
Listen to this manuscript’s

audio summary by

JACC Editor-in-Chief

Dr. Valentin Fuster.

J O U R N A L O F T H E A M E R I C A N C O L L E G E O F C A R D I O L O G Y V O L . 7 1 , N O . 2 3 , 2 0 1 8

ª 2 0 1 8 T H E A U T H O R S . P U B L I S H E D B Y E L S E V I E R O N B E H A L F O F T H E AM E R I C A N

C O L L E G E O F C A R D I O L O G Y F O U N DA T I O N . T H I S I S A N O P E N A C C E S S A R T I C L E U N D E R

T H E C C B Y L I C E N S E ( h t t p : / / c r e a t i v e c o mm o n s . o r g / l i c e n s e s / b y / 4 . 0 / ) .
JACC FOCUS SEMINAR: FUTURE TECHNOLOGY OF CARDIOVASCULAR CARE

JACC REVIEW TOPIC OF THE WEEK
Artificial Intelligence in Cardiology

Kipp W. Johnson, BS,a,b Jessica Torres Soto, MS,c,d,e Benjamin S. Glicksberg, PHD,a,b,f Khader Shameer, PHD,g

Riccardo Miotto, PHD,a,b Mohsin Ali, MPHIL,a,b Euan Ashley, MBCHB, DPHIL,c,d,e Joel T. Dudley, PHDa,b
ABSTRACT
ISS

Fro

an

Sta

Pa

Co

Ce

fol

R0

Ce

Na

ha

He

Ho

On

oth

ser

Ma
Artificial intelligence and machine learning are poised to influence nearly every aspect of the human condition, and

cardiology is not an exception to this trend. This paper provides a guide for clinicians on relevant aspects of artificial

intelligence and machine learning, reviews selected applications of these methods in cardiology to date, and identifies

how cardiovascular medicine could incorporate artificial intelligence in the future. In particular, the paper first reviews

predictive modeling concepts relevant to cardiology such as feature selection and frequent pitfalls such as improper

dichotomization. Second, it discusses common algorithms used in supervised learning and reviews selected applications

in cardiology and related disciplines. Third, it describes the advent of deep learning and related methods collectively

called unsupervised learning, provides contextual examples both in general medicine and in cardiovascular medicine,

and then explains how these methods could be applied to enable precision cardiology and improve patient outcomes.

(J Am Coll Cardiol 2018;71:2668–79) © 2018 The Authors. Published by Elsevier on behalf of the American College of

Cardiology Foundation. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
T he promise of artificial intelligence (AI) and
machine learning in cardiology is to provide
a set of tools to augment and extend the

effectiveness of the cardiologist. This is required for
several reasons. The clinical introduction of data-
rich technologies such as whole-genome-sequencing
and streaming mobile device biometrics will soon
require cardiologists to interpret and operationalize
information from many disparate fields of biomedi-
cine (1–4). Simultaneously, mounting external pres-
sures in medicine are requiring greater operational
efficiency from physicians and health care systems
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(5). Finally, patients are beginning to demand faster
and more personalized care (6,7). In short, physicians
are being inundated with data requiring more sophis-
ticated interpretation while being expected to
perform more efficiently. The solution is machine
learning, which can enhance every stage of patient
care—from research and discovery to diagnosis to se-
lection of therapy. As a result, clinical practice will
become more efficient, more convenient, more
personalized, and more effective. Furthermore, the
future’s data will not be collected solely within the
health care setting. The proliferation of mobile
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AB BR E V I A T I O N S

AND ACRONYM S

AI = artificial intelligence

CNN = convolutional

neural network

EHR = electronic health record

RNN = recurrent neural

network

= support vector machine
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sensors will allow physicians of the future to monitor,
interpret, and respond to additional streams of
biomedical data collected remotely and automati-
cally. In this technology corner, we introduce com-
mon methods for machine learning, review several
selected applications in cardiology, and forecast
how cardiovascular medicine will incorporate AI in
the future (Central Illustration).

HOW DO ARTIFICIAL INTELLIGENCE

AND MACHINE LEARNING

RELATE TO STATISTICS?

