
2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2754378, IEEE
Transactions on Multi-Scale Computing Systems

1

Scalable Light-Weight Integration of FPGA
Based Accelerators with Chip Multi-Processors

Zhe Lin, Student Member, IEEE, Sharad Sinha, Member, IEEE, Hao Liang, Student Member, IEEE,
Liang Feng, Student Member, IEEE, and Wei Zhang, Member, IEEE

Abstract—Modern multicore systems are migrating from homogeneous systems to heterogeneous systems with accelerator-based
computing in order to overcome the barriers of performance and power walls. In this trend, FPGA-based accelerators are becoming
increasingly attractive, due to their excellent flexibility and low design cost. In this paper, we propose the architectural support for
efficient interfacing between FPGA-based multi-accelerators and chip-multiprocessors (CMPs) connected through the network-on-chip
(NoC). Distributed packet receivers and hierarchical packet senders are designed to maintain scalability and reduce the critical path
delay under a heavy task load. A dedicated accelerator chaining mechanism is also proposed to facilitate intra-FPGA data reuse
among accelerators to circumvent prohibitive communication overhead between the FPGA and processors. In order to evaluate the
proposed architecture, a complete system emulation with programmability support is performed using FPGA prototyping. Experimental
results demonstrate that the proposed architecture has high-performance, and is light-weight and scalable in characteristics.

Index Terms—FPGA, hardware accelerator, heterogeneous system, network-on-chip, chip-multiprocessor.

F

1 INTRODUCTION

NOWADAYS, the desire for low-power and high-
performance design has led to the migration of mod-

ern computing systems from homogeneous multicore sys-
tems to heterogeneous multicore systems, where hardware
accelerators (HWAs) are used to speed up computationally
intensive applications [1]. Field programmable gate arrays
(FPGAs), which feature great flexibility and high computa-
tional capability, are promising candidates to serve as HWAs
in heterogeneous systems. Recently, FPGAs have been seen
increasingly used in industry to enhance the computation
capability of chip-multiprocessors (CMPs). For instance, Al-
tera and Intel provide a research platform, HARP [2], which
consists of an Altera Stratix-V FPGA and an Intel Xeon E5
processor. Likewise, Xilinx’s Zynq platform [3] combines a
dual core ARM processor with traditional FPGA fabric to
form a programmable system-on-chip (SoC).

With the increasing scale of computer systems, the
network-on-chip (NoC) has been used as a high-bandwidth
and scalable interconnect architecture for large-scale mul-
ticore systems [4], [5], [6]. It is also promising to integrate
an FPGA as a heterogeneous core in an NoC-based multi-
core system as the next-generation heterogeneous system.
Nevertheless, most prior research work has focused on the
interfacing of off-chip FPGAs and processors [7], [8], [9],
[10], [11] with a limited number of cores through bus-based
communication. Moreover, the rapid increase in the resource

• The authors Zhe Lin, Hao Liang, Liang Feng and Wei Zhang are with
the Department of Electronic and Computer Engineering, Hong Kong
University of Science and Technology (e-mail: zlinaf@connect.ust.hk;
hliangac@connect.ust.hk; lfengad@connect.ust.hk; wei.zhang@ust.hk).

• The author Sharad Sinha is with School of Computer Engi-
neering at Nanyang Technological University, Singapore (e-mail:
sharad sinha@ieee.org).

Manuscript received December 1, 2016; revised June 15, 2017; accepted
September 4, 2017.

capacity and variety of FPGAs over the past few years
has made it feasible to implement multiple accelerators on
a single FPGA. However, there lacks an interface design
which supports (1) run time flexibility when a multitude of
processors may request many accelerators, and (2) scalabil-
ity, as multiple accelerators implemented on a single FPGA
cannot be accessed independently by mutually exclusive
processors. In light of the above consideration, in this pa-
per, we investigate a high-speed, light-weight and scalable
interface architecture that loosely couples the FPGA-based
HWAs with NoC-based CMPs and allows flexible invoca-
tions of HWAs according to the runtime demands of the
processors. Besides this, our proposed interfacing architec-
ture is different from industrial solutions like HARP [2] and
CAPI [12], in that it provides a single-die prototyping for
heterogeneous systems, where bus based interfacing (e.g.
PCIe in CAPI) is not requisite for all kinds of acceleration.

The main contributions of our work are threefold:

• We exploit a scalable and light-weight interface for
the multiple accelerators in an FPGA which are
loosely coupled with CMPs. The key design-specific
parameters including the number of task buffers,
distributed packet receivers and hierarchical packet
senders, are investigated to maintain scalability and
maximize the performance of the interface architec-
ture integrated in the FPGA.

• We propose a hardware accelerator chaining mech-
anism that allows HWAs to be serially combined
together to collaboratively operate as a monolithic
but more complex accelerator during run time. This
chaining mechanism exploits intra-FPGA commu-
nication and thereby obviates the necessity for ex-
cessive data transmission between the FPGA and
processors.

• A full system including CMPs, the FPGA and the

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2754378, IEEE
Transactions on Multi-Scale Computing Systems

2

NoC is prototyped and emulated under various
workload conditions on an FPGA. A software inter-
face for processors to invoke HWAs is also designed
to tackle the programmability challenges. The eval-
uation results demonstrate the high throughput of
our proposed design, compared with both AXI-based
and shared FPGA cache solutions.

The remainder of this paper is organized as follows.
Section 2 reviews the existing work and discusses their
limitations in integrating FPGAs in the context of multicore
systems. Section 3 provides an overview of the whole sys-
tem. Section 4 describes the proposed architecture in detail,
while Section 5 presents the support for programmability.
In Section 6, the full system evaluation results are presented
and analyzed. At last, we conclude the paper and discuss
future extension of our work in Section 7.

2 RELATED WORK

Various communication scenarios between an FPGA and
processor cores have been studied in recent years. The
work in [7] proposed a system consisting of an ARM mi-
croprocessor and a maximum of four accelerators in an
FPGA, with AMBA buses as communication channels. The
work in [8] presented a system with a PCI express (PCIe)
between processors and an off-chip FPGA, which also
achieved reconfiguration when necessary. Similarly, work
in [9] and [10] realized data transmission between an FPGA
and processors using a PCIe and AXI interconnect. These
interfacing architectures focused on establishing off-chip
communication between the FPGA and processors based on
existing bus architectures, which are hard to extend to large-
scale on-chip multicore systems. In addition, high platform
dependence makes these techniques mostly non-portable
across different platforms. Most importantly, they do not
investigate the support for sharing various accelerators in
an FPGA by multiple processors. In contrast, our proposed
on-chip interfacing architecture is optimized under a gen-
eral situation without platform dependence and in which
a number of processors can invoke various FPGA-based
accelerators. The authors of RIFFA [11] proposed a series of
works where processors access HWAs. The idea of multiple
HWAs accessed by different processors is similar to ours;
however, they mainly emphasized providing support for
different operating systems to gain access to HWAs, without
going deep into hardware performance improvement. To
the best of our knowledge, ours is the first work targeting
optimizing architectural design for interfacing FPGA-based
multi-accelerators with NoC-based multicore systems. Fur-
thermore, our work is complementary to accelerator-rich
architectures (i.e., the multicore systems with multiple accel-
erators) where ASIC blocks or CGRAs are distributed indi-
vidually in an NoC framework as processing elements [13],
[14].

