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ABSTRACT
The Product Line Architecture (PLA) of a Software Product Line
(SPL) is the core architecture that represents a high-level design for
all the products of an SPL, including variation points and variants.
If PLA documentation is missing, it can be recovered by reverse
engineering the products. The recovered PLA is a relevant asset
for developers and architects, that can be used to drive specific
activities of SPL development and evolution, such as, understanding
its structure and its variation points, and assessing reuse. This paper
presents an exploratory study that investigated the effectiveness
of recovered PLAs to address variability identification and support
reuse assessment. We recovered the PLA of 15 open source SPL
projects using the PLAR, a tool that supports PLA recovery and
assessment based on information extracted from SPL products’
source code. For each project, reuse assessment was supported
by existing reuse metrics. The yielded results revealed that the
number of products used in PLA recovery affected the variability
identification, and the number of optional features affected the
components reuse rate. These findings suggest that a minimum
set of representative products should be identified and selected for
PLA recovery, and the component reuse rate is a candidate metric
for SPL reuse assessment.
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1 INTRODUCTION
Many companies – mainly in the automotive, aerospace, and elec-
tronics industries – develop a portfolio of related software products,
conceived to satisfy similar, but not identical, needs of their cus-
tomers. A Software Product Line (SPL) is a set of software systems
that share a common and variable set of features satisfying the
specific needs of a particular market segment [18]. SPL engineering
supports the development and management of a product portfolio,
highlighting the commonalities and variabilities, promoting reuse,
and fostering customization. The adoption of the SPL paradigm
brings benefits, including improved product reliability, faster time
to market, and reduced costs [1].

The development of an SPL involves the implementation of dif-
ferent structures, processes, interfaces, and activities, therefore it is
relevant for SPL engineers to pay sufficient attention to its archi-
tecture [11]. The Product Line Architecture (PLA) can be defined
as (i) the core architecture that represents a high-level design for
all the products of an SPL, including variation points and variants
documented in the variability model [18], or (ii) an architecture for
a family of products that describes the mandatory, optional, and
variable components1 in the SPL, and their interconnections [9].
The PLA is one of the most valuable SPL assets because it contains
the core components of the SPL as well as the variable ones [5] in
a structure that encompasses the behavior from which software
products are developed [14].

Despite the benefits associated with SPL [1, 18], its development
is considered expensive. For this reason, companies adopt SPL by
developing a set of software products that share common charac-
teristics, adding or removing functions from products [19]. With
the growth of products portfolio, the management of variability

1In this paper we considered a PLA component as the concrete classes, abstract classes,
and interfaces.

https://doi.org/10.1145/3132498.3133835
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and reuse becomes a complex task [20], especially if there is no
architecture to support it.

In this context, the PLA plays an important role to allow the SPL
evolution and keep complexity under control. PLA assessment can
be supported by metrics to be collected during the recovery process.
For instance, reuse metrics such as those proposed by Zhang et al.
[27] – Structure Similarity Coefficient (SSC), Structure Variability
Coefficient (SVC) and Component Reuse Rate (CRR) [27] – and the
metrics proposed by Oliveira-Junior et al. [17] – ClassOptional,
ClassMandatory, and PLTotalVariability could be used to pro-
vide insights about the way PLA components are reused within
SPL products, that may be useful for SPL developers, during main-
tenance tasks.

For single systems, software architecture can be recovered and
documented from source code or other available information [4, 7].
Software Architecture Recovery (SAR) approaches share the goal of
documenting software architecture and provide solutions to prob-
lems such as the absence of documented software architecture,
and the need for detecting violations between conceptual and im-
plemented architectures [7]. In the SPL domain the PLA provides
information about the common and variable components, providing
useful information for software reuse. Although the architecture
description is part of the SPL adoption process, not all projects have
a PLA documented. The PLA recovery can help developers with
the SPL evolution and maintenance tasks.

In previous work [16], we reported the results of a literature re-
view undertaken to investigate research work that brings together
the fields of software product lines and software architecture recov-
ery. Several approaches to PLA recovery [12, 20] were identified, as
well as research trends and gaps. We have found out that few SAR
tools support variability identification, an essential feature for PLA
recovery. Additional features such as support for PLA assessment,
were not found either. Finally, these tools were mostly not available
for use. These gaps motivated us to develop the PLAR Tool, a PLA
recovery and assessment tool [3].