Physicians have long needed to identify, quantify,
and interpret relationships among variables to
improve patient care. AI and machine learning
comprise a variety of methods that allow computers
to do just this, by algorithmically learning efficient
representations of data. Here, we use the terms
“artificial intelligence” and “machine learning” more
or less synonymously, although more precisely ma-
chine learning can be understood as a set of tech-
niques to enable AI. The difference between classical
machine learning and classical statistics is less one of
methodology than one of intent and culture. The
primary focus of statistics is to conduct inference
about sample or population parameters, whereas
machine learning focuses on algorithmically repre-
senting data structure and making predictions or
classifications. These 2 ambitions are often inter-
twined. Thus, we do not place a definite boundary
between classical statistics and machine learning
methods and instead view them as analogous but
often applied to answer different questions.

WHY DOES CARDIOLOGY NEED

ARTIFICIAL INTELLIGENCE?

AI emerged because more familiar algorithms can
often be improved on for real-world tasks. Consider
the case of logistic regression. To enable statistical
inference such as estimation of coefficients and
p values, this model requires a number of strong as-
sumptions (e.g., independence of observations and
no multicollinearity among variables). When logistic
regression is used for other purposes, the assump-
tions that enable statistical inference may be unre-
lated to the goal and can hinder the model’s
performance. In contrast, machine learning algo-
rithms are typically used without making as many
assumptions of the underlying data. Although this
approach hinders the possibility for traditional sta-
tistical inference, it results in algorithms that gener-
ally are more accurate for prediction and
classification. Thus, cardiovascular medicine can
benefit from the incorporation of AI and ma-
chine learning.

SUPERVISED LEARNING:

CLASSIFICATION AND PREDICTION

Machine learning strategies can be broadly
split into either unsupervised or supervised
learning. These have different goals. Unsu-
pervised learning focuses on discovering un-

derlying structure or relationships among variables in
a dataset, whereas supervised learning often involves
classification of an observation into 1 or more cate-
gories or outcomes (e.g., “Does this electrocardio-
gram represent sinus rhythm or ventricular
fibrillation?”). Supervised learning thus requires a
dataset with predictor variables (“features” in ma-
chine learning parlance) and labeled outcomes. In
medicine, predictive modeling is often performed
when observations have labels such as “cases” or
“controls,” and these observations are paired to
associated features such as age, sex, or clinical
variables.

FEATURE SELECTION

Feature selection is essential for predictive modeling,
and machine learning is particularly useful for it.
Consider the example of a physician who wishes to
predict whether a patient with congestive heart fail-
ure will be readmitted to the hospital within 30 days
of the index admission. This is a difficult problem
where machine learning techniques have been shown
to improve on traditional statistical methods (8,9).
Our hypothetical clinician possesses a large but
“messy” electronic health record (EHR) dataset
(Figure 1). Typically, EHRs include variables such as
International Classification of Diseases-ninth revision
and tenth revision billing codes, medication pre-
scriptions, laboratory values, physiological measure-
ments, imaging studies, and encounter notes. It is
difficult to decide a priori which variables should be
included in a predictive model. Fitting a logistic
regression model is, in fact, algebraically impossible
when there are more independent variables than ob-
servations. Techniques such as univariate signifi-
cance screening (i.e., including independent
variables only if each is associated with the outcome
in univariate analyses) or forward step-wise regres-
sion are commonly used. Unfortunately, these
methods lead to models that do not tend to validate
in other datasets and are poorly generalizable to pa-
tients (10,11). Furthermore, there are often complex
interactions between variables. For example, 1 drug
may significantly interact with another drug only if

SVM



CENTRAL ILLUSTRATION Role of Artificial Intelligence in Cardiovascular Medicine

Johnson, K.W. et al. J Am Coll Cardiol. 2018;71(23):2668–79.

The incorporation of artificial intelligence (AI) into cardiovascular medicine will affect all aspects of cardiology, from research and development to clinical practice to

population health. This illustration demonstrates selected applications within all 3 domains of cardiovascular care.
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other conditions are present. The quantity and qual-
ity of such interactions are difficult to describe using
traditional methods. With machine learning, we can
capture and use these complex relationships. Fea-
tures engineered by unsupervised learning are also
often incorporated into supervised learning models.
Churpek et al. (12) demonstrated the utility of ma-
chine learning feature selection in their paper
comparing methods for prediction of clinical deteri-
oration on the wards. Using demographics, laboratory
values, and vital signs, these investigators found that
a variety of different algorithms outperformed
logistic regression to a clinically significant extent. An
overview of several machine learning algorithms is
presented later.