3 FULL-SYSTEM OVERVIEW

3.1 NoC-based multicore system
NoCs are proposed to be promising on-chip communica-
tion architectures for achieving high bandwidth under a
limited power budget. The processing elements in an NoC

communicate with each other by sending and receiving
packets through routers. In the experiments, the employed
multiprocessor system-on-chip (MPSoC) architecture is sim-
ilar to [15]. We adopt a 3-by-3 mesh topology and Fig. 1
presents the system framework. The processors maintain
their software routines and leverage the HWAs in the FPGA
to complete the acceleration of some computationally inten-
sive works. Note that the difference in sizes between the
processors and the FPGA will impact the layout of the chip
while it will not influence the topology of the system. In
principle, our idea supports any topology with the FPGA
placed beside any node. The analysis of the NoC routing
algorithms and the traffic patterns [16], [17] may suggest a
specific placement for the FPGA but that is complementary
to our main goal and out of the scope of this work.

Control & Buffer

R

...
H
W
A

.
H
W
A

H
W
A

Controllers
& Buffers

Processor Processor Processor

Processor FPGA Processor

Processor Processor Processor

R R R

R

RRR

R R

HW
accelerat

ion

Application

SW
routine

Fig. 1. Full-system framework.

3.2 Packet format

Packet-based transmission is required for an NoC. A packet
is composed of several flits: a head flit, multiple body flits
and a tail flit, which are the smallest unit in communica-
tion [18]. We design the flit width to be 137-bit. The head flits
are always first to be transmitted in packets and primarily
contain routing information together with specific informa-
tion related to the invoked HWAs. Table 1 summarizes the
bit information in a head flit. Following the head flits, are
the body or tail flits, with bits from 128 to 136 consisting
of routing and packet information, and all the remaining
bits carry payload data. It is trivial to adjust the flit size
for different system configurations by reducing or extending
payload bits. Additionally, the number of packets for each
HWA invocation is variable since different HWAs require
different data sizes, which are distinguished by task head
and tail bits.

4 FPGA-BASED MULTI-ACCELERATOR ARCHI-
TECTURE

The proposed FPGA-based multi-accelerator architecture
is shown in Fig. 2 (a) and comprises interface block and
hardware accelerator channels (HWA channels) as the cru-
cial elements. In order to bridge the frequency difference
between the FPGA and the local NoC router, router input
and output buffers are implemented using asynchronous
FIFOs. As there can be multiple HWAs on an FPGA, the
scalability of the interface block design is crucial to prevent
it from being the performance bottleneck.

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2754378, IEEE
Transactions on Multi-Scale Computing Systems

3

HWA
Channels

Hardware Accelerator Channel

s

Hardware Accelerator Channel

Router

Router Output
Buffer

Router Input
Buffer

Packet Receiver
(PR)

Packet Sender
(PS)

…..Packet
Input

Payload
Output

Grant
Output

Packet
Input

Payload
Output

Grant
Output

Task Buffer
(TB)

 Chaining
Buffer (CB)

 Chaining
Controller

(CC)

Task Buffer
(TB)

 Task
Arbiter

(TA)

Packet
Output Buffer

(POB)

Request
Buffer
(RB)

Local Grant
Buffer
(LGB)

Local Grant
Contrller

(LGC)

HWA
Controller
(HWAC)

Chaining Data from
other channels

HWA
 Packet

Generator
(PG)

To PS

From
PR

To PS

(a) Architecture overview (b) Hardware accelerator channel

Request bypassing

Interface
Block

Modules for Request and Grant Mechanism

Modules for
HWA Chaining

Mechanism

Modules for HWA management routine

To other Chaining controllers
in the same group

Fig. 2. (a) Overview of the FPGA-based multi-accelerator architecture; and (b) The detailed design within an HWA channel.

TABLE 1
Description of the bit index in a head flit.

Bit index Description

130-136 Routing information: information for routers
128-129 Packet head & tail: imply a head/body/tail flit
125-127 Source ID: the requesting processor ID
120-124 HWA ID: the HWA ID to be invoked
119 Packet type: implies a command/payload
117-118 Task head & tail: imply the first/last packet
115-116 Task buffer ID: implies the task buffer to use
113-114 Chaining depth: HWA chaining times
107-112 Chaining index: 3 HWA chaining indexes
105-106 Packet priority: the arbitration priority
103-104 Packet direction: src/dest of data
71-102 Start address: start address for memory access
61-70 Data size: number of bytes to fetch from mem
0-60 Payload data

4.1 Interface block

The interface block is the bridge between HWA channels,
the NoC and CMPs. Specifically, it manages the packet
transmission and arbitration of both command packets and
payload packets. The fundamental components of the in-
terface block include a packet receiver and packet sender
which control the packet dispatch and assembly, respec-
tively, between HWAs and the router buffer.

A.1 Packet receiver (PR)
The PR reads flits from the router output buffer and

dispatches the packets to the corresponding HWA channels.
A PR is implemented as a finite state machine which is
able to identify different flit types and decode head flit
information. It also identifies the packet length in case of
a variable-length packet.

Considering the case that many HWAs could be imple-
mented and the interface could become the critical path, we
explore different design strategies to optimize PR perfor-
mance: a centralized PR strategy and different distributed
PR strategies. For the centralized PR strategy, only a single
PR is used to dispatch packets to all the HWA channels,
while for the distributed PR strategies, there are multiple
PRs, each of which dispatches packets to a fixed number of
HWA channels. Fig. 3 (a) shows the idea of distributed PR

strategies. We investigate various distributed PR strategies
and find out the PR strategy with the highest performance
by varying the number of PRs. It is observed that the
distributed packet receiver strategies can effectively reduce
the routing overhead and notably improve the operating
frequency of the PR, as demonstrated in Section 6.3.

A.2 Packet sender (PS)
The PS arbitrates among different HWA channels and

sends the selected output packets to the router input buffer.
There are two types of packets to be sent out by the PS:
command packets for the HWA requests, and packets for
computation results from the HWAs (denoted as result
packets). A command packet only has a single flit and it
enjoys higher priority in being sent out than result packets.
A command packet can be a grant packet which requests
input packets, or a notifying packet used to inform the
processors of the completion of acceleration. A grant packet
would be sent to the requesting processor in the case of
a direct access communication scenario or to the memory
management unit for a memory access communication sce-
nario, as illustrated in Section 5. A round-robin scheme is
used to arbitrate command packets from different HWA
channels. In contrast, a result packet comprises more than
one flit. The PS selects the result packets in a priority-
based round-robin manner, with the priority information
embedded in the head flits.

By introducing the priority bits in the head flits, the
requesting processors can set different priorities for different
tasks to be accelerated. This attribute can be removed by
setting the priority bits in the head flits as zeros. In such a
case, round-robin arbitration is deployed.