This paper presents the results of an exploratory study conducted
to assess the PLA recovered from a set of open-source SPL projects.
The PLAR tool supported PLA recovery and assessment. The main
contributions of this paper are (i) the recovery of the PLA from
15 SPL projects and (ii) the assessment of those 15 PLAs through
reuse metrics. In this paper, we discovered that is not necessary to
use all products in order to recover the PLA, the recovery process
can be improved by using only the most significant configurations.
The PLA recovery process described in the paper was used on SPL
projects from different domains and sizes.

The remainder of the paper is organized as follows. The ex-
ploratory study conducted to investigate the recovered PLA is pre-
sented as study design (Section 2), study execution (Section 3),
analysis (Section 4), and interpretation of results (Section 5). Sec-
tion 6 discusses related work, and Section 7 presents concluding
remarks and recommendations for future work.

2 STUDY DESIGN
In this Section, we present research questions (RQ), hypotheses,
metrics, and discuss the analysis procedure defined for our study.

Table 1: GQMmodel for Goal 1

Goal Purpose Verify
Issue if the number of products
Object has an impact on the PLA variabil-

ity identification precision
Viewpoint from the SPL architect point of

view

Question RQ1 Does the number of SPL products used
in PLA recovery impact the variability
identification precision in the PLA?

Metrics SSC, SVC, CRR, Optional Features,
Number of Products, and
ClassOptional

We used the Goal/Question/Metric (GQM) approach [24] be-
cause measurement is defined in a top-down fashion, from goals
to metrics. This study encompasses two related facets: number of
products impacting the precision to identify the variability in the PLA,
and number of optional features impacting reuse rate. Each facet led
to different research questions and hypotheses, as discussed next.

2.1 Research Questions
We defined two GQM models in this study, each one addressing
one facet. Based on the goals, we defined the research questions
and related them to the set of metrics under evaluation [17, 27].

GQM Model 1: Table 1 describes the GQM model for the fol-
lowing goal: “Verify if the number of products has an impact on the
PLA variability identification precision”. Related to this goal, we
defined the following research question: Does the number of SPL
products used in PLA recovery impact the variability identi-
fication precision in the PLA?

The product generation tool provides the number of SPL products
used in PLA recovery. The PLTotalVariability metric is used to
estimate the total number of variable components expected in the
PLA, and the SVC metric is used to calculate the overall variability
of PLA components. Moreover, we verified the metrics values with
different number of products in the comparison.

GQM Model 2: Table 2 describes the GQM model for the fol-
lowing goal: “Identify correlations between the number of optional
features and the component reuse rate of the PLA”. Based on this goal
we defined the following RQ: Is there any correlation between
the number of optional features in the SPL and the component
reuse rate of the recovered PLA?

The product generation tool provides the number of optional
features in the SPL. We used this information together with the SSC
metric value to estimate the impact of optional features on the PLA
component reuse rate.

2.2 Hypotheses
In order to answer the research questions, we postulated the fol-
lowing hypotheses:
RQ.1 Hypotheses
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Table 2: GQMmodel for Goal 2

Goal Purpose Identify
Issue if there is any correlation between
Object the number of optional features

and the component reuse rate of
the PLA

Viewpoint from the SPL architect point of
view

Question RQ2 Is there any correlation between the
number of optional features in the SPL
and the component reuse rate of the re-
covered PLA?

Metrics SSC, SVC, CRR, Optional Features

H0a The number of SPL products analyzed does not influence
the variability identification precision.

H1a The variability identification precision is influenced by
the number of SPL products analyzed.

RQ.2 Hypotheses
H0b There is no relation between the number of optional

features in the SPL and the component reuse rate values
in the recovered PLA.

H1b There is a relation between the number of optional fea-
tures in the SPL and the component reuse rate values in
the recovered PLA.

2.3 Metrics
Table 3 describes the metrics used in this study. The recovered
PLA is evaluated based on the metrics analysis of its components
with the SSC, SVC, and CRR metrics. The amount of common and
variable components of the PLA is also measured and support the
calculation of SSC, SVC and CRR.

The PLA recovery activity collects the following data from the
SPL project: number of SPL optional features, number of SPL varia-
tion points, number of SPL products (M) number of common com-
ponents (CC ), number of variable components (CV ), number of
common relations (RC ) and number of variable relations (RV ). Data
to be collected by PLA assessment includes reuse measurement
values for PLA components and relations.