PROBLEMS IN BIOMEDICAL

MACHINE LEARNING

Of course, supervised machine learning is not a
panacea for prediction tasks. Even a perfect model is
limited by the quality and magnitude of signal in the
dataset from which it is trained. This is an important
idea—even with a perfect algorithm, the model can



FIGURE 1 Overview of the Machine Learning Workflow
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The central promise of machine learning is to incorporate data from a variety of sources (clinical measurements and observations,

biological –omics, experimental results, environmental information, wearable devices) into sensible models for describing and predicting

human disease. The typical machine learning workflow begins with data acquisition, proceeds to feature engineering and then to algorithm

selection and model development, and finally results in model evaluation and application.
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only be as good as the relevant information in the
dataset. For example, using approximately 250 vari-
ables representing demographics, socioeconomic
status, medical history, clinical symptoms, vital
signs, laboratory values, and discharge interventions,
Frizzell et al. (13) found that machine learning algo-
rithms were unable to predict 30-day readmission
better than logistic regression. In fact, all models
performed only marginally better than a random
classifier. Although the study by Frizzell et al. (13) is
methodologically excellent, the findings are poten-
tially limited by a dataset that does not contain many
strong predictors of heart failure readmission. For
example, although these investigators did include
variables to describe socioeconomic status, it remains
difficult to code and quantify social determinants of
health, which seem to be highly important for hos-
pital readmission. This limitation applies to both
classical statistical modeling and machine learning
methods.

DICHOTOMANIA

Clinicians generally work with dichotomized out-
comes (e.g., “Should we give this patient a statin or
not?”) (14). However, framing clinical and scientific
questions like this in some cases is imprecise and is
called “improper dichotomization” (15,16). Two cases



FIGURE 2 Two Common Pitfalls in Predictive Modeling
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(A) Visual demonstration of the concept of improper dichotomization on a dependent variable. Improper dichotomization obfuscates continuous relationships between

predictors and response variables. (B) Concept of “calibration” in predicted probabilities in a supervised learning model. Because many machine learning tasks are

framed as binary classification, the calibration of predicted probabilities is often underappreciated. Proper calibration of predicted probabilities is often just as important

as accurate binary classification because reduction of probabilities to binary classifications can be understood as a form of improper dichotomization.
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illustrate this point. First, consider a treatment
paradigm such as the U.S. Preventive Services Task
Force primary prevention statin recommendation
guidelines, which incorporate a 10% threshold for 10-
year cardiovascular risk as 1 of 3 criteria when grading
the evidence for whether patients should be advised
to take statins for primary cardiovascular disease
prevention. Creating hard cutoffs for continuous
outcomes (e.g., 10-year cardiovascular risk) leads to
problems for individuals on the boundaries of the
classification rule. To continue with the previous
example, there may be only small differences for
patients with a 9.5% predicted risk versus those with
a predicted 10.5% predicted risk, yet a hypothetical
dichotomous clinical recommendation machine using
a 10% threshold as its basis could lead to different
clinical plans for these “medium-risk” and
“high-risk” patients that may or may not be appro-
priate. We instead recommend treating patients on
the basis of their personalized 10-year risk, as many
physicians already intuitively do, instead of consid-
ering them part of discretized blocks of patients who
are at different risks according to a dichotomized
categorization.

Furthermore, improper dichotomization reduces
the precision of predictive models. Consider the
example of a clinical trial of a disease biomarker with
normally distributed values. A treatment changes
biomarker values, and the amount of change in the
biomarker is measured. Next, the researchers choose
to dichotomize those patients with changed biomarker
levels in the top half of change as “responders” and the
bottom half of change as “nonresponders.” This deci-
sion reduces the precision of the biomarker study to



TABLE 1 Brief Overview of 3 Common Supervised and Unsupervised Learning Algorithm Classes*

Example Algorithm Class Advantages Disadvantages
Example Application

(Ref. #)

Supervised Learning
Goals: Prediction of outcome, classification of

observation, estimation of a parameter

Regularized regression Straightforward and automatic solution
to high-dimensional problems

Familiar interpretations for relationship
of variables to outcomes

For groups of correlated
features, arbitrary selection
of single feature (LASSO)