Noticing that the complexity of both the arbitration and
multiplexing increases with the rise of the number of HWAs,
we therefore investigate two types of PS implementation:
the global PS strategy and the hierarchical PS strategies.
The global PS strategy takes all the command packets and
result packets as the input, offers arbitration and sends
out the packets. In contrast, the hierarchical PS strategies
with the idea shown in Fig. 3 (b), clusters a certain number
of HWA channels together in the first-level hierarchy and,
accordingly, arbitration is done within this specific group. A
second-level hierarchical controller finally arbitrates among
the first-level hierarchical controllers and then signals the

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2754378, IEEE
Transactions on Multi-Scale Computing Systems

4

...

1st-level PS 1
Grt_rdy

D_rdyD rdy
Grt_data

Acc_data

Grt_rden_
Grt_out_

Acc_rden_
Acc_out

G

AA
FSM

.
ArbitratorrAAAAA

1st-level PS N
Grt_rdy

D_rdyD rdddy
Grt_data

Acc_data

Grt_rden_
Grt_out_

Acc_rden_
Acc_out

G

AA
FSM

ArbitratorrAAAA

FSM

ArbitratorrAAAAA

2nd-level PS

Feedback

Feedback

Data_out

Out_en

From M/N
HWA channels

From M/N
HWA channels

...

To M/N HWA
channels

Data_in

Empty

Ready

Data_out

Wr_en

Rd_en
PR 1

.

D
FSM

.

D
FSMMM

To M/N HWA
channels

Data_in

Empty

Ready

Data_out

Wr_en

Rd_en
PR N

D

N

FSM
D

FSMMMM

(a) (b)

Fig. 3. (a) Simplified model of distributed PR strategy; and (b) Simplified model of hierarchical PS strategy.

selected first-level hierarchical controller for packet trans-
mission, after which the packet transmission starts. Experi-
ments are conducted to determine the optimal number of
hierarchical PSs to maximize the operating frequency of
the FPGA, reported in Section 6.3. The results validate that
the optimal hierarchical strategy can significantly reduce
the PS delay and as a result, demonstrate a more than 2×
improvement compared with the global PS method.

4.2 Hardware accelerator channel (HWA channel)

B.1 HWA invocation
Fig. 2 (b) shows the major components necessary to

guarantee a robust accelerator invocation. Task buffers (TBs)
act as temporary storage for packets with input data for
HWAs. Multiple task buffers are desirable to hide the com-
munication delay. The experiment reported in Section 6.2 is
conducted to investigate the optimal number of TBs regard-
ing different HWA communication patterns and it reveals
that usually two TBs are enough to hide the communication
delay. A task arbiter (TA) identifies the ready tasks from
the task buffers and selects a task to be executed based
on round-robin arbitration. A HWA controller (HWAC) is
responsible for reading packets from either task buffers or
chaining buffers, and then setting essential control signals
to invoke the HWA when the HWA is idle. When the HWA
execution is finished, the HWAC will signal the packet
generator (PG) to read the execution results. The PG also
detects the chaining condition using header information
and controls either the packet output buffer (POB) or the
chaining buffer to receive the results. If the results are to
be sent out, packets are formed simultaneously. The POB
serves as temporary storage for result packets before they
are granted the chance to be sent back under the supervision
of the packet sender.

Note that each HWA’s frequency can be different and
in order to enable each HWA to run at its own frequency,
the task buffers, packet output buffers and chaining buffers
are designed to interface between different frequencies.
Besides this, the HWAC and PG will work at the same
frequency with the HWA to feed the input and generate
the output packet under synchronization by asynchronous

FIFOs. The control signals crossing different frequencies will
be synchronized by two-stage synchronizers implemented
by registers.

B.2 Request and grant mechanism
Considering the case that a myriad of applications are

invoking multiple hardware accelerators in the FPGA, a
request and grant mechanism is developed to resolve the
contention and ensure the robustness of HWA invocation.
For each invocation of an HWA, a request packet would
firstly be generated and sent to the FPGA by the processor.
The request packet is composed of a single flit with Packet
type “command”, Source ID, HWA ID, Packet direction, Start
address and Data size.

As there could be multiple processors requesting the
same HWA, a received request packet is firstly queued in
the request buffer (RB). A local grant controller (LGC) keeps
track of the status of request buffers and task buffers with
the support of a status table that is updated every cycle.
Based on the task buffers’ availability, the LGC generates
grant packets in a first-come-first-serve manner, writes the
granted task buffer identification into the grant packets and
signals the PS for packet transmission. To further reduce
the latency for writing and reading requests, a request can
bypass the request buffer when no other requests exist in the
request buffer. Also note that the grant packets will not be
permitted to transmit until a valid task buffer is available.

B.3 HWA chaining mechanism
HWA chaining is developed for the case that a task

attempts to invoke a series of HWAs sequentially. Notice
that the chaining HWAs are pre-specified by the task, and
hence the required HWAs can be identified and formed into
a chaining group. For instance, in JPEG decompression [19],
inverse zigzag, inverse quantization, inverse DCT, shift and
bound are invoked in a sequence. Therefore, when imple-
mented as HWAs, they can be incorporated in the same
chaining group to enable local data reuse among each other,
eliminating excessive data transmission through the NoC
to the memory or processors. Hence, the HWA chaining
mechanism allows a set of HWAs to be invoked collectively
in addition to being used individually, making the design
more flexible and general.

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2754378, IEEE
Transactions on Multi-Scale Computing Systems

5

Chaining depth and Chaining index are dedicated bits
to describe the chaining times and sequences. Moreover,
the chaining buffer (CB), chaining controller (CC), HWA
controller and packet generator are designed to support
chaining. When receiving the results from the HWA, the
packet generator first checks Chaining depth in the header
information. If it is non-zero, chaining is required and
both the header information and execution results would
be written to the chaining buffer, with the Chaining length
in the header information decreased by one. The header
information in the chaining buffers is transparent to all the
chaining controllers in the same group.

The chaining controller is a combinational logic to in-
dicate existing matchings for chaining. It deduces the next
chaining HWA ID from the Chaining index and Chaining depth
and then compares the derived HWA ID to its channel HWA
ID. It then signals the HWA controller for data fetching
when HWA ID matchings exist and selects the next chaining
buffer to read by a round-robin scheme. The HWA controller
then fetches data from the corresponding chaining buffer.
The HWA controller prioritizes chaining requests over input
requests so as to obviate stalling of an ongoing chained
operation and avert overflow of chaining buffers.

Note that other ways to facilitate data reuse on the
FPGA are usually through the local cache. Some off-the-shelf
commercial designs make use of cache memory to integrate
an FPGA and a processor/chip-multiprocessor. Examples
of such designs are Intel’s Heterogeneous Architecture Re-
search Platform (HARP) [2] and IBM’s Coherent Accelerator
Processor Interface (CAPI) [12]. HARP makes use of a dedi-
cated cache memory implemented on the FPGA. This cache
memory is used for shared data communication among the
accelerators on the FPGA, and between the FPGA and the
applications running on the chip multiprocessor. The CAPI
solution is meant for its POWER8-processor-based systems
and it allows this system to treat an attached FPGA co-
processor as a coherent peer: the FPGA accelerator and
the POWER8 system share the same memory space. The
POWER8 processor preserves dedicated silicon to imple-
ment CAPI. Both HARP and CAPI are implemented using
separate boards or sockets for processors and FPGAs. These
designs serve well when only one accelerator is imple-
mented on the FPGA. However, for multiple accelerators
on the FPGA, there will be heavy memory contention [20].
We also note that Intel’s HARP and IBM’s CAPI are bus-
based designs for different chips, where our design targets
FPGA-CMP system-on-chip.

