar. Here,

we use meta-variables v, x, and w to range over the time

series of feature vectors, phoneme sequences, and word

sequences, respectively. We can then express the acoustic

model, lexicon, and language model as the (conditional)

probabilities PA(v |x), PD(x |w), and PL(w). The decoder

actually computes the word sequence ŵ, given by the fol-

lowing equation, which maximizes the posteriori probability

PA(v |x)PD(x |w)PL(w) by simultaneously considering the

three models at the same time [4]:

ŵ = argmax
w

PA(v |x)PD(x |w)PL(w). (1)

Acoustic models are usually implemented by hybrid usage

of hidden markov models (HMMs) [5] and neural networks

[6]. Lexicons can be implemented by using a possibility that

each word w is pronounced by x, such that the probability

of pronouncing ”Inkw@Iri” for the word ”Inquiry” is 0.8,

and that of pronouncing ”Inkw@ri” is 0.2. Language mod-

els for domain-specific ASRs are usually implemented by

probability-weighted finite state automatons (WFST) [7]. We

usually use a stochastic model for general-purpose ASRs,

such as an N-gram [8] (that actually can be expressed by

WFST), to implement language models because the ASRs

must handle a wide range of spoken sentences.

These three models need to be created, revised, and

extended as an ASR system is developed, modified, and

expanded. Therefore, we generally prepare these as re-

placeable models. For example, acoustic models are to be

revised depending on the characteristics of speech sound

handled by ASR, such as female/male/adult/child sounds.

Lexicons are extended as ASR needs to handle new words

or pronunciations, and language models are also revised

when we need to change the probability of a recognition

sentence with the grammar, e.g., as new words are added

to the grammar. In these extensions, if necessary data is not

added, or if defective data is added, the ASR system will

experience defects in the basic recognition capability.

B. Basic Recognition Test

We first formalize the normal testing currently performed

in ASR developments. Next, we formalize the basic recog-

nition testing and then compare the two tests.

We use the meta-variable S to indicate an ASR system

under test. Possible recognition result texts for S are given

by a set of word sequences that are accepted by the language

model PL of S with probabilities greater than a small

constant ε . We call the set of word sequences a recognition

language (each element of the set is called a recognition

text or sentence or word sequence) and write L(S, ε) for the

language. Given a probability constant ε , the recognition

language L(S, ε) of S is defined by

L(S, ε) = {w | PL(w) > ε , PL is the language model of S}.

1) Formalization of Positive Test Data: We use the terms

positive (speech) audio sequences and positive word se-

quences for S to indicate audio data that are to be correctly

recognized by S for the former and word sequences obtained

by correctly writing out positive speech audio data for S

for the latter to consider descriptive specifications of speech

audio data to be correctly recognized. We also write Ω(S) for

the set of all possible positive word sequences for S. The set

Ω(S) can be regarded as an ideal descriptive specifications

of which speech data should be correctly recognized by

S. Therefore, if the language model is consistently defined

according to the specification of S, all recognition word

sequences for S are positive word strings for S because audio

data obtained by correctly converting recognition texts into

speech should be correctly recognized by S. Therefore, for

such consistent language models, we have

L(S, ε) ⊆ Ω(S). (2)

The equality relation in the above relation may not hold, not

only due to the incompleteness of the language model with

regard to the ideal specification, but also spelling variants.

Here, let us consider ASR system S which is integrated

into a car-navigation system and therefore is only used in

cars. We then ideally need to collect all positive audio data

that are obtained in cars. However, even if one person speaks

the same text w twice in the same manner under the same

restricted condition, we actually cannot obtain two speech

audio data that have the same sound wave shapes. Therefore,

the size of a set containing all positive audio data can be

limitless in real situations.