Construction of a
predictive model for
acute myocardial
infarction by using
proteomic
measurements and
clinical variables (18)

Ensembles of decision trees Often best “off-the-shelf” algorithm
for prediction or classification

Feature selection and variable importance
assessment are built in

More useful for prediction
than for descriptive analysis
of dataset and variables

Tendency to overfit data

Prediction of
cardiovascular
event risk (19)

Support vector machines Transforms linear classifiers into nonlinear
classifiers with the “kernel trick”

Often makes highly accurate
predictions

Performs nonprobabilistic
classification by default

Computation can be difficult
in high-dimensional space

Prediction of in-stent
restenosis
from plasma
metabolites (22)

Unsupervised Learning
Goals: Discovery of hidden structure in a data,

exploration of relationships between variables.
Features discovered by unsupervised learning
can often be incorporated into supervised
learning models

Deep learning algorithms Current state-of-the art method for feature
engineering; features are often used as
input for supervised learning model

Wide interest across industry and academia;
rapidly developing software ecosystems

Computationally expensive
to train

Requires a large dataset to train
the model

Model interpretability can be
difficult

Construction of
predictive
representations of
patients in an
unsupervised fashion
from electronic
health records (36)

Tensor factorization Natural incorporation of
multimodal and multidimensional data

Modest number of
applications thus far in
published cardiovascular
reports

Choice of factorization algorithm
is crucial for results

Subtyping of congestive
heart failure
with preserved
ejection fraction (34)

Topological data analysis Interpretable clustering and discovery
of variable relationships

Software ecosystem less mature
than for other methods

Commercial offerings require
licensing agreement

Subtyping of type 2
diabetes
mellitus from
electronic
medical records (35)

*Deep learning is included as an unsupervised learning method; however, many of the most notable applications of deep learning are those that use features learned using deep neural networks as inputs to
supervised learning models. In fact, the final neural network layer in a deep learning model is often simply a classification layer, and in such a case deep learning models may be considered to be an example of
supervised learning.

LASSO ¼ least absolute shrinkage and selection operator.

J A C C V O L . 7 1 , N O . 2 3 , 2 0 1 8 Johnson et al.
J U N E 1 2 , 2 0 1 8 : 2 6 6 8 – 7 9 Artificial Intelligence in Cardiology

2673
64% of the value attainable by using raw, non-
dichotomized numbers instead (17). This issue is so
widespread in biomedical publications that it is
sometimes facetiously referred to as “dichotomania”
by statisticians (17). Essentially, dichotomizing
continuous data leads to loss of useful information
about the strength of relationships and thus leads to a
loss of power (Figure 2A). Instead, it is preferable to
predict individual patient probabilities instead of
making binary classifications. However, probabilities
are useful only when they are accurate—consider the
models validated by Kolek et al. (18) to predict atrial
fibrillation from electronic health records. Although
the models performed moderately well at classifying
patients into low-risk or high-risk groups, predicted
probabilities in each groupwere respectively too lowor
too high. This is called poor model calibration, which
often occurs when standard regression techniques are
used to model rare events (19) (Figure 2B). Better-
calibrated prediction of outcome probabilities is an
area wheremachine learning algorithms could provide
clinical benefit.

A BRIEF SURVEY OF SUPERVISED MACHINE

LEARNING ALGORITHMS IN CARDIOLOGY

Ultimately, supervised machine learning is the
attempt to model how independent variables relate to
a dependent variable (Table 1). In machine learning,
one must choose a strategy (by selecting a particular



FIGURE 3 Visual Representation of Some Common Algorithms in Machine Learning

Original dataset
(linearly inseparable)

Statin responder

Statin non-responder

Kernel trick

Support vector

Agent

Ge
ne

 2
 E

xp
re

ss
io

n

Gene 1 Expression

DC

B

A

Environment (x)

Re
w

ar
d 

r(
t) Action a(t)

St
at

e 
Ch

an
ge

 x
(t

)

Variables
Variable 1

Variable 2
Variables

Class A

Class A

Repeat for n trees

Class B

Bootstrapping

Bagging

Randomly
select

No hyperplane separates responders
from non-responders in 2D

Build
decision tree
from samples

Sa
m

pl
es

Sa
m

pl
es

Input Features

Additional Hidden Layers

Outputs

Su
pp

or
t V

ec
to

r

Gene 1 Expression Gene 2 Expression

Support vector separating
responders and

non-responders in 3D

(A) Random forests incorporate both bootstrapping (selection of a subset of samples) and bagging (selection of a subset of predictive variables) for each individual tree.