2.4 Analysis Procedure
The method to evaluate the variability identification precision of
the recovered was based on correlation analysis. We analyzed met-
rics concerning both the number of products and related with
the variability identification (SVC, RSVC, PLTV, ClassOptional (CO),
OptionalRelation (OR), and optional-Features). The analysis
examines whether the number of products (M) influences the vari-
ability identification rate of individual PLAs.

To test our hypothesis related to RQ1, we analyzed the result
from the correlation analysis. As statistical tests, we applied the
Spearman rank correlation [6], which is a non-parametric test that
is used to measure the degree of association between two variables.

Our method for evaluating the effectiveness of the recovered
PLA to support reusability evaluation was based on the analysis of
CRR, which examines whether the number of optional features (OF)
influences the component reuse rate of PLA.

To test our hypothesis related to RQ2, we compared the CRR
values from 15 SPL projects for testing the null hypothesis that
the number of optional features has no influence on the CRR. As
statistical tests, we applied the ANOVA [15] to identify if at least
one SPL presented different CRR value, and the Tukey test [15] to
perform a pairwise comparison between the values.

3 STUDY OPERATION
3.1 Preparation
Fifteen open source SPL projects from different domains were
selected for this exploratory study, based on the following cri-
teria: lack of documented PLA and source code written in Java.
Table 4 summarizes our sample and presents the number of fea-
tures (mandatory and optional), classes and products of each SPL,
and the tool used for product generation.

3.2 Execution
Figure 1 shows the main activities, inputs, and outputs of the PLA
recovery process executed for this study. The selected SPL projects
were subject to product generation, information extraction with
STAN4J, and PLA recovery with the PLAR Tool.

Only valid product configurations were used. A product config-
uration is valid if it obeys the SPL feature model dependencies [1].
For any SPL with a potential high number of products (e.g. Prop4J
can have 5K products), we used the T-Wise method [10] (with t = 2)
to generate only a subset of SPL products. T-Wise builds only the
most significant products, based on the SPL feature model. Some
SPL projects (DPL, VOD, Zip Me, and GOL) had existing generated
products available, so that we could skip product generation.

For each selected SPL project, we extracted a module dependency
graph (MDG) based on the analysis of the products’ source code,
with the support of Stan4J 2. The MDG represents the concrete
classes, abstract classes, interfaces, and the relationship among
them. This is done because there are different mechanisms to imple-
ment the variability (we could enlist conditional compilation, inher-
itance, parameterization, and overloading as the most widely used
ones [2, 21]) and different composers (e.g. Featurehouse, AHEAD,
CIDE, and so on [22]).

By generating the products, it was possible to recover the PLA
from different SPL projects (implemented using #IFDEF directives
or FeatureIDE [22]) independently of the variability implementation
mechanism. The set of extracted graphs served as input to PLA
recovery, with the support of the PLAR Tool [3].

The PLAR tool analyzes the MDG files to identify the variability
at the architectural level by comparing the components. The main
output is the PLA, represented as Module View, Class Diagram, and
Design Structure Matrix (DSM). The tool also provides a metrics
report, that contains the calculation of the metrics presented on
table 3, which is used to assess the PLA.

2http://stan4j.com/
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Table 3: Metrics used to evaluate the PLA.

Metric Description Formula Source

SSC SSC calculates the overall similarity between PLA components.
|CC |

|CC |+|CV | [27]

SVC SVC calculates the overall variability between PLA components.
|CV |

|CC |+|CV | [27]

CRR Calculates the component reuse rate of each component of the PLA
∑
i Ex (Mi )

|M | × 100% [27]

ClassOptional Calculates the number of classes implementing the optional features
∑
CV [17]

ClassMandatory Calculates the number of classes implementing themandatory features
∑
CC [17]

PLTotalVariability Estimates the number of variable components found on PLA
∑
RCV +

∑
CV [17]

Legend:CC - Total number of Common Components;CV - Total number of Variable Components;M - Total number of SPL products; RCV
- Total number of Variable Relations; Ex (Mi ) - returns 1, if component i is present in the product architecture, 0 otherwise.