In order to model the set of all positive audio data for S,

we consider and assume the set of all positive audio data

obtained by correctly uttering the positive word sequence

w. We also assumed a conceptualistic function Sp[S](·) that

maps each positive word sequence w for S to the set of all

positive audio data of w for S. The domain of Sp[S] has to

include Ω(S). We call the function Sp[S] speech oracle for

S. The set of all positive audio data for S is given by
⋃

w∈Ω(S)

Sp[S](w). (3)

This is because there is at least one positive audio sequence

for every positive word sequence w. Hence, we have

∀w ∈ Ω(S). Sp[S](w) � φ, (4)

where φ is the empty set.
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We use meta-variables d and D for expressing an audio

sequence and a set of audio sequences, respectively. As every

positive audio sequence is contained in the set given by (3),

every positive audio sequence can be expressed as an index

notation by using a positive word sequence. We use the index

notations dw and Dw for d and D that satisfy Sp[S](w) ⊇

D � d and w ∈ Ω(S). We call dw and Dw an audio sequence

(set) according to word sequence w. We can regard dw and

Dw as positive test input data (set) with expectation value

w. We can find an expectation value for every positive input.

We first collect sample positive speech data for S in many

actual cases of ASR tests and then create a test set of

positive word sequences W ⊆ Ω(S) based on the samples

(and other background usage information of S). Next we

prepare an actual test input set of various audio data for

each positive word string in the set W . Because there is

actually no such function as the speech oracle Sp[S] in the

last step that automatically provides a variety of positive

audio data according to each given word sequence, we must

create and collect an adequate number of positive audio data,

Dw ⊆ Sp[S](w), for each w ∈ W .

2) Formalization of ASR Tests: Here, we formalize both

a test for checking recognition robustness (called a positive-

data recognition test here) and the new test for ASR, namely,

the basic recognition test.

Definition 1 (ASR System S): The ASR system under test

S consists of a function ext(·) that transforms each speech

audio sequence into a time series of feature vectors, an

acoustic model PA, a lexicon PD , a language model PL,

and a function dec(·) that maps each feature vector series

into a recognition word sequence according to Eq. (1).

Functions ext(·) and dec(·) above correspond to the feature

extractor and recognizer in Fig.1. As most of state-of-the-art

ASR systems have this configuration, we formalized the two

tests for ASR systems following the above definition.

We also assumed equality judgments on word sequences

dpm(·, ·) to check whether two word sequences could be

considered to be the same. Such judgments are actu-

ally implemented by using dynamic programming (DP)

matching [9]–[11] through the use of various string and

phoneme distance measures depending on the intended end-

usage for ASR systems. For example, a dpm1 behaves

like dpm1(“BSD license”, “BSD licence”)=true, but an-

other dpm2 may behave like dpm2(“Please cheque”, “Please

check”)=false. In some languages, including Japanese, there

may be several descriptions for one word. For example,

the pronunciation “sakura” (meaning cherry blossom) may

be written as “ ” or “ ”. Therefore, it needs to

be understood that we need to prepare equality judgments

such that dpm3(“ ”, “ ”) = true for testing an ASR

system for Japanese. From here, we fix the word-sequence

equality judgment dpm and write w1 � w2 if and only if

dpm(w1,w2) = true.

Here, the positive-data recognition test for S a com-

monly used test for ASR systems is formalized as

follows:

Definition 2 (Positive-Data Recognition Test): Given S,

select enough W⊆Ω(S) and, for each w∈W , collect enough

non-empty Dw⊆Sp[S](w). Then verify that the following

holds:

∀w ∈ W⊆ Ω(S). ∀dw ∈ Dw ⊆ Sp[S](w). (dec(ext(dw)) � w).

In the test, we first select W , i.e., an adequate number of

positive word sequences for S, and then prepare sufficient

test input sets Dw for each w ∈ W by collecting various

positive audio data according to w. We then verify that every

positive audio sequence dw ∈ Dw can be recognized as the

same word string as w.

Note that this test includes checking for recognition ro-

bustness and accuracy because it verifies that various positive

audio data can be correctly recognized for each test sentence.

It can actually produce data for evaluating recognition ro-

bustness/accuracy. For example, word error rate WER, which

is a commonly used metric for the performance of speech

recognition, can be calculated for each test sentence w by

WER(w) = (S(w) + D(w) + I(w)) / N(w), (5)

where S(w) / D(w) / I(w) are the numbers of wrong

substitution / deletion / insertion words of the recog-

nition results dec(ext(dw)) compared with correct sen-

tence w up to the relation �. N(w) is the number

of words in the correct sentence. For example, by us-

ing w = “BSD licence is applied to this software”,

dec(ext(dw)) = “BSE license is applied to software”, and

“license” � “licence”, we obtain WER(w) = ((1+ 1+ 0)/7 =

0.2857 · · ·, where “this” is the deletion word. Recognition

robustness is usually evaluated by classifing audio sequences

Dw into groups according to attributes (e.g., kind of task,

gender, age, and type of sentence w) and then calculating

the average WER for each group. The evaluations and

improvements in recognition robustness are seem to remain

as unsystematic task based on expert knowlege.