(B) Support vector machines. In binary classification, a support vector machine finds a hyperplane that separates classes. The “kernel trick” projects input data to a

higher dimension before an ensuing support vector is computed. (C) Deep learning models comprise layers of stacked neurons that can be used to learn complex

functions. (D) Reinforcement learning algorithms are used to train the action of an agent on an environment.
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algorithm) to discover these relationships. This sec-
tion highlights several algorithms that may be used in
cardiovascular settings and provides a summary of
supervised and unsupervised algorithms.

REGULARIZED REGRESSION. Imagine a situation
where you have dozens, hundreds, or thousands of
variables collected on just a few patients. You wish to
decipher which variables are actually of relevance. As
noted earlier, in this “big p, small n” (i.e., large
number of features relative to a small number of
samples) situation, a potential solution is a class of
techniques called regularized regression. In this
context, regularization means the introduction of
additional constraints to decrease model complexity,
thus allowing the model to generalize better to other
data. Some common forms of regularized regression
are called LASSO (least absolute shrinkage and se-
lection operator) regression, ridge regression, and
elastic net regression. To give an example of the
benefits of regularization, Halim et al. (20) used lo-
gistic elastic net regression when combining proteo-
mic measurements with clinical variables to predict
the incidence of myocardial infarction or death. As
these investigators noted, elastic net regression
allowed them to evaluate many independent features
in a novel way and ultimately helped them find
candidate proteomic biomarkers for cardiovascular
event risk.

TREE-BASED METHODS. Tree-based methods are a
widely applied set of powerful but deceptively simple
algorithms. Clinicians will find these useful because
they are often referred to as the best “off-the-shelf”
machine learning algorithm, and they are often
among the first algorithms that should be used. In
contrast to regularized regression, tree methods are
especially useful when the data are “tall,” that is,
when there are many observations for a few
variables. Tree-based methods use different subsets
of the data repeatedly to build a final, complex,
nonlinear model. In a clinical example, Weng et al.
(21) used trees and another technique called gradient
boosting to predict cardiovascular event risk in a
sample of approximately 380,00 patients in the
United Kingdom. These investigators found that the
2 machine learning algorithms outperformed the
American College of Cardiology and American Heart
Association risk algorithm by 1.7% and 3.6%,
respectively.

The major problem with simple decision trees in
practice is that they tend to overfit data—simple de-
cision trees are high-variance learners and do not
generalize well to other datasets. Two methods to
address this issue are called bootstrapping and
bagging (Figure 3A). These methods create many
different decision trees, each of which is a weaker
model than a single decision tree. Bootstrapping in-
volves only taking a random sample of the observa-
tions before each decision tree is built. Random
forests are a popular modification of trees: at each if-
then step of the tree building process, only a
randomly sampled subset of the variables is shown to
the building algorithm. This is called bagging. When
the outputs of the many weak individual learners
(individual trees) in a random forest are aggregated
together, they tend to perform very well. This is
analogous to a team of medical providers, each with a
different area of training (e.g., cardiology, gastroen-
terology, surgery) consulting together to treat a
complex patient. Each physician will notice different
features of the patient’s presentation, and their
combined treatment decision would often be better
than a single physician’s decision alone. We have
previously used such “ensemble” methods to auto-
mate analysis of echocardiography imaging (22,23).

SUPPORT VECTOR MACHINES. Support vector ma-
chines (SVMs) comprise another widely used machine
learning algorithm in the cardiovascular domain
(Figure 3B). Clinicians may find SVMs useful because
although relatively straightforward, they can capture
complex nonlinear relationships. In a binary classifi-
cation problem, SVMs map input observations into a
higher-dimensional space and then attempt to
construct a “hyperplane” that linearly separates the 2
classes. Cui et al. (24) demonstrated the usefulness of
SVMs, by predicting in-stent restenosis with 90% ac-
curacy from plasma metabolite levels. SVMs have 2
major downsides. First, they perform non-
probabilistic classification (25). This means that, by
default, SVMs work on dichotomized outcomes. As
noted earlier, this is sometimes a problem; however,
secondary methods to compute probabilistic out-
comes (called Platt scaling or isotonic regression)
from SVMs do exist. Second, similar to linear regres-
sion, computation of the input observations in a very
high-dimensional space (i.e., when there are many
variables) can be difficult or impossible.