Table 4: SPL Projects analyzed and Metrics collected for PLAs

SPL #F #FM #OF #P #C Gen. SSC SVC RSSC RSVC CO OR CM MR PLTV

DPL 5 3 2 12 4 NA 0.5 0.5 0.3 0.7 2 2 2 1 4
VOD 11 6 5 32 42 NA 0.8 0.2 0.7 0.3 10 23 32 55 33
Zip Me 7 2 5 32 31 NA 0.8 0.2 0.7 0.3 6 14 25 32 20
GOL 21 12 9 65 21 NA 0.6 0.4 0.7 0.3 8 11 13 24 19
GPL 38 18 20 155 15 CD 0.6 0.4 0.4 0.6 6 23 9 16 29
Prop4J 13 0 13 31 14 FH 0.1 0.9 0.0 1.0 13 50 1 0 63
BankAccount 6 0 6 24 2 FH 1.0 0.0 1.0 0.0 0 0 2 1 0
BankAccountv2 8 0 8 72 3 FH 0.7 0.3 0.5 0.5 1 1 2 1 2
DesktopSearcher 22 6 16 462 41 AH 0.3 0.7 0.1 0.9 30 134 11 14 164
Elevator 6 0 6 20 5 FH 1.0 0.0 1.0 0.0 0 0 11 29 0
E-mail 6 0 6 40 3 FH 1.0 0.0 1.0 0.0 0 0 3 4 0
ExamDB 3 0 3 8 4 FH 1.0 0.0 1.0 0.0 0 0 4 5 0
PayCard 3 0 3 6 7 FH 0.7 0.3 0.4 0.6 2 5 5 3 7
PokerSPL 11 2 9 28 8 FH 0.5 0.5 0.3 0.7 4 5 4 2 9
UnionFind 10 2 8 6 4 FH 1.0 0.0 1.0 0.0 0 0 4 4 0

Legend: [#F] Features [#FM] Mandatory Features [#OF] Optional Features [#P] Product [#C] Classes [Gen.]
Product Generator [NA] Not Available [CD] CIDE [FH] FeatureHouse [AH] AHEAD [CO] ClassOptional [OR]
OptionalRelation [CM] ClassMandatory [MR] MandatoryRelation [PLTV] PLTotalVariability

Figure 1: The overall recovery process: Activities, inputs and outputs.

3.3 Data collection
For each SPL project studied, the PLA was recovered and metrics
were collected using the PLAR tool. The complete data set used in
this exploratory study is available at the study website3.
3 https://sites.google.com/view/sbcars2017-mpassos/home

https://sites.google.com/view/sbcars2017-mpassos/home


Investigating the Variability Impact on the Recovery of SPL Architectures SBCARS 2017, September 18–19, 2017, Fortaleza, CE, Brazil

4 DATA ANALYSIS
This section presents the statistical analysis of the treatment vari-
ables relating to the data items gathered in the study. First, we
present some descriptive statistics for the dependent and indepen-
dent variables; next, we present the analysis of each SPL data –
because the SPL projects used different techniques to implement
the variability.

In order to evaluate the recovered PLA, we measured SSC, SVC,
and CRR values. The SPL projects with a high SSC value and a low
SVC value indicate that the PLA is mostly composed of common
components. Conversely, projects with high SVC value and low
SSC value indicate that the PLA is mostly composed of variable
components.

4.1 Descriptive Statistics
Table 4 presents the metric results of the recovered PLAs. The SSC
metric is used to calculate the overall similarity of PLA components;
the maximum value is 1. The SVC metric calculates the general
variability of PLA components; the maximum value is 1. The RSSC
and RSVCmetrics are similar to SSC and SVC, respectively. However,
they are used to measure the similarity and variability of relations
among PLA components.

The metrics ClassMandatory calculates the number of classes
implementing the mandatory features and ClassOptional calcu-
lates the number of classes implementing the optional features.
Besides, the metrics OptionalRelation and MandatoryRelation
use the same principle to calculate the number of mandatory and
optional relations. It is possible to perform these calculations be-
cause PLAR analyzes the classes and relations captured in the MDG
files.

PLTotalVariability is a metric that estimates the PLA vari-
ability. Table 4 shows the ClassOptional and OptionalRelation
metrics.

The CRR metric is missing from the overview presented in Ta-
ble 4. This metric provides a measure for each PLA component and
relation, as it calculates the amount of products (ratio) that have
a specific component or relation. Components with CRR of 100%
indicates that the component is present in all the products. Values
above 50% mean that the component was used at least in half of
SPL products.

The ClassVP and ComponentVariable metrics were not men-
tioned in Table 4. The reason is that those metrics only indicate
whether a specific PLA component is either variable or not. Such
information could be visualized from the output files generated by
PLAR.