The basic recognition test for the ASR system is now

defined as the following:

Definition 3 (Basic Recognition Test): Given S, generate

enough W ⊆ L(S, ε). Then verify that the following holds:

∀w ∈ W⊆ L(S, ε). ∃dw ∈ Sp[S](w). (dec(ext(dw)) � w).

This test verifies that at least one positive audio dw
sequence is converted into a sentence that is equivalent to

w by S. In other words, the viewpoint behind this test only

checks that S has the capability to correctly recognize at

least one audio sequence, which may be the most typical

one, for each generated recognition sentence w. Therefore,
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Figure 2. Configuration of basic recognition test.

it is separated from the viewpoints of recognition robustness,

which are related to checking that various kinds of audio data

according to the same test sentence are correctly recognized.

Under the premise that S has a correct language model

satisfying (2), the following holds:

Lemma 4 (Necessity for basic recognition test): For the

same selected W⊆L(S, ε), passing the basic recognition

test is a necessary condition for passing the positive data

recognition test under the same word sequence equality �.

This is formally shown using the equations (2), (4) and

the definitions 2, 3. Hence, the basic recognition test can be

a necessary condition of the positive data recognition test,

which includes the robustness test. However, in the basic

recognition test, we do not need to gather speech data for

each test text w if we can generate typical speech data for

w. Therefore, in this case, the basic recognition test can be

automated and thereby handle an enormous amount of test

sentences. The automated method of the basic recognition

test is described in the next section.

C. Detectable and Undetectable Defects

Let us assume that we have a correct language model.

When S fails the basic recognition test for a test sentence, the

defects are probably in some parts of software components

related to the test sentence. The following defective parts

and causes in this case are considered to be:

F1. Lexicon contains missing words or erroneous data about

how to pronounce words in the test sentences,

F2. Acoustic Model contains missing or erroneous data for

phonemes related to words in the sentences, and

F3. Decoder Program contains bugs or incorrect parameters

in parts for processing word sequences in the sentences.

On the other hand, the following cannot be checked from

the test viewpoint of the basic recognition test:

N1. Whether ASR has a correct language model that accepts

positive texts and, rejects negative ones.

N2. Whether ASR do not recognize speech that is not

permitted to be recognized (negative data test).

N3. Whether ASR has sufficient recognition robustness for

various types of utterances.

The basic recognition test assumes the correctness (i.e.,

(2)) of the language model (N1) and is assumed for testing

negative data (N2) and recognition robustness (N3). There-

fore, the basic recognition test is suitable as a preliminary

test step for the existing recognition robustness test on ASR

systems. Note that the existing robustness testing of ASR

systems also assumes the correctness of the language model.

In this section, we proposed a test viewpoint for ASR

that checks defects related to the basic recognition capability

given by Definition 3 separately from testing robustness of

recognition, which are conventionally checked together with

the basic capability in a similar form as the positive data

recognition test given by Definition 2.

III. AUTOMATION OF BASIC RECOGNITION TEST

This section describes a system for automating the basic

recognition test. An overview of the configuration for the

system is given in Fig.2. Roughly speaking, it first generates

test sentences from the language model of ASR-SUT or

from some other positive sentence resource, e.g., collections

of speech processed by previous system versions of ASR-

SUT. It then generates a set of audio data from each of

the generated test sentences. Here, we use multiple TTSs

with different speech characteristics for generating various

positive audio data. It finally recognizes these audio data

by using ASR-SUT itself to generate a set of recognition

texts for each test sentence and checks that the resulting set

is, as a whole, equal to the test sentence. There are three

main modules in the configuration, discussed in more detail

below.

The test sentence generator module generates test sen-

tences that are accepted by the language model of the ASR-
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Figure 3. Example of language model and test sentences.