UNSUPERVISED LEARNING,

NEURAL NETWORKS, AND DEEP LEARNING

NEURAL NETWORKS AND DEEP LEARNING. Neural
networks are machine learning models inspired by
the organization of the human brain. The earliest
application of neural networks in cardiology dates to
at least 1995 (26,27). These models consist of nodes
called neurons arranged in a network layout (28). The
first level of nodes points into another layer of nodes
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in the network called a “hidden layer,” and there may
be 1 or multiple hidden layers. A neuron in the hidden
layer is activated when input neurons pass a large
enough value to trigger the neuron, much like a bio-
logical neuron. Activated neurons continue to pass a
value to the next layer of neurons until the final
“output layer” of neurons is reached.

Deep learning is a powerful method premised on
learning complex hierarchical representations from
the data that constitute multiple levels of abstraction.
Clinicians should understand that deep learning
models are quickly becoming the state-of-the-art
method and will enable the coming future applica-
tions of AI. In fact, deep learning models already
underpin many of the features of modern technology
we currently use, from automatic facial recognition in
images in photographs uploaded to Facebook to the
technology that allows Amazon’s Alexa and Apple’s
Siri to perform high-quality voice recognition. Deep
learning models are essentially neural networks with
many layers of intermediate “hidden” neurons.
Practical deep learning emerged only in past few
years, in part because of the advent of graphics pro-
cessing unit (GPU)–based parallel processing. Inter-
estingly, a driving force behind this hardware
technology is the 3-dimensional graphics company
NVidia, which makes GPUs that are often used for
deep learning.

WHAT MAKES DEEP LEARNING COMPELLING? Deep
learning models use many hidden layers of neurons
to produce increasingly abstracted, nonlinear repre-
sentations of the underlying data (Figure 3C). This so-
called “representation learning” is perhaps the most
important part of a deep neural network—after the
representations are learned, final output nodes are
often used as inputs to a logistic regression model or
SVM for the final regression or classification. Two of
the most common forms of deep learning models for
supervised learning are called convolutional neural
networks (CNNs) and recurrent neural networks
(RNNs). The difference between CNNs and RNNs is
chiefly how layers of nodes are designed. There exists
an enormous variety of deep neural network archi-
tectures in addition to these 2 methods. LeCun,
Bengio, and Hinton (29) provide an excellent intro-
duction to deep learning.

CNNs are similar to fully connected neural net-
works, also constructed of neurons that have learn-
able weights and biases. What makes them powerful
is the ability to create local connectivity across an
image or a signal. These simple local connections
have non-linear activation functions that transform
the representation into a higher, slightly more
abstract representation. In addition, shared weights
across layers, layer pooling, and the ability to use
many hidden layers allow for learning of very com-
plex functions. Conversely, RNNs are well suited for
sequential data such as speech and language. RNNs
are composed of an additional hidden state vector
that contains “memory” about the history of data
previously observed.

DEEP LEARNING IN CARDIOLOGY. In contrast to
other technological fields, deep learning in health
care is still developing, and its applications thus far to
cardiology are rather limited (30,31). The earliest
commercial applications of deep learning were for
computer vision, or the computational analysis of
images. Similarly, many of the initial biomedical ap-
plications of AI have been in the domain of image
processing. For example, Gulshan et al. (32) har-
nessed a CNN to detect diabetic retinopathy from a
database of 128,00 retinal images. These investigators
obtained a sensitivity of 97.5% and specificity of
96.1% when compared with a gold standard classifi-
cation by 7 to 8 ophthalmologists. Esteva et al. (33)
used a CNN on 129,000 of dermatological lesions to
classify whether the lesion was a benign seborrheic
keratosis versus a keratinocyte carcinoma or a benign
nevus versus a malignant melanoma. This group
found that their CNN performed about as well as a
panel of 21 board-certified dermatologists. Impor-
tantly, these 2 papers demonstrate an important
drawback of deep learning: it takes an enormous
amount of data to train a deep learning model
because of the vast number of parameters that must
be estimated. The expense and difficulty of acquiring
biomedical data compared with other fields are
limiting factors for the application of AI in some
circumstances.