Figure 2 shows a boxplot with the distribution of the CRR values
for each SPL. The values range from 0 to 100, in which lower values
indicate the component is reused only in a small set of the products,
and the higher values indicate the component is reused in a lot of
products. Next, we detail the SPL projects that comprised variable
elements, as observed in the recovered PLA.

4.2 Draw Product Line Results
Draw Product Line (DPL) implements five features (three manda-
tory and two optional) that allow the configuration of a small num-
ber of products. The SSC value indicates variability in 50% of the

PLA components, while the RSVC value indicates variability in 2/3
of the PLA relations.

Table 5: CRR Measures for DPL components

Component CRRpair CRR8 CRRall

BasicRectangle 100.0 62.5 66.7
Canvas 100.0 100.0 100.0
Line 50.0 50.0 66.7
Main 100.0 100.0 100.0

Table 5 presents the CRR values for the PLA components. The
CRRpair, CRR8 and CRRall columns present the CRR value for re-
covery based on two products, eight products, and all SPL products
configurations, respectively.

The CRR measures for Canvas and Main (two classes implement-
ing common features) are 100%. For BasicRectangle, the CRRpair
measure is 100% and variability could not be identified. The CRR8
decreased 35.5% (reaching 62.5%) and CRRall increased 4.2% (reach-
ing 66.7%). For Line, the CRRpair measure is 50% and some variability
could be identified. The CRR8 remains 50% and CRRall increased
16.7% – reaching 66.7%.

Further investigation on these results is needed to confirmwhether
changes performed on DPL components that presented CRR values
above 50% could impact many DPL products [12].

4.3 Video on Demand Results
Video on Demand (VOD) implements eleven features (six manda-
tory and five optional) that provide the creation of 32 products.
The SSC value for VOD is 0.77, indicating that 32 products reused
most of its PLA components. We found similar results for the PLA
relations (see Table 4).

There are 32 classes implementing the mandatory features and
10 classes implementing the optional features in the VOD SPL. The
classes implementing the optional features had a CRR of 50%, that is,
these components were used by half of the SPL products. However,
some relations (VOD boxplot outliers in Figure 2) presented a CRR
of 25% and 3.25% indicating that few products used them. For this
reason, the refactoring of the components involved in this relation
should be considered [27]. Due to space limitation, information
about the PLA and the Table with the CRR values for the 42 classes
of the VOD SPL project are only available at the study website.

4.4 Zip Me Results
Zip Me has 32 generated products. The SSC measure was 0.8 indi-
cating the components were similar in 80% of the products. The
RSSC was 0.7, also a high value for reuse of relations (see Table 4).

The PLA components presented high CRR values – 25 common
and 6 variable components – above 50%. The PLA relations also
presented high CRR values – 32 common and 14 optional relations.
From the optional relations, 11 presented a CRR value above 50%;
the other relations had a CRR of 25%. These components, which
presented low CRR values, are the outliers Figure 2 shows.
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Figure 2: Boxplot of Component Reuse Rate per PLA

4.5 Game of Life Results
Game of Life (GOL) has 65 generated products. The SSC value was
0.62, indicating a larger amount of common components rather
than variable ones (see Table 4).

Although the GOL results indicated low SSC values, some com-
ponents were present in almost every GOL product (98% and 73%).
We found similar results for CRR and PLA relations.

Figure 3 shows the DSM for GOL PLA. Rows and columns head-
ers of a DSM are named after PLA components. The darker items
represent the commonalities of the PLA while the lighter items
represent the variable components. The tool colors the dependency
between two common components with darker color, and between
a variable component and another component using lighter color.

The GOL DSM shows that, unlike GPL and Prop4J, there is not a
central node, i.e. a component that is related to almost every PLA
component. The DSM also allows to visualize that PLA relations
are scattered in the components. We also noticed that some PLA
components did not have any relation; we believe this is due to fea-
tures not implemented or discarded while their classes still remain
in source code.

Figure 3: Design Structure Matrix for GOL

4.6 Graph Product Line Results
Graph Product Line (GPL) has 155 products. The SSC value was 0.6
indicating more common than variable components. However, the
opposite happened with the relations – the SSC value was 0.42. This
scenario indicated that most of the PLA relations were variable.
According to Zhang et al. [27], this is a symptom of bad component
reuse, suggesting a potential candidate for improvement.