In our architecture, we leverage upon the advantages
of block RAMs (BRAMs) in the FPGA to build multiple
distributed buffers (i.e., TBs, POBs, etc.) which are used
in different stages of HWA invocations. There is no global
cache in our design and these distributed buffers abate
the potential penalties due to cache misses by buffering
data from different stages instead of accessing the cache
over and again. When a new set of inputs is demanded,
these data are pre-stored by the PR in the TBs and thereby
results in a reduced input read-in latency for a HWA
compared to the cache access latency. Furthermore, the use
of chaining buffers facilitates the communication between
grouped HWAs with minimal delay while the communica-
tion through the cache tends to take a longer time and cause

TABLE 2
Latency in clock cycles for different components in the interface

architecture.

Component Latency (in cycles)

Per HWA

HWAC 4+N
PG 4+N
LGC 1
TA 1
CC 1
Buffers 4+N

Overall
PR Command: 1

Payload: 2+N

PS Command: 1
Payload: 4+N

contention. Generally speaking, our design can support
efficient data reuse among chaining HWAs as well as fast
input access for separate HWA invocation at the same time.
Compared to the AXI-based design as shown in Fig. 11
and the shared FPGA cache design as illustrated in Fig. 12,
our distributed buffer design reaps the benefits because the
input size for each HWA is pre-defined and there is usually
little data sharing between HWAs in different chaining
groups. Results reported in Section 6.6 also demonstrate the
overheads in resource and runtime incurred by the chaining
mechanism, which are trivial compared to the obtained
improvement in performance.

Table 2 generalizes the latency for different components
in the interface architecture, whereN represents the number
of flits in the payload packets for a single HWA invocation.
The latency incorporates the time for transferring the whole
packet with N flits. The buffers (i.e., TB, POB, RB, LGB
and CB) are instantiated as FIFOs and therefore they have
the same latency for the first payload to be immediately
transferred from the input to the output. TA and CC are
combinational logics with the delay of a single cycle.

5 PROGRAMMABILITY SUPPORT FOR HWA INVO-
CATION

A software interface is necessary to be developed for pro-
cessors to invoke HWAs. Specialized C-based functions for
HWA invocation are defined and plugged into the user code
to specify the information like the HWA ID and the caller
thread ID, as shown in Fig. 4.

More importantly, two communication scenarios be-
tween the processors and the FPGA are considered. A
processor can either directly send the input data to HWAs or
send the requests with the physical addresses of the input
data to the HWAs after the virtual to physical translation,
as shown in Fig. 5. In Fig. 5 (a), the processor directly sends
payload packets with input data to the FPGA, while in Fig. 5
(b), the HWA can fetch the payload packets from memory
through the memory management unit (MMU) by sending
the grant packets to the MMU with the specified Start address
and Data size information. When receiving the grant packets
from HWAs, the MMU decodes the contained information
and initializes data transmission via direct memory access
(DMA). In addition, the MMU writes the received result
packets in the memory. Notice that the PS is supposed to
notify the invoking processor using a packet with the mem-
ory address in the header information. Then the processor

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2754378, IEEE
Transactions on Multi-Scale Computing Systems

6

can fetch data via the MMU either from the memory or the
write buffers.

In our design, input packets are received by HWAs and
result packets are output and sent over an NoC for pro-
cessors to process. The data coherency between HWAs and
processors is maintained by the processors which invoke the
HWAs. Specifically speaking, a processor is responsible for
updating the memory and the data coherency state, which
are shared among different processors when acceleration
results are obtained from the FPGA’s HWAs. This is com-
plementary to our proposed design.

int D_HWA_invoke(int HWA_id, int thread_id, int size, int*
data_array, int clen, int* cseq);
Sends data from the processor to the FPGA to invoke the
HWA with HWA_id.
The length of data is specified by size and the data are stored
in data_array in 32-bit format. The chaining length is defined
by clen, and the sequence is defined by cseq. The return value
indicates that the acceleration has been finished successfully.
int M_HWA_invoke(int HWA_id, int thread_id, uint
start_address, int clen, int* cseq);
Invoke the HWA through the memory access by sending a
request to the FPGA with the information of HWA_id,
thread_id, start_address, clen cseq.
The grant controller for the HWA will decode this request
and read the input data from the memory with start_address.

Fig. 4. Functions for processors to invoke HWAs.

Processor NoC

Interface Block

H
W
A

H
W
A

...
Network
Interface

Network
Interface

NoCNetwork
Interface

Network
Interface

Network
Interface

MMU

Grt &
Result

Input
data

Result

Address
translation

Req

Req & Input data

Grt, Noti & Result
(a)

(b)

FPGA

FPGA

DMA
Memory

Processor

Interface Block

H
W
A

H
W
A

...

Noti

Fig. 5. Communication scenarios: (a) direct access; and (b) memory
access.

6 EXPERIMENTAL RESULTS

6.1 Experimental setup
The complete system is prototyped and emulated on a
Xilinx Virtex-7 FPGA (xc7vx690tffg1930-3). The NoC is the
CONNECT [21], with peek flow control, XY-routing and

virtual output queues. The employed processor is Microb-
laze [22], which is commonly used for MPSoC prototyping
on an FPGA [23], [24], [25], [26]. We use the Xilinx SDK to
compile C-code to execute on Microblaze. Correspondingly,
we implement the C-based software interface for accelerator
invocation and data communication, as shown in Fig. 4. Fast
simplex links (FSLs) [27] are leveraged for communication
between processors and routers. We derive HWAs reported
in Table 3 from Xilinx Vivado HLS by performing high-level
synthesis of C-based benchmarks from CHStone [28] and
SNU Real-Time Benchmarks [29], both of which encompass
some computationally intensive applications suitable for
FPGA implementation. The average lookup table (LUT)
utilization is 20424. Three applications use BRAMs and five
applications utilize DSPs, showing a variety of resource uti-
lization. We assume that both the CMPs and the NoC oper-
ate at 1 GHz according to a commonly used assumption [30].
Note that the 32-bit processor Microblaze implements a
classic RISC Harvard architecture exploiting instruction
level parallelism (ILP) with a 5-stage pipeline [31]. The
pipeline stages (i.e., instruction fetch, instruction decode,
execution, memory access and write back) conform to the
conventional MIPS pipeline structure. Therefore, Microblaze
can be used to extract execution cycles for instructions of
classic RISC processors, which are not supposed to change
under different operating frequencies. Our proposed multi-
accelerator architecture runs at 300 MHz, which approaches
the maximum frequency reported in Xilinx Vivado [32].
The HWAs also operate with their maximum frequencies
reported by Vivado. Since the whole system is prototyped
in FPGA and the FPGA cannot operate at 1 GHz frequency,
we scale the frequencies of both the microprocessor and
the FPGA according to the ratio expected in a real system
to ensure fidelity in emulation, without impacting the key
parameters, such as the HWA execution cycle and commu-
nication latency, of the system-wide evaluation.