SUT. When the language model is given by a relatively small

size grammar expressing predefined or restricted domain-

specific sentences, we can generate effective test sentences

with coverage criteria from only the language model by

using conventional techniques to analyze finite state automa-

ton [12]. For example, the ASRs used in ticket vending

machines or speech control systems for home electronics

are in this category. We have presented an example, which

is (part of) a language model of the ASR given by WFST

and the set of test sentences generated from the model, in

Fig. 3. Each label ”xxx”/n on the edges in the figure means

that the probability of transition obtained by word ”xxx” is

n. Word sequences s1...s11 are test sentences that cover all

edges of the finite state transducer.

When the language model is given by a large stochastic

model such as an N-gram that contains too many words,

it may be useful for the test sentence generator to re-

ceive keywords or sub-sentences that are required to be

specifically tested. For example, important proper names,

technical terms, frequently appearing phrases, and com-

pliance related words (e.g., ”absolutely” and ”agreement”)

often require intensive checking to be selected as the input

keywords/sentences. The generator generates test sentences

containing the input keywords/sub-sentences. We can use

several techniques or heuristics for generating sentences

from large (stochastic) language models [13], [14]. Whatever

method we use in this module, we only need to prepare

a program that generates effective test sentences that are

accepted by the language model.

Because test statements generated by this module are then

automatically processed at later steps, we can safely generate

a large number of them. This drives the basic recognition

test for high coverage target words and sentences.

The test audio data generator module generates a set

of test audio data from each test sentence. A detailed

configuration for this module is shown in Fig.4. Strictly

Figure 4. Configuration for test audio data generator.

speaking, the basic recognition test (of Definition 3) requires

the speech oracle Sp[S] for S; however, no such oracle

actually exists. Therefore, we take the following approach:

We represent the set of all positive audio data of w for S

(i.e., Sp[S](w)) by using typical audio data according to test

sentence w and generate typical audio data that should be

correctly recognized by S by using several TTS synthesizers

with different sound characteristics. TTS1 TTSk in Fig.4

are the prepared speech synthesizers to generate test audio

data with different sound characteristics. We included k

test audio data in this configuration for each test sentence

generated by the test sentence generator module. The set of

test audio data is to be translated into a set of recognized

texts that are then compared as a whole with corresponding

test sentences in the recognition checker module.

There are some cases where such typical audio data

cannot be synthesized by any combination of common

speech synthesizers due to specific environmental noise. For

example, the ASRs used in car navigation systems need to

handle speech under the acoustic condition inside cars. We

can use an audio characteristic converter that converts audio

data to those in special acoustic environments to address this

problem in the manner shown in Fig. 4. Such a converter

can actually be constructed from a small amount of speech

data in the assumed acoustic environments [15], [16]

The recognition checker module first recognizes the test

audio data by using ASR-SUT, then generates a set of

recognized texts for each test sentence, and finally compares

the set of recognition result texts with the test sentence to

check whether they can be considered equal. Considering

Definition 3 on whether there are audio data corresponding

to each test sentence that are correctly recognized by ASR-

SUT, the equality judgment is: The set of recognized texts

is considered equal to the test sentence if and only if, for

each word subsequence of the test sentence, there exists

an equal subsequence (w.r.t. �) of a recognized text in the

set of the recognition texts, rather than if there exists the

same recognized text as the test sentence. For example,

we can judge that the set containing two recognized word

sequences “two tickets to Saint Barbara” , “to

18



Algorithm 1: collectiveEqCheck (text,TxtSet)

Input: text:string and TxtSet:set of string

Output: true or false with unmatched parts

WG←− makeWordGraph(TxtSet) ;

if WG.containsPath(text) then return true;

else return false with matching part information;

Figure 5. Example of word graph and path for test sentence.

ticket to Santa Barbara” is equal to the test word

sequence “two tickets to Santa Barbara” since

the underlined subsequences can comprise the test sentence

and this implies that two parts of the audio data recognized

as the underlined parts comprise the audio data that are

correctly recognized by ASR-SUT.

We call this equality judgment for a set of recognition

texts and a test sentence collectiveEqCheck. The equality is

given by Algorithm 1, where makeWordGraph(X) makes

a word graph, which considers pauses, from a set of recog-

nition word sequences X , and WG.containsPath(t)

checks whether there is a path along word sequence t in the

word graph WG. An example of the word graph and the path

(gray parts) along the given test sentence is shown in Fig. 5.