The CRR values were high. However, we identified that some com-
ponents, such as CycleWorkSpace andGlobalVarsWrapper, presented
a low CRR value. Furthermore, the majority of relations presented
low CRR values. The components Graph and Vertex have relation-
ships with all the other components. It deserves further investiga-
tion whether these two classes present the God class smell [8].

4.7 Prop4J Results
Prop4J has no mandatory features, implementing only optional
features. In addition, for the absence of mandatory features, this
SPL project allowed the generation of 5029 possible configuration of
products based on optional features. For this reason, we instantiated
11 products using T-Wise method configuration [10]. After the
PLA recovery based on a subset of 11 products, we identified only
one common component (Node) and 13 variable components. All
the recovered relations are variable. Figure 2 also reflected this
information. For instance, Node is one outlier of the Prop4J boxplot.

Figure 4: Design Structure Matrix for Prop4J
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Figure 4 shows the DSM for Prop4J PLA. The Node component is
common to the 11 products analyzed. However, the relations were
variable confirming the CRR values. These results suggest that the
PLA needs maintenance to improve the CRR values.

In Prop4J DSM, we identified two central classes,Node and Prop4J
test that relate to almost every class present in the PLA, which is
an indicative of the God class smell [8] and require further investi-
gation.

4.8 BankAccountV2 Results
BankAccountV2, the second version of the BankAccount SPL, in-
troduced new features to the SPL. The implementation of these
new features required new classes and relations, which required
the identification of variability in classes and relations that were
absent from the previous version of this SPL. The SSC value was
0.7, meaning that most of components and relations are common
to 70% of the products.

4.9 DesktopSearcher Results
DesktopSearcher allowed the generation of 462 products. The values
for SSC and RSSC were considered low [27]. The SSC value was 0.26
which means that almost all of its classes are variable among the
products. The CRR presented the same behavior. In most cases, the
values were lower than 0.5.

Theses values indicated that the SPL products tend to have ex-
clusive products that require specific features in only part of the
products [1] which we believe to be the cause of the low CRR values
found in this SPL project.

4.10 PayCard Results
PayCard is a small-sized SPL project, with respect to the amount of
product configurations, and classes. The project presents a value
of 0.71 for SSC, i.e., most of its classes are common to all products.
However, the dependencies among classes presented a value of 0.37
for RSSC, which means that most of the relations are variable.

4.11 PokerSPL Results
PokerSPL is another small-sized SPL project, regarding the number
of classes and products. It presented a 0.5 SSC value meaning that
half of its classes are common to all products. The CRR values could
be higher since most of the variability in this SPL was found on the
values assumed by some of its classes attributes.

Accordingly, the CRR values for the SPL relations present similar
results. A possible explanation is that most of the SPL variability is
implemented in the values of class attributes.

5 DISCUSSION
In this section, we interpret the results and discuss the findings by
answering the research questions.

5.1 Answers to the Research Questions
For the first research question, we verified if the number of products
has an impact on the PLA variability identification precision. Figure 5
shows SSC (darker color) and SVC (lighter color) metrics of four SPL
projects (DPL, VOD, Zip Me, and Prop4J) collected during different

stages of comparison. We selected these projects randomly from
the sample. All the SPL projects presented the same patterns.

We identified that the precision regarding the variability identi-
fication increased when we included more products in the compar-
ison. This happens because, with more products, more configura-
tions are analyzed. By analyzing all the feature combinations, it is
possible to guarantee the detection of all the variable components
and provide a reliable PLA.

Moreover, after a certain number of comparisons, the value of the
metrics became constant. For instance, we compared 18 products
aiming to recover all the variability details of the Zip Me SPL. We
observed the same pattern on other SPL projects. For example, it
was necessary to compare 17 products to recover all the variability
details of the VOD SPL.

As the PLA recovery process examined and merged more prod-
ucts, the set of components and relations that comprise the PLA
and metrics values tends to stabilize. The set of products (after
the metrics stabilization) had a common structure, with variations
present in low-level details. We also identified this pattern when
we analyzed the CRR values with different combination of products
in the recovery.

Table 6 presents the CRR values from the Prop4J project. The
CRRpair, CRR8 and CRRall columns present the CRR value for recov-
ery based on two products, eight products, and all SPL products,
respectively. As we raised the number of products in the compari-
son, the CRR precision became higher.