TABLE 3
Benchmark complexity in resources for FPGA implementation.

Benchmark LUT BRAM DSP FF

AES Enc 12259 116 0 7286
AES Dec 15218 116 0 7350
Dfadd 4983 0 0 3768
Dfdiv 9661 0 24 13171
Dfmul 1927 0 16 2089
Gsm 4257 0 12 2643
Prime 161237 0 0 277026
Sha 13147 1 0 9931
Izigzag 100 0 0 98
Iquantize 608 0 76 1413
Idct 14552 0 368 12390
Shiftbound 7133 0 0 7928

6.2 Task buffer exploitation
Task buffers (TBs) serve as temporary storage between the
packet receiver and HWA controller. As a result, increasing
the number of task buffers is expected to hide the com-
munication overhead when the HWAs are in operation.
In this experiment, we evaluate the optimal number of
task buffers to minimize the overall communication latency.

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2754378, IEEE
Transactions on Multi-Scale Computing Systems

7

Specifically, we evaluate two types of HWAs: (1) an HWA
processing a small amount of data with a large execution
time (e.g., Dfdiv); and (2) an HWA with an extremely low
execution time but working on a relatively large data set
(e.g., Izigzag). These two types of benchmarks demonstrate
two extreme communication patterns and other HWAs have
communication patterns between these two situations.

We exploit the total execution time when multiple re-
quests for the same HWA are generated from different
processors simultaneously. We record the total execution
time when different numbers of task buffers are utilized to
process all the requests. According to the results shown in
Fig. 6, there is no improvement in execution time for Dfdiv
as the number of task buffers increases. This is because
the time for packet transmission is shorter than the HWA
execution time. In such a situation, new payload packets
can be transmitted into the task buffer via the NoC prior
to the completion of the last HWA execution and therefore
one task buffer is enough. On the contrary, using two task
buffers demonstrates a 28.4% improvement in execution
time for Izigzag and no further improvement is observed
when increasing the number of task buffers. In such a case,
two task buffers are enough to work collaboratively to over-
lap the packet transmission time with the HWA execution
time. These two example HWAs reveal two extremes of
communication patterns; hence using two task buffers is
sufficient to guarantee high-speed acceleration for various
applications. In the following experiments, we incorporate
two task buffers for each HWA.

0

0.2

0.4

0.6

0.8

1

1 2 3 4N
or

m
al

iz
ed

 e
xe

 ti
m

e

Number of task buffers

Dfdiv
Izigzag

Fig. 6. The execution time using different numbers of task buffers.

6.3 Maximum frequency and resource utilization

6.3.1 Maximum frequency

We evaluate the maximum frequencies reported from Vi-
vado 2015.2 after placement and routing with respect to
different PR and PS strategies, as shown in Fig. 7. The
average maximum frequencies of different PR strategies for
the specific PS strategy are shown above the bars. We set the
number of HWA channels to be thirty-two, a large number
sufficient for scalability investigation. The digits following
PR or PS define the number of HWA channels a PR or
a first-level PS manages. For example, PS4 indicates that
a first-level PS takes control of four HWA channels and
correspondingly, the second-level PS arbitrates among eight
first-level PSs.

From a PS aspect, the maximum frequencies of all the
hierarchical PS strategies are more than twice as high as

0

100

200

300

400

PSC4 PSC8 PSC16 PSC32

Fr
eq

ue
nc

y
(M

H
z)

PRC4
PRC8
PRC16
PRC32

avg:142.3

avg:312.2 avg:307.8 avg:303.4

Fig. 7. Maximum frequency: different PR and PS strategies.

that of the global PS strategy. Hierarchical strategies remark-
ably lower the routing efforts because they considerably
diminish the fan-in number for both the first-level and
second-level designs. Hence, routing congestion resulting
from global strategy is alleviated by distributing the heavy
centralized routing to multiple paths. Moreover, registers
are employed in hierarchical strategies to separate the long
wiring in the critical path into two shorter ones. In all, PS4
renders the highest frequency as indicated on top of the bars
in Fig. 7, revealing that PS4 best reduces routing congestion
and balances delay. Moreover, scalability is preserved under
the case of multiple HWAs using PS4.

From a PR aspect, the PR4 strategy surpasses other
strategies in frequency, since this strategy trims down the
fan-out number of every PR to a desirable value, which
similarly lightens the routing burden. PR8 and PR16 provide
similar results, while PR32 exhibits the worst performance,
since it leads to the heaviest routing burden.

6.3.2 Resource utilization
The LUT and BRAM resource breakdown including PRs,
PSs and components in HWA channels with dummy HWAs
is evaluated using the PR4-PS4 strategy with the highest
performance, as shown in Table 4. The DSP resource is not
utilized for any design strategy. Note that TBs and POBs
are implemented in BRAMs while other buffers are imple-
mented by distributed memories using LUTs. Furthermore,
regarding the different PR and PS strategies we investigated,
the LUT utilization ranges between 10.48% and 10.78%, and
exhibits an average resource consumption of 10.63% overall
and 0.33% per HWA channel. This value is further verified
by implementing a design with eight HWA channels, which
utilizes 2.6% of the resources in all, and again 0.33% per
HWA channel. Therefore, the results validate the light-
weight characteristic of our design.

6.4 Throughput of the proposed architecture
To validate the system and evaluate the throughput, we
assume eight HWAs on an FPGA and each processor ran-
domly sends requests to specific HWAs under a wide range
of request frequencies. Injection rate is used to represent the
number of incoming flits per unit time from the router to
our design when the full system is at a stable stage. The
throughput is calculated as PS output flits per unit time.

In the first case (denoted as Izigzag-HWA), to evaluate
the maximum throughput achievable, the eight invoked
HWAs are all implemented as Izigzag which has a negli-
gible execution time (i.e., one cycle). Fig. 8 (a) shows both

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2754378, IEEE
Transactions on Multi-Scale Computing Systems

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
5

10

15

20

25

30

Request frequency(requests/µs)
(a)

Iz
ig

za
g−

H
W

A
: I

nj
ec

tio
n

ra
te

&
 T

hr
ou

gh
pu

t (
fli

ts
/µ

s)

Injection rate Throughput

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

25

30

Request frequency(requests/µs)
(b)

E
ig

ht
−H

W
A

: I
nj

ec
tio

n
ra

te
&

 T
hr

ou
gh

pu
t (

fli
ts

/µ
s)

Injection rate Throughput

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

25

30

Request frequency(requests/µs)
(c)

D
fd

iv
−H

W
A

: I
nj

ec
tio

n
ra

te
&

 T
hr

ou
gh

pu
t (

fli
ts

/µ
s)

Injection rate Throughput

Fig. 8. (a) Izigzag-HWA injection rate and throughput; (b) Eight-HWA injection rate and throughput; and (c) Dfdiv-HWA injection rate and throughput.

TABLE 4
Resource breakdown for the interface architecture in the prototype.