Because there is a path along the test sentence in the graph,

collectiveEqCheck returns true. The word graph is

a common data structure for evaluating speech recognition

results [10], [17], but the equality judgment by checking

for the existence of a path for the test sentence seems to be

specific to our test method.

The overall algorithm for the automated basic recognition

test is given in Algorithm 2, where Recognize(S, d) means

speech recognition for audio data d by using S that returns

a text as the recognition result.

We assumed that multiple speech synthesizers in the

automated test system could generate a set of test audio

data that could be considered equal to typical audio data,

which should be correctly recognized by ASR-SUT S (we

will evaluate this assumption in the next section). The test

system under this assumption uses multiple TTSs instead of

the speech oracle, Sp[S]. This implies that a failure report by

the test system does not necessarily mean failure in the basic

recognition test of Definition 3. Nonetheless, we believe that

the automated test system can often point out defects in

Algorithm 2: Automated Basic Recognition Test

Target: S with PL

Input: strs: keywords or key sentences (optional)

Output: Reports for all test sentences

T xts← TestSentenceGenerater(PL,strs);

foreach w ∈ Txts do

Dw ←− TestAudioDataGenerater(w);

/** RecognitionChecker **/;

RT xts←− ∅;

foreach d ∈ Dw do

add Recognize(S, d) into RT xts ;

if collectiveEqCheck(w, RTxts) then

output Test Success Report for w ;

else

output Test Failure Report for w ;

ASR-SUT (this will also be evaluated in the next section).

IV. EXPERIMENTAL EVALUATION

We developed a prototype test system for the automated

basic recognition test based on the ideas in Section III and

performed experiments to evaluate it. Here, we present the

results obtained from evaluating three matters:

BQ. Can multiple speech synthesizers generate an audio data

set that can be considered equal to typical audio data?

RQ1. Can the test system detect defects in the lexicons?

RQ2. Can the system detect defects in the acoustic model?

A. Experiment for evaluating BQ

As discussed previously, it is necessary that BQ be

answered affirmatively for the test system to work well. We

performed an experiment using a commercially available

automatic speech recognition system ASR1 as ASR-SUT

without any functional defect to evaluate this BQ. The ASR1

is an ASR system based on deep learning [6], [18] that

generally has good recognition accuracy for speech data

similar to that of training data. This time, ASR1 did not

use synthesized audio data for training the acoustic model.

The language model of ASR1 is a general-purpose N-gram

model for handling a wide range of speech.

In the experiment, we first generated ∼100 test word

sequences from both the language model and the history

records of recognized texts from a call center. The generated

word sequences were typical sentences from speech obtained

from dialogue made during call center operations. We then

synthesized an audio data set from each of the test sentences

using different TTS modules M1, · · · ,M7. Each module was

composed of multiple TTS synthesizers, each of which

generated various kinds of speech sounds. Note that we

can obtain various TTS synthesizers from a single TTS

synthesizer by setting different values to its parameters.
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Table I
RESULTS OF EXPERIMENT FOR EVALUATING BQ.

Finally, we had ASR1 recognize each set of audio data and

compared the resulting recognized texts with corresponding

test sentences using the judgment of collectiveEqCheck

with a standard synonym list. Note that all the evaluation

processes can be automated.

Table I lists the average word recognition error rate WRER

of speech recognition for the generated test word sequences.

The word recognition error rate is slightly differs from

standard WER described in Eq.(5). WRER can be calculated

for each test word sequence w by

WRER(w) = E(w) / N(w), (6)

where E(w) indicates how many words of test word sen-

tence w have never been correctly recognized in the au-

tomated basic recognition test and N(w) is the number

of words in the test sentence w. For example, by using

the test sentence w = ”two tickets to Santa Barbara” and

the set of recognition results “two tickets to Saint

Barbara” , “to ticket to Saint Barbara”, we

have WRER(w) = 1/5 = 0.2, because only one word

"Saint" has never been correctly recognized under the

basic recognition test criteria.

Examples of the generated test sentences include “This

is in California so it s notfive o clock.”

and “Thank you for calling our help desk.