Table 6: CRR Measures for Prop4J

Component CRRpair CRR8 CRRall

And 100.0 50.0 54.5
AtLeast 50.0 37.5 36.4
AtMost 50.0 37.5 36.4
Choose 50.0 37.5 36.4
Equals 100.0 37.5 27.3
Implies 100.0 50.0 54.5
Literal 100.0 87.5 90.9
Node 100.0 100.0 100.0
NodeReader 100.0 62.5 54.5
NodeWriter 50.0 75.0 54.5
Not 50.0 50.0 36.4
Or 50.0 37.5 36.4
Prop4JTest 50.0 37.5 36.4
SatSolver 50.0 37.5 45.4

Moreover, to answer the RQ1, in the first stage of the analysis,
we performed a correlation analysis among the variables of the
exploratory study (see Figure 6). We identified a positive correlation
between the number of products and the metrics addressing the
variability (CO, OR, PLTV, SVC, and number of optional features)
which means that with the increase of the number of optional
features we have a increase in the variability identified on the PLA.

We also identified a negative correlation between the number
of optional features and the metrics related to commonality (SSC
and RSSC) which means that with the increase of optional features
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Figure 5: SSC and SVC metrics according to the number of products in the comparison

that commonality tends to decrease. Table 7 shows the Spearman
correlation test that rejected the null hypothesis.

Figure 6: Correlation analysis

Table 7: Comparisons that rejected the null hypothesis RQ1

Comparison p-value

Products-CO 7.0e-03
Products-OR 7.0e-03
Products-PLTV 7.0e-03
Products-SVC 2.0e-02
Products-OF 2.0e-03

In the second research question, we investigated if there is a
relation between the number of optional features in the SPL and the
component reuse rate of the recovered PLA, we used the ANOVA
(Analysis of Variance) to test the variables and the p-value was
1.3e-07. Such evidence allows to reject the null hypothesis (H0a)
of equal population means. Therefore, it is possible to conclude
that at least one PLA has CRR values significantly different from
the others.

To identify the different means, we applied the Tukey test. We
performed and analyzed 105 comparisons, and only 12 of them pre-
sented statistically significant differences. Table 8 shows p-values
of the comparisons that rejected the null hypothesis (the SPLs in-
volved in the test, and the p-value). Based on such data, we identified
that Prop4J (in eight comparisons) and DesktopSearcher (in four

comparisons) yielded statistical difference in CRR values among the
PLAs (see Figure 2).

Table 8: Comparisons that rejected the null hypothesis RQ2

ID Comparison p-value

40 Elevator-DesktopSearcher 2.3e-03
43 GOL-DesktopSearcher 4.4e-02
49 VOD-DesktopSearcher 2.1e-03
50 ZipMe-DesktopSearcher 1.5e-03
57 Prop4J-Elevator 4.0e-05
74 Prop4J-ExamDB 1.9e-02
81 Propo4J-GOL 8.0e-04
92 Prop4J-PayCard 2.2e-02
96 Prop4J-PokerSPL 4.4e-02
100 UnionFind-Prop4J 1.9-e02
101 VOD-Prop4J 7.0e-05
102 ZipMe-Prop4J 4.0e-05

According to the correlation analysis performed (see Figure 6),
the use of optional features impact the CRR values of the PLA by
decreasing the commonality and increasing the variability. Config-
uring a product with optional features implies in the appearance of
new classes associated with these features. Meaning that there will
be new variable components in the product architecture, that are
often associated with specific product configurations.

5.2 General Findings
Correlation between metrics. From the overall results for the fifteen
SPL projects, we noticed that when the value of SSC was high,
the PLA components presented high CRR values as well. This may
be a preliminary evidence for a correlation between SSC and CRR
metrics.

Some metrics provided support for other metrics. The quantitative
metrics ClassMandatory and ClassOptional counted the number
of classes implementing mandatory features and optional features.
They confirmed the SSC and SVCmetrics values. Moreover, ClassVP
and ComponentVariable indicated if a given class or component
presented a variability.ClassMandatory, CLassOptional, ClassVP
and ComponentVariable provided support for the SSC, SVC, and
CRR metrics. The former validated and confirmed the values of the
latter.

Feature scattering and component reuse rate. In projects with met-
rics high values (Zip Me, VOD, and GOL respectively), the classes
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outnumbered the features, with feature scattering in a significant
amount of classes. To perform this analysis, we verified how the
feature selection to build each product was spread through the
source code manually and compared to the metrics collected by
the PLAR. The relation between feature scattering and high CRR
deserves further investigation.