Despite its nascence, deep learning applied to the
domain of cardiology shows great potential. For
example, in 2016, citizen-scientists participated in
the Second Annual Kaggle Data Science Bowl,
“Transforming How We Diagnose Heart Disease.”
The bowl challenged scientists to create a method
to measure end-systolic and end-diastolic volumes
in cardiac magnetic resonance images from more
than 1,000 patients automatically. The top-
performing team had no prior background in med-
icine. In fact, they were data scientists who worked
for a financial institution. In addition, at the
beginning of 2016, the first paper was published
applying CNNs for electrocardiographic anomaly
detection (34). The method consisted of a 2-stage
learning process, first finding an appropriate
feature representation per patient and then using
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the first learned features for anomaly detection at
later time points for the same patient.

Abdolmanafi et al. (35) used a CNN called AlexNet
to classify coronary artery optical coherence tomog-
raphy images in Kawasaki disease automatically.
Notably, these investigators found that using the
convolutional network as a feature extractor in com-
bination with a random forest was as accurate as fine-
tuning the CNN itself for prediction, but it took much
less time. In an example of noncomputer vision-
based neural network, Choi et al. (36) used an RNN
to predict heart failure diagnosis from EHRs. Their
RNN only modestly outperformed other machine
learning algorithms when using 12 months of EHR
data. When these investigators expanded their data-
set to include another 6 months of data, their model
outperformed other machine learning algorithms.
Notably, as part of this work Choi et al. (36) developed
an innovative method to include temporal
sequencing as part of the neural network.

UNSUPERVISED LEARNING. Although we have thus
largely focused on supervised machine learning, an
equally important concept is unsupervised learning
(Table 1). Whereas supervised learning focuses on
prediction of outcomes and requires labeled cases,
unsupervised learning focuses on uncovering under-
lying structure and relationships in a dataset. Unsu-
pervised learning does not require labeled
observations. Like supervised learning, unsupervised
machine learning methods exist on a continuum with
more traditional statistical methods such as principal
components analysis, mixture modeling, and various
methods of clustering. However, in recent years some
new techniques that require fewer assumptions about
the dataset have emerged, such as advanced algo-
rithms for matrix or tensor factorization (37), topo-
logical data analysis (38), and deep learning (39).

One of the most promising uses of unsupervised
learning methods for cardiology is subtyping or
“precision phenotyping” of cardiovascular disease
(40,41). We use precision medicine as a term
describing the synthesis of multiple sources of evi-
dence to refine monolithic disease categories into
more stratified and ultimately more personal disease
concepts. Precision medicine in cardiology exists in
contrast to precision medicine as understood in other
fields such as cancer, where a series of somatic ge-
netic mutations can clearly define a before and after
state (40,41). In cardiology, most diseases are slow,
heterogeneous, multimorbid, chronic processes
where pathogenesis may begin decades before any
ultimate disease manifestation. This is compounded
by the issue that many disease concepts in cardiology
such as heart failure or coronary artery disease are
somewhat broadly defined and may be arrived at by
different pathophysiological mechanisms. Unsuper-
vised learning allows to us enable precision cardiol-
ogy by learning subtypes of monolithic disease
concepts, and we envision ultimately it will help to
treat these subtypes differently and thus lead to
improved outcomes.

In this context, cardiology is ripe for the applica-
tion of unsupervised learning. For example, Li et al.
(38) combined EHR with genetic data from a health
system biobank to study type 2 diabetes mellitus. An
unsupervised learning technique called topological
data analysis revealed the presence of 3 distinct
subtypes of type 2 diabetes. These subtypes may
reflect differing etiologies and enable subtype-based
therapies. In another example, Miotto et al. (39)
used a type of deep learning network with stacked
denoising autoencoders (a type of neural network) to
build representations of all patients within a single
hospital’s EHR in an entirely unsupervised fashion.
Katz et al. (42) and Shah and Ho et al. (43–46) pub-
lished a series of papers using various clustering
techniques to identify disease subtypes of heart fail-
ure with preserved ejection fraction. More recently,
Luo, Ahmad, and Shah (37) proposed the application
of tensor factorization for subtyping of heart failure
with preserved ejection fraction. Tensor factorization
is especially attractive because tensors (multidimen-
sional matrices) naturally lend themselves to repre-
sentation of multimodal data. In the context of
precision medicine, factorization of tensors should
enable the identification of disease subtypes by using
very high-dimensional data.