How can I help you?”. For each TTS comprising a

TTS module M, we used the Festival speech synthesis

system [19], [20] with various settings of gender (male

or female), speech rates (normal, rapid [rate=1.2], slow

[rate=0.7], and all speed variations [rates in the range of

0.5 to 1.5 in 0.1 increments]), and volume of utterances.

The volume power variations in the table contain all audio

data obtained by applying the Hamming window process

to all speech data of normal volume. More specifically,

the Hamming window process with a random period from

approximately 1 to 2 s was applied to the generated speech

data to transform the speech power in an utterance [21].

As an example, let us consider module M3. It is composed

of four TTSs generating four speech audio data (female and

male voices with normal and slow utterance speed rates)

Table II
RESULTS OBTAINED FROM EXPERIMENTS FOR EVALUATING RQ1.

from each test sentence. This set of four audio data is

recognized by ASR1 and the resulting recognized texts are

compared to the test sentence. WRER=4.12 is the result of

these comparisons for all test statements.

As listed in Table I, the audio data generated by module

M1, which only synthesizes a female normal voice, has a

WRER of 10.65% (statistically, one word in every ten is

not correctly recognized). Therefore, we cannot consider

that M1 will generate a sufficiently typical audio data set

that can be correctly recognized as a whole by ASR1 and

used as test audio data for the functional testing. However,

the audio data generated by module M7, which synthesizes

48 audio data with different characteristics, has a WRER

of 0%. This indicates that we can answer affirmatively to

BQ, and it may be possible to generate a speech audio

data set that is correctly recognized (up to the equality of

collectiveEqCheck) with very high accuracy by using only

multiple TTSs with different gender, speech speed rate, and

utterance volume power characteristics.

B. Experiments for evaluating RQ1 and RQ2

RQ1 and RQ2 ask whether the test system can find

functional defects in the lexicon and the acoustic model. We

changed the pronunciation data on some words in the lexicon

of ASR1 to erroneous ones to evaluate RQ1 and checked

whether these errors could be found with the test system.

We likewise adjusted the acoustic model for question RQ2

such that the acoustic likelihoods of some phonemes were

unnaturally lowered and checked whether these errors could

be found by the system. We generated ∼100 test sentences

and used M7 in Table I for the TTS module.

Table II summarizes the defects included in the lexicon

and the results obtained from the experiments for RQ1.

The first three words were changed to incorrect readings of

the same kinds of words and these defects were detected

by the test system. These incorrect readings are actual

defects detected in our past development of an ASR system.

The lexicon may often be manually changed, and part

of the lexicon of a large-scale ASR system is also often

automatically generated from other sources, such as those
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Table III
EXAMPLES OF SPEECH RECOGNITION RESULTS FOR EXPERIMENT ON RQ2.

on the Web based on various rules [22], [23]. Therefore, it

is realistic to incorporate these kinds of defects. We also

changed a small part of the correct reading for the next

two words to one that was incorrect. The test system was

unable to detect subtle errors at this level. This is because

even if a slightly erroneous reading had been registered in

the lexicon, the information would have been complemented

by likelihoods from the acoustic and language models, and

accurate recognition results would have been obtained. We

think that defects at this level should be detected in the

robustness test. The last two words have special technical

interpretations and the incorrect lexicon was changed to

remove these interpretations. These defects are detected.

This type of defect is also often mixed into the lexicon.

We set abnormal values (i.e., lowered likelihoods) in the

acoustic likelihoods of phonemes “SH” and “AY” in the

acoustic model of ASR1 for the experiment on question

RQ2 and ran the test system against ASR1. We used

the same test sentences and TTS module M7 as in the

previous experiment. As a result, all sentences contain-

ing words for the two defective phonemes were judged

as rejected by the test system, and we could detect the

defects in the acoustic model. Examples of the recogni-

tion results are given in Table III, where each (test

sentence) indicates a test sentence to be checked and

(male/female-normal/rapid/slow) means the re-

sults of speech recognition by the defective ASR1 of nor-

mal volume audio data generated from each of the cor-

responding speech synthesizers. Correctly recognized parts

are underlined. In both cases, only the words “machine”

and“line” affected by defective phonemes were not cor-

rectly recognized for all the speech data generated by

male/female-normal/rapid/slow TTSs. Consequently, the test

system judged that ASR1 could not correctly recognize

speech according to the two test sentences.