5.3 Threats to Validity
The following threats to validity are discussed to reveal their po-
tential interference with our study design.

Internal Validity. PLAR tool limitations [3] may have impacted
the results of the exploratory study. For instance, the input for PLAR
tool is a MDG file created by STAN4J and Analizo. Currently, the
extracted MDG only supports “call” dependencies between modules.
Inheritance relationships are not extracted.

External Validity. No industrial SPL projects were used in this
exploratory study; only open source SPL projects created for educa-
tional and research purposes were used. To minimize such a threat,
we analyzed projects widely-accepted by SPL research community,
which have been used as testbeds for empirical evaluations [12].

Construct Validity. The recovered PLA from the SPL projects
were not verified by SPL developers. To minimize this threat, we
performed a manual PLA extraction, which served as an oracle.
Then, we compared the number of variable and common elements
(including components and its relationships) obtained by PLAR tool
against the oracle. The results indicated that there was no difference
in the number of elements detected through the tool and manually.

Conclusion Validity. We used statistical algorithms as recom-
mended by Wohlin et al. [25] on experimentation in software en-
gineering to computing the statistical significance and strength
of the relationship between the metrics. These procedures aim to
minimize issues regarding the conclusions we draw. Two authors
checked the analysis to avoid missing data and prevent biases.

The metrics SSC and CRR present an overview of the common
and variable components of a PLA by showing the presence of the
components among all the products. However, low-level granularity
variability in the components, such as variable with different values
and different methods implementation, are not covered by these
metrics. This information can give a different perspective about the
CRR.

6 RELATEDWORK
Wu et al. [26] presented a semi-automatic PLA recovery approach.
The authors defined measures to detect similarity and variability
points on software products source code of the same domain to
migrate to the SPL paradigm. The study reports on a case study
carried out with an industrial product line. The assumption is that
legacy products of a same domain have similar designs and imple-
mentation that can be used to build a SPL. In our approach, we
build the PLA from the products generated by the SPL project.

Losavio et al. [13] proposed a reactive refactoring bottom-up
process to build a PLA from existing similar software product ar-
chitectures of a domain. The main assets were expressed by UML
logical views. Their work is focused on the construction and repre-
sentation of a candidate PLA followed by an optimization process
to obtain the final PLA. The refactoring process was applied to a

case study in the robotics industry domain. The focus of our work
is the assessment of recovered PLA based on metrics analysis.

Torkamani [23] presents a novel SPL quality attribute for called
Extractability. The attribute is calculated based on the weight of the
reusable component over the weight of all components, a process
very similar to the CRR metric calculation. Extractability effective-
ness on six SPLs from a iranian telecommunication company was
evaluated in practice. In our study, we analyzed SPLs from different
domains.

7 CONCLUDING REMARKS
Product Line Architecture recovery provides useful information
for SPL developers and architects, to support maintenance, under-
stand the implementation of SPL variability and foster reuse. The
recovered PLA components and their relationships can serve as
a basis for different types of visualization that expose variability,
and for different types of analysis (e.g. identification of components
that are more likely to be reused, propagation analysis during the
implementation of reuse changes).

In this paper, we presented the results of an exploratory study to
assess the recovered PLAs from 15 open source SPL projects imple-
mented in Java. The PLAR tool was used to support PLA recovery
with the identification of commonality and variation points.

Eleven out of fifteen recovered PLAs had high CRR values in-
dicating high reuse of components during the SPL development
phase. The results provided initial evidence regarding a correlation
between the metrics values and the components reuse rate. We aim
to replicate this study by including more SPL projects to strengthen
the evidence base.

One contribution of this paper was the PLA recovered for each
SPL project, because none of them presented Product Line Archi-
tecture documentation. The results of this exploratory study can
be used to improve the design and execution of future empirical
studies.

As future work, we plan to evolve the PLAR tool to address
existing problems and limitations. For instance, our main focus is
to optimize the recovered PLA to address other types of variability
not mapped, such as variability on the class attribute and method
level. Also, we are working on improving the PLA visualization by
mapping the SPL features on the PLA.

Furthermore, the question about the minimum subset of prod-
ucts that covers PLA recovery and results in an architecture that
documents the SPL shall be investigated.
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