REINFORCEMENT LEARNING

Reinforcement learning algorithms learn behavior
through trial and error given only input data and an
outcome to optimize (Figure 3D). In popular culture, a
breakthrough example from 2015 highlights the po-
wer of this technique. A group of researchers trained a
reinforcement learning model on a variety of classic
Atari 2600 video games and provided only video
input and the game’s final score (47). The model
“learned” the optimal method to maximize the final
score. More recently, a research group at Google
trained a reinforcement learning model to beat a
world champion at the Chinese board game Go, a task
once believed too difficult for computers (48). Spe-
cifically, reinforcement learning algorithms consist of
an agent at a particular time interacting with an
environment. An action is selected for each time
point according to some selection policy. Transitions
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to the next state are then performed, and a reward is
received depending on the result of the transition.
The restricted learning model aims to maximize the
expectation of long-term rewards from each state
visited.

Application of reinforcement learning to health
care and cardiology thus far has been scarce. So-
called dynamic treatment regimens that tailor treat-
ment decisions to a patient’s characteristics are
potential applications for reinforcement learning al-
gorithms because of their inherent sequential
decision-making structure, although statistical causal
inference approaches also show promise when
applied to this problem (49). Work from Shortreed
et al. (50) demonstrated that reinforcement learning
can work for optimization of treatment policies in
chronic illnesses. Importantly, these investigators
showed that reinforcement learning can overcome
the problem of missing data and quantify the uncer-
tainty of recommended policy. More recent work us-
ing restricted learning to manage weaning of
mechanical ventilation in intensive care units shows
great promise in minimizing rates of reintubation and
regulating physiological stability (51). We envision
that reinforcement learning models will eventually be
commonplace and function as physician extenders in
day-to-day clinical practice, either built into the EHRs
or as part of devices worn by the clinician.

WHAT WILL CARDIOVASCULAR MEDICINE

GAIN FROM MACHINE LEARNING AND

ARTIFICIAL INTELLIGENCE?

Cardiologists make decisions for patient care from
data, and they tend to have access to richer quanti-
tative data on patients compared with many other
specialties. Despite some potential pitfalls, it is
becoming evident that the best way to make decisions
on the basis of data is through the application of
techniques drawn from AI. Cardiologists will thus
need to incorporate AI and machine learning into the
clinic. Indeed, as the amount of available patient-
level data continues to increase and we continue to
incorporate new streams of complex biomedical data
into the clinic, it is likely that AI will become essential
to the practice of clinical medicine. This will probably
happen sooner rather than later, as exemplified by
the rapid adoption of automated algorithms for
computer vision in radiology and pathology (52).

However, the incorporation of AI into cardiology is
not something that clinicians should fear, but is
instead a change that should be embraced. AI will
drive improved patient care because physicians will
be able to interpret more data in greater depth than
ever before. Reinforcement learning algorithms will
become companion physician aids, unobtrusively
assisting physicians and streamlining clinical care.
Advances in unsupervised learning will enable far
greater characterization of patients’ disorders and
ultimately lead to better treatment selection and
improved outcomes. Indeed, AI may obviate much of
the tedium of modern-day clinical practice, such as
interacting with EHRs and billing, which will likely
soon be intelligently automated to a much greater
extent. Although currently machine learning is often
performed by personnel with specialized training, in
the future deploying these methods will become
increasingly easy and commoditized. The expert
knowledge of pathophysiology and clinical presenta-
tion that physicians acquire over their training and
career will remain vital. Physicians should therefore
take a lead role in deciding where to apply and how to
interpret these models.

ADDRESS FOR CORRESPONDENCE: Dr. Joel T. Dud-
ley, Icahn School of Medicine at Mount Sinai Uni-
versity, 770 Lexington Avenue, 15th Floor, New York,
New York 10065. E-mail: joel.dudley@mssm.edu.
Twitter: @jdudley.
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