V. DISCUSSION

The results obtained from these experiments imply that

we can answer positively to BQ, RQ1, and RQ2. That is,

the experiments confirmed that we can construct an adequate

test audio data generator using a TTS module and automate

the basic recognition test. This section discusses the threats

to the validity of these results, as well as issues concerning

the actual use of the automated test system.

A. Threats to validity

Incomplete TTS-module. The primary threat to the

validity of the results (especially for BQ) is whether the

results can be valid for other ASR systems. This threat

can be mitigated if we can construct advantageous TTS

modules that answer positively to BQ for other ASR systems

that are different, such as those implemented by different

methods or those designed for handling different (non-

English) languages. We believe we can configure such TTS

modules for a wide range of ASR systems at least at a useful

level. In fact, we have already configured such TTS modules

for various ASR systems including ASR based on Gaussian

mixture and hidden Markov models (GMM/HMM) [24],

[25] and ASR for handling Japanese speech (where we used

JTalk [26] as the TTS). The results from an evaluation of

ASR2, which is a commercial-grade ASR system based

on GMM/HMM that handles Japanese speech, are listed in

Table IV. Even in these cases, we were able to construct ap-

propriate TTS modules simply by using TTSs in which only

the gender, speech rate, and utterance volume characteristics

were changed. These are known factors that greatly change

speech recognition accuracy [27]. We can also use TTSs that

synthesize childish or elderly voices, if necessary, and other

types of voices. Because the test audio data generator and

recognition checker modules are fully automated, they can

work well even if it comes to using many TTSs and can

handle copious amounts of test audio data.

False Positive Reports. The automated basic recognition

test system may output false positive test failure reports.

A false positive report means there is a test sentence such

that ASR-SUT cannot correctly recognize any speech data

synthesized by a TTS module for the test sentence. The

false positives stem from the incompleteness of the TTS

Table IV
ADDITIONAL RESULTS FROM EXPERIMENTS FOR EVALUATING BQ.
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module used in the test system against Sp[S]. We had no

false positive reports for 100 generated test sentences in the

experiments for RQ1 and RQ2. However, if we had used M1

instead of M7, we would have received such false positive

reports. The test sentences for the false positives need to be

manually tested in a robustness test. Nonetheless, we believe

the test method is useful in practice, as it is possible to

automatically detect many words that are never recognized

due to functional defects of the ASR-SUT.

Evaluation data and its size. We used 100 sentences

(containing different ∼2000 words) for the evaluations. This

size of data is not sufficient for a comprehensive assess-

ment of speech recognition test for general-purpose ASRs.

However, we think that our evaluations are meaningful as

at least the preliminary functional evaluations of the testing

method, especially for domain-specific ASRs, because there

is a lot of domain-specific ASRs that handle only similarly

sized words. In the speech recognition community, it is often

required to perform a predetermined full-scale experiment

using test data for daily new terms and non-native speakers

in addition to specific benchmark data [28], [29] . Such full-

scale evaluation is a future task.

B. Effects on actual ASR testing

The basic recognition test is suitable as a preliminary

test step for the existing positive data recognition test on

ASR systems because the new test can confirm the basic

recognition abilities of ASR systems at an early test stage

in a form that is separate from concerns related to the

recognition accuracy and robustness of the ASR systems.

It requires a constant amount of work to introduce the test

system into the existing ASR test process because of three

automations: (A1) generations of test sentence and test audio

data are automated, (A2) test execution is fully automated,

and (A3) the confirmation of test results is fully automated.

Note that we need to prepare test sentences for A1, even

if we do not use the basic recognition test automation.

Also, the fact that additional work is constantly suppressed

mainly results from A3, i.e., the expected value can be

automatically determined for every given positive input in

the basic recognition test.

We actually applied the automated basic recognition test

system to the testing of the ASR module of a robot system

for answering questions about lottery tickets. The robot was

being used by a bank for facilitating lottery sales and it

needed to recognize a large number of technical terms (e.g.,

the names of various kinds of lotteries) and typical question

related to lotteries. In the development, we needed to revise

and extend the lexicon and the acoustic model for handling

the technical terms and typical lottery-related questions.