Component LUT BRAM
number % number %

Per HWA

TB 100 0.02 4 0.27
TA 2 0 0 0

HWAC+PG 290 0.07 0 0
POB 231 0.05 2 0.14
RB 243 0.06 0 0

LGC 139 0.03 0 0
LGB 247 0.06 0 0

Overall PR 870 0.2 0 0
PS 5039 1.16 0 0

the injection rate and throughput for Izigzag-HWA. The
maximum injection rate is 27.95 flits/µs and the FPGA
is busy for 93% of all the execution time, approaching
but not reaching 100 percent owing to the communication
overhead incurred by the request and grant mechanism. The
throughput becomes saturated at 0.2 requests/µs and the
maximum throughput reaches 24.81 flits/µs, which is 5.7%
smaller than the injection rate, due to the latency incurred
by packet fetching, packet generation and stalling for PS
arbitration. When the request frequency further increases,
the throughput decreases slightly, because the intensive
and substantial data communication eventually accounts
for network congestion, which in turn diminishes the data
transmission rate.

In the second case (denoted as Eight-HWA), we use the
first eight benchmarks in Table 3 with a diversified HWA
execution time, to test a common and real scenario. A similar
trend to Izigzag-HWA can be seen in Fig. 8 (b). However,
the throughput saturates at a higher request frequency, and
the throughput is notably lower than the injection rate as a
consequence of the non-trivial and diverse HWA execution
time.

In the third case (denoted as Dfdiv-HWA), Dfdiv is
adopted for all eight HWAs to evaluate the throughput
under the other extreme where the HWA execution time
is the major dominant factor. As shown in Fig.8 (c), even
though the injection rate increases linearly with the rise of
request packets, the throughput is chiefly constrained by the
lengthy HWA execution time and thereby remains constant.

0

20000

40000

60000

80000

100000

GSM.p1 GSM.p2 GSM.p3 JPEG.p1 JPEG.p2 JPEG.p3 JPEG.p4 JPEG.p5
Ex

ec
ut

io
n

tim
e

/ n
s

Partitioned application

Processor
FPGA
Data transmission

Fig. 9. Latency breakdowns of different partitions regarding a single
invocation.

6.5 Latency breakdown

In this experiment, we evaluate the latency breakdown in
a single invocation for the processor execution, the FPGA
acceleration and data transmission. We conduct task par-
titioning for the two computationally intensive benchmarks
with multiple functions–GSM and JPEG decoder–in Table. 3.
The payload packet sizes are 3-flit for GSM and 18-flit
for the JPEG decoder. The latency breakdowns of different
partitions are shown in Fig. 9. The FPGA executes all the
functions in the cases of GSM.p3 and JPEG.p5, which render
the smallest overall latency amongst their corresponding
partitions. As these two applications incorporate many in-
tensive computations suitable for FPGA acceleration, the
improvement in execution time using FPGA acceleration is
prominent in all of the different partitions, even with the
communication overhead considered. Therefore, the results
demonstrate the high efficiency of the FPGA as a platform
suitable for accelerating computationally intensive applica-
tions in multicore systems.

6.6 Evaluation of HWA chaining mechanism

To investigate the efficiency of the HWA chaining mecha-
nism, an experiment is conducted with the Izigzag, Iquan-
tize, Idct, and Shiftbound benchmarks as in Table 3 for
JPEG decompression [19]. These four functions are executed
serially to finish decoding for the compressed images in
JPEG format. The chaining schemes are: Chaining depth 0
(no chaining), Chaining depth 1 (Izigzag+Iquantize), Chain-
ing depth 2 (Izigzag+Iquantize+Idct) and Chaining depth 3
(Izigzag+Iquantize+Idct+Shiftbound).

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2754378, IEEE
Transactions on Multi-Scale Computing Systems

9

The speedup for each different chaining scheme with
Chaining depth 0 as the baseline is shown in Fig. 10. Notic-
ing that the most time-consuming part is the packet sending
and receiving operations of the processors, our chaining
mechanism effectively diminishes the communication over-
head, and it indicates a growing trend for performance
improvement when the chaining depth increases.

The communication latency for the chaining mechanism
is 4 + N cycles, where N is the number of result flits
to be stored in the chaining buffer. This intra-FPGA com-
munication overhead at runtime is trivial compared with
the communication overhead between the FPGA and the
processors. Moreover, the LUT overhead per HWA channel
for incorporating the chaining mechanism is 526 (0.12%)
and the BRAM overhead is 2 (0.14%), implying high area-
efficiency. As a result, the proposed hardware chaining
mechanism demonstrates prominent speedup in the execu-
tion time compared with the non-chaining approach, with
negligible overheads in runtime and resource, especially
when heavy data communication is involved as the chaining
depth increases.

1
1.32

1.94

3.62

0

1

2

3

4

Chaining depth
0

Chaining depth
1

Chaining depth
2

Chaining depth
3

Sp
ee

du
p

Fig. 10. Speedup: Different chaining depths v.s. Chaining depth 0.

Processor

M
as

te
r

Sl
av

e

M
as

te
r

Sl
av

e

FPGA

M
as

te
r

Sl
av

e

...

AXI: P to F

AXI: F to P

Processor

Fig. 11. System framework based on bus based integration.

6.7 Comparison with bus based integration
As illustrated in Section 2, the bus-based integration of
an FPGA and processors has been studied in prior work.
From the industry aspect, the bus-based integration of an
FPGA and processors is also extensively deployed in current
situation. A representative instance is the ARM Corelink
NIC Network Interconnect [33], which utilizes AMBA AXI4
protocol. In addition, we note that the AXI4 can be well
integrated with our proposed interfacing architecture, and
in order to perform a fair comparison between bus-based
communication and NoC, a prototype is implemented with
AMBA AXI4 as a replacement of the NoC in this experiment,
as shown in Fig. 11.

The AXI4 frequency is set to be identical to the proces-
sors so as to obtain the upper limit of throughput. It is set
to be 1 GHz and is scaled to 100 MHz for emulation on the
FPGA [34]. The behaviours of injection rate and throughput
are similar to NoC based integration. However, as shown in
Fig. 13, in comparison with NoC, the maximum throughput
for Izigzag-HWA exhibits a reduction of 27%, while for
Eight-HWA, a 53% decrease in throughput can be observed.
For Dfdiv-HWA, the throughput restricted by HWA exe-
cution retains an identical constant. Fig. 14 further reveals
the communication latency for the AXI-based design and
shows a 2.42× improvement for the proposed NoC design
compared with the AXI-based design. In other words, the
proposed framework with NoC support indicates predicted
advancement in throughput compared with the bus-based
integration due to NoC’s good scalability, especially when
communication overhead becomes the major concern.

6.8 Comparison with shared FPGA cache
In order to quantitatively characterize the benefits of our
design over a shared cache design, we prototype a system
using system cache [35] for an FPGA. This cache memory
is used to store input and output packets received and
sent over the NoC interface, as shown in Fig. 12. The
prototyped system is identical to our proposed system but
without TBs, POBs and CBs. The HWAs implemented on the
FPGA have direct access to the cache. Experimental results
shown in Fig. 13 indicate a 22.5% throughput reduction for
Izigzag and a 28.2% reduction for Eight-HWA, compared
with our proposed architecture. Fig. 14 also demonstrates an
enhancement in communication latency by a factor of 1.63×
for our proposed design in comparison to the shared FPGA
cache design. Besides this, the system cache consumes 1% of
the LUT resources and 5%- 9.5% of the BRAMs in the FPGA,
depending on the cache size, which ranges from 32 Kbyte to
512 Kbyte, with the set associativity fixed as two by default.
When there are more chances for HWA chaining, the cache is
beneficial. Nevertheless, the intensive access of the cache by
all the operating HWAs will cause a surge of congestion and
in turn, boost the average access time, which counteracts its
merits, thus showing a reduction in throughput compared
with our architecture making full use of distributed buffers.

Processor ... FPGA

NoC

Cache Cache Control & Buffer
...

H
W
A

H
W
A

H
W
A

System CacheMemory

Processor

Cache

Fig. 12. System framework with FPGA in-built cache.

7 CONCLUSION AND FUTURE WORK

This paper mainly proposes and implements a platform-
independent architectural design for FPGA-based

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2754378, IEEE
Transactions on Multi-Scale Computing Systems

10

0

5

10

15

20

25

Izigzag Eight-HWA Dfdiv

Th
ro

ug
hp

ut
 (f

lit
/u

s)

NoC
AXI4
Cache

Fig. 13. Maximum throughput of the three different prototypes.

1

2.42

1.63

0

1

2

3

Proposed AXI-based Cache-based

N
or

m
al

iz
ed

 la
te

nc
y

Fig. 14. Communication latency for a single invocation of the three
different prototypes.

multi-accelerators to efficiently interface with chip-
multiprocessors through NoC. Our target is to optimize
the performance of the interface when a large number of
HWAs are mapped in an FPGA. Specifically, we explore the
variations of the key design-specific parameters including:
(1) the number of TBs to reduce communication latency; (2)
the distributed PR strategies and hierarchical PS strategies
to maximize operating frequency as well as maintain good
scalability; and (3) the speedup and tradeoff derived from
our proposed chaining mechanism. Results show that the
optimal set of these parameters can guarantee a more than
2× improvement in performance. In order to emulate the
system-level functionality and evaluate the performance
of the proposed interface architecture, we prototype a full
system on an FPGA. This prototype encompasses NoC, the
FPGA with an integrated interface architecture and multiple
HWAs, together with the soft processor cores with HWA
invocation functions to tackle programmability issues. We
compare our design with commonly used bus-based and
FPGA share cache prototypes and finally find our proposed
interface architecture demonstrates prominent superiority
in performance, area-efficiency and scalability. In our future
work, we plan to evaluate the effect of different NoC
routing protocols on the performance of the interface.

ACKNOWLEDGMENTS

The authors acknowledge the support of the HKUST start-
up fund R9336.

REFERENCES

[1] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai, “Single-
Chip Heterogeneous Computing: Does the Future Include Custom

Logic, FPGAs, and GPGPUs?” in Proceedings of the 43rd Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE
Computer Society, 2010, pp. 225–236.

[2] “IvyTown Xeon + FPGA: The HARP Program,” https://cpufpga.
files.wordpress.com/2016/04/harp isca 2016 final.pdf.

[3] L. H. Crockett, R. A. Elliot, M. A. Enderwitz, and R. W. Stewart,
The Zynq Book: Embedded Processing with the Arm Cortex-A9 on the
Xilinx Zynq-7000 All Programmable Soc. Strathclyde Academic
Media, 2014.

[4] Z. L. Qian, D. C. Juan, P. Bogdan, C. Y. Tsui, D. Marculescu,
and R. Marculescu, “A Support Vector Regression (SVR)-Based
Latency Model for Network-on-Chip (NoC) Architectures,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 35, no. 3, pp. 471–484, 2016.

[5] F. Lan, Y. Pan, and K. T. T. Cheng, “An Efficient Network-on-
Chip Yield Estimation Approach Based on Gibbs Sampling,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 35, no. 3, pp. 447–457, 2016.

[6] S. V. Winkle, D. Ditomaso, M. Kennedy, and A. Kodi, “Energy-
efficient optical Network-on-Chip architecture for heterogeneous
multicores,” in IEEE Optical Interconnects Conference (OI), 2016, pp.
62–63.

[7] M. Hubner, P. Figuli, R. Girardey, D. Soudris, K. Siozios, and
J. Becker, “A Heterogeneous Multicore System on Chip with
Run-Time Reconfigurable Virtual FPGA Architecture,” in 2011
IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum, 2011, pp. 143–149.

[8] K. Papadimitriou, C. Vatsolakis, and D. Pnevmatikatos, “Invited
paper: Acceleration of computationally-intensive kernels in the
reconfigurable era,” in 7th International Workshop on Reconfigurable
and Communication-Centric Systems-on-Chip (ReCoSoC), 2012, pp. 1–
5.

[9] O. Sander, S. Baehr, E. Luebbers, T. Sandmann, V. V. Duy,
and J. Becker, “A flexible interface architecture for reconfig-
urable coprocessors in embedded multicore systems using PCIe
Single-root I/O virtualization,” in International Conference on Field-
Programmable Technology (FPT), 2014, pp. 223–226.

[10] M. Weinhardt, A. Krieger, and T. Kinder, “A framework for PC
applications with portable and scalable FPGA accelerators,” in
International Conference on Reconfigurable Computing and FPGAs
(ReConFig), 2013, pp. 1–6.

[11] M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, “RIFFA
2.1: A Reusable Integration Framework for FPGA Accelerators,”
ACM Trans. Reconfigurable Technol. Syst., vol. 8, no. 4, pp. 22:1–
22:23, 2015.

[12] J. Stuecheli, B. Blaner, C. R. Johns, and M. S. Siegel, “CAPI: A
Coherent Accelerator Processor Interface,” IBM Journal of Research
and Development, vol. 59, no. 1, pp. 7:1–7:7, 2015.

[13] Y. T. Chen, J. Cong, M. A. Ghodrat, M. Huang, C. Liu, B. Xiao, and
Y. Zou, “Accelerator-rich CMPs: From concept to real hardware,”
in IEEE 31st International Conference on Computer Design (ICCD),
2013, pp. 169–176.

[14] W. Hussain, R. Airoldi, H. Hoffmann, T. Ahonen, and J. Nurmi,
“Design of an accelerator-rich architecture by integrating multiple
heterogeneous coarse grain reconfigurable arrays over a network-
on-chip,” in IEEE 25th International Conference on Application-
Specific Systems, Architectures and Processors, 2014, pp. 131–138.

[15] G. Girão, D. Barcelos, and F. R. Wagner, “Performance and energy
evaluation of memory hierarchies in NoC-based MPSoCs under
latency,” in 17th IFIP International Conference on Very Large Scale
Integration (VLSI-SoC), 2009, pp. 127–132.

[16] W. Fu, M. Yuan, T. Chen, Q. Shi, L. Liu, and M. Wu, “Benefit of
Unbalanced Traffic Distribution for Improving Local Optimization
Efficiency in Network-on-Chip,” in IEEE Intl Conf on High Perfor-
mance Computing and Communications, 2014 IEEE 6th Intl Symp on
Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on Embedded
Software and Syst (HPCC,CSS,ICESS), 2014, pp. 76–83.

[17] Z. Wang, W. Liu, J. Xu, X. Wu, Z. Wang, B. Li, R. Iyer, and
R. Illikkal, “A systematic network-on-chip traffic modeling and
generation methodology,” in IEEE Asia Pacific Conference on Cir-
cuits and Systems (APCCAS), 2014, pp. 675–678.