Although it becomes an informal report for the protection of

client information, the test system could detect many defects

in the lexicon before we gathered test speech data. For

example, the lexicon did not contain correct pronunciation

data for an actor advertising the lotteries. That kind of defect

was first discovered by using this test system.

VI. RELATED WORK

Various levels of testing, such as unit, integration, sys-

tem, and acceptance testing [30], have been studied in the

software test research field. These testing levels help detect

defects in the early phases of system development. We

think that the basic recognition test described in this paper

introduces a new testing level to the ASR test.

Various tests and test automations for emerging software

have also been studied in this field, such as GUI-based Web

applications (e.g., [31]–[34]), mobile applications [35]–[38],

and machine learning components [39], [40] in different

eras. We need to handle and model event inputs from a

graphical interface to systematically test GUI-based Web

applications, as well as numerical and string values. We also

need to deal with context-sensitive inputs in testing mobile

applications, which change depending on where the mobile

device is used or who is using the mobile application [35].

Therefore, the adoption of automated test tools is very

limited in mobile application testing [36]. We are often faced

with the problem that there is strictly no test oracle [2],

[3] in testing statistical machine learning-based components.

Reverting back to ASR testing, we need to deal with speech

inputs, which are not standard in conventional software.

Such input speech is essentially context-sensitive continuous

data that change depending on the acoustic environment

in which the speech is uttered and the person who utters

the speech. Moreover, modern ASR systems are based on

statistical machine learning such as deep learning. This

suggests that there may be no strict test oracle in the sense

that no correct recognition sentence can be obtained in

advance for each input speech, and perhaps the actual output

should be thought of as the correct result. We extracted

the basic recognition capability of an ASR system in our

approach, where the capability can be tested without any

such ordinal test oracle, which is irrespective of the context

in which the target speech input has been uttered.

The idea of generating test audio data using a text to

speech synthesizer has already been proposed [41]. However,

this article has not discussed whether the synthesized audio

data is actually adequate for testing. Therefore it has not dis-

cussed the simultaneous use of multiple speech synthesizers,

nor the necessity for them. As suggested by the experimental

evaluations in Section IV (especially those listed in Table I),

it is difficult to generate high quality speech data that is suf-

ficient for the testing recognition capability of ASR systems

with only a single speech synthesizer. Rusko et.al [42] also

proposed a method to generate test speech by using speech

synthesizers for testing recognition robustness. The method

is based on the channel conversion and the addition of noise

according to the target acoustic environment. However it also

22



do not mention the quality of the synthesized speech data.

Therefore, when we use such method in actual testing, we

need to validate the generated speech data.

Many studies (e.g., [17], [43]) have proposed various

methods of improving recognition accuracy by using recog-

nition results from multiple speech recognition systems. In

contrast, our main objective for using multiple recognition

results is to test the basic recognition capability of an ASR

system. We believe this approach is specific to the test

viewpoint proposed in this paper. The basic recognition

test can naturally be applied to ASR systems composed of

multiple types of speech recognition.

There have not been many studies featuring end-to-end

tests of automatic speech recognition systems as the main

theme. Dookhoo [44] discussed testing speech recognition

systems as his main topic and focused on the automation of

various tasks in regression testing for ASR, especially when

updating the language model of ASR. There are numerous

opportunities in regression testing to make it easier to

automate various tasks, as you can obtain the input and

corresponding output used in previous tests.

VII. CONCLUSION

We proposed a test viewpoint for ASR systems that

can check the basic capability for recognizing all target

vocabulary words independently from tests on the recogni-

tion robustness. Especially from software engineering view,

we formalized the basic recognition test for ASR systems

and designed an automation of the testing process. We

also implemented an automated test system and confirmed

through several experiments that it worked well and could

detect automatically functional defects of ASR systems.

Expected future work will include large scale evaluation

using benchmark data adopted in the speech recognition

community as stated in Section V. We are also considering

a method of systematic high coverage test sentence genera-

tion from large and stochastic language models. Systematic

speech data generation to test recognition robustness is also

a future task. The language model has information on the

ease of connecting each word, i.e., information on parts

that are difficult to correctly recognize. Thus, it may be

possible to automatically generate efficient speech data to

test robustness by using this information.
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