[18] W. J. Dally and B. Towles, “Route packets, not wires: on-chip inter-
connection networks,” in Proceedings of the 38th Design Automation
Conference, 2001, pp. 684–689.

[19] M. Mody, V. Paladiya, and K. Ahuja, “Efficient progressive JPEG
decoder using JPEG baseline hardware,” in IEEE Second Interna-

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2754378, IEEE
Transactions on Multi-Scale Computing Systems

11

tional Conference on Image Information Processing (ICIIP), 2013, pp.
369–372.

[20] J. Choi, K. Nam, A. Canis, J. Anderson, S. Brown, and
T. Czajkowski, “Impact of Cache Architecture and Interface
on Performance and Area of FPGA-Based Processor/Parallel-
Accelerator Systems,” in IEEE 20th International Symposium on
Field-Programmable Custom Computing Machines, 2012, pp. 17–24.

[21] M. K. Papamichael and J. C. Hoe, “CONNECT: Re-examining Con-
ventional Wisdom for Designing Nocs in the Context of FPGAs,”
in Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays. ACM, 2012, pp. 37–46.

[22] I. Xilinx, “Microblaze processor reference guide,” reference manual,
vol. 23, 2014.

[23] S. Xu and H. Pollitt-Smith, “A Multi-MicroBlaze Based SOC
System: From SystemC Modeling to FPGA Prototyping,” in The
19th IEEE/IFIP International Symposium on Rapid System Prototyping,
2008, pp. 121–127.

[24] A. K. Singh, A. Kumar, T. Srikanthan, and Y. Ha, “Mapping real-
life applications on run-time reconfigurable NoC-based MPSoC
on FPGA,” in International Conference on Field-Programmable Tech-
nology, 2010, pp. 365–368.

[25] E. H. E. Mimouni and M. Karim, “A MicroBlaze-based Mul-
tiprocessor System on Chip for real-time cardiac monitoring,”
in International Conference on Multimedia Computing and Systems
(ICMCS), 2014, pp. 331–336.

[26] S. Li, M. Huang, H. Ding, and S. Ma, “A Hierarchical Memory
Architecture with NoC Support for MPSoC on FPGAs,” in IEEE
22nd Annual International Symposium on Field-Programmable Custom
Computing Machines, 2014, pp. 173–173.

[27] H.-P. Rosinger, “Connecting customized IP to the MicroBlaze soft
processor using the Fast Simplex Link (FSL) channel,” Xilinx
Application Note, 2004.

[28] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii, “CH-
Stone: A benchmark program suite for practical C-based high-
level synthesis,” in IEEE International Symposium on Circuits and
Systems, 2008, pp. 1192–1195.

[29] “SNU Real-Time Benchmark Suite,” http://www.cprover.org/
goto-cc/examples/snu.html.

[30] S. Park, T. Krishna, C.-H. Chen, B. Daya, A. Chandrakasan, and L.-
S. Peh, “Approaching the Theoretical Limits of a Mesh NoC with
a 16-node Chip Prototype in 45Nm SOI,” in Proceedings of the 49th
Annual Design Automation Conference. ACM, 2012, pp. 398–405.

[31] L. Barthe, P. Benoit, and L. Torres, “Investigation of a Masking
Countermeasure against Side-Channel Attacks for RISC-based
Processor Architectures,” in International Conference on Field Pro-
grammable Logic and Applications, 2010, pp. 139–144.

[32] T. Feist, “Vivado design suite,” White Paper, vol. 5, 2012.
[33] ARM Ltd, “CoreLink NIC Family,” http://www.arm.com/

products/system-ip/interconnect/corelink-nic-family.php.
[34] PrimeCell, “Configurable Interconnect Technical Reference Man-

ual.”
[35] Xilinx Ltd, “LogicCORE IP System Cache v3.0.”

Zhe Lin (S’15) received his B.S. degree from
School of Electronic Science and Engineering
from Southeast University, Nanjing, China, in
2014. Since 2014, he has been a Ph.D. Student
in the Department of Electronic and Computer
Engineering at Hong Kong University of Science
and Technology (HKUST), Hong Kong. Zhe’s
current research interests cover FPGA-based
heterogeneous multicore systems and power
management strategies of modern FPGAs.

Sharad Sinha (S’03, M’15) received his PhD
degree in Computer Engineering from NTU, Sin-
gapore (2014). He is a Research Scientist in
the School of Computer Engineering at NTU.
He received the Best Speaker Award from IEEE
CASS Society, Singapore Chapter, in 2013 for
his PhD work on High Level Synthesis and
serves as a Corresponding Editor for IEEE Po-
tentials and an Associate Editor for ACM Ubiq-
uity. Dr. Sinha earned a Bachelor of Technology
(B.Tech) degree in Electronics and Communica-

tion Engineering from Cochin University of Science and Technology
(CUSAT), India in 2007. From 2007-2009, he was a design engineer with
Processor Systems (India) Pvt. Ltd. Dr. Sinha’s research and teaching
interests are in computer arhcitecture, embedded systems and recon-
figurable computing.

Hao Liang received a B.S. degree in software
engineering from the Shanghai Jiaotong Uni-
versity, Shanghai, China, in 2011. He is cur-
rently pursuing a Ph.D. degree in electronic
and computer engineering at Hong Kong Uni-
versity of Science and Technology, Hong Kong.
His current research interests include 3-D IC
thermal modeling, emerging interconnect tech-
nology, embedded systems, and reconfigurable
computing.

Liang Feng received a B.S. degree in Microelec-
tronics from Nanjing University, China, in 2014.
He is currently a PhD student in electronic and
computer engineering at Hong Kong University
of Science and Technology, Hong Kong. Liang’s
research interests include reconfigurable com-
puting, multi-core system and electronic design
automation (EDA).

Wei Zhang (M’05) received a Ph.D. degree
from Princeton University, Princeton, NJ, USA,
in 2009. She was an assistant professor with
the School of Computer Engineering, Nanyang
Technological University, Singapore, from 2010
to 2013. Dr. Zhang joined the Hong Kong Uni-
versity of Science and Technology, Hong Kong,
in 2013, where she is currently an associated
professor and she established the reconfigurable
computing system laboratory (RCSL). Dr. Zhang
was a co-investigator of the Singapore-MIT Al-

liance for Research and Technology Centre, Singapore, where she was
involved in low-power electronics. Dr. Zhang was a collaborator with
the A*STAR-UIUC Advanced Digital Sciences Center, Singapore, where
she was involved in field programmable gate array (FPGA) acceleration
for multimedia applications. Dr. Zhang has authored or co-authored over
50 book chapters and papers in peer reviewed journals and international
conferences. Dr. Zhang’s current research interests include reconfig-
urable systems, FPGA-based design, low-power high-performance mul-
ticore systems, electronic design automation, embedded systems, and
emerging technologies.

Dr. Zhang serves as the Area Editor of Reconfigurable Computing of
the ACM Transactions on Embedded Computing Systems and as an
Associate Editor for IEEE TVLSI. She also serves on many organization
committees and technical program committees.

