
0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907881, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH 2019 1

Analysis and Design of
Tamper-Mitigating Microfluidic Routing Fabrics
Jack Tang, Member, IEEE, Mohamed Ibrahim, Member, IEEE, Krishnendu Chakrabarty, Fellow, IEEE,

and Ramesh Karri, Senior Member, IEEE

Abstract—Microfluidic routing fabrics are reconfigurable
primitives that permit the dynamic redirection of fluids on a
flow-based microfluidic biochip. Such primitives are bringing
the benefits of rapid prototyping and on-the-fly reconfigurability
from integrated circuits to the microfluidic domain. An unfor-
tunate side effect of this increased flexibility is susceptibility to
tampering. A malicious adversary can alter either the electronic
control signals or the pneumatic control lines used to drive the
routing fabric. In this work, we provide a high-level security
assessment of microfluidic systems utilizing routing fabrics, and
analyze their security under actuation tampering attacks. We
show that under reasonable assumptions, the permissible states
of a routing fabric forms a probability distribution. We provide
methods for efficiently determining this distribution through a
binary tree representation. We then show how to synthesize
routings fabrics that exhibit well-defined behaviors. We call a
routing fabric designed in such a way tamper-mitigating, as it
makes the effects of tampering probabilistically less severe. We
then show how the proposed methodology can be used to protect
a forensic DNA barcoding application from attack.

Index Terms—Flow-based microfluidic biochip, routing fabric,
transposer, security, tampering, mitigation.

I. INTRODUCTION

Flow-based microfluidic biochips have emerged as an effec-
tive means of realizing the laboratory-on-a-chip [2], [3]. By
integrating fluid handling channels and chambers, microvalve-
based flow control, and sensors on elastomer substrates, many
biochemical protocols once relegated to complex, manual
laboratory procedures can now be performed efficiently and
automatically in a miniaturized platform [4], [5]. Among the
myriad of microfluidic technologies available today, flow-
based microfluidics are one of the most developed and have
been successfully commercialized in benchtop platforms such
as the Fluidigm BioMark HD [6]. The latest research in flow-
based biochips has drawn from well-established concepts in

Manuscript received June 1, 2018; revised December 3, 2018; revised
January 28, 2019; accepted March 6, 2019. A preliminary version of this
paper was published in Proc. IEEE Int. Conf. Comput. Des., Newton, MA,
USA, November 2017, pp. 25-32 [1]. This work was supported in part
by the Army Research Office under grant number W911NF-17-1-0320, the
National Science Foundation under grant CNS-1833624, the NYU Center for
Cyber Security (cyber.nyu.edu), and the NYU-AD Center for Cyber Security
(sites.nyuad.nyu.edu/ccs-ad/).

J. Tang and R. Karri are with the Department of Electrical and Computer
Engineering, New York University, Brooklyn, NY, 11201 USA (e-mail:
jtang@nyu.edu; rkarri@nyu.edu).

M. Ibrahim and K. Chakrabarty are with the Department of Electrical and
Computer Engineering, Duke University, Durham, NC, 27708 USA (e-mail:
mohamed.s.ibrahim@duke.edu; krish@duke.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier xx.xxxx/TCAD.2018.xxxxxxx

the semiconductor industry in an effort to manage increasing
complexity while streamlining design, fabrication, and oper-
ation. This has led to several breakthroughs in microfluidic
large scale integration (mLSI) [7], design automation [8], [9],
and test [10]. Even reconfigurable flow-based biochips (RFBs)
analogous to field-programmable gate arrays (FPGAs) have
been reported, which enables rapid prototyping and real-time
adjustments to biochemical protocols [11], [12].

A side effect of the adoption of semiconductor design and
fabrication techniques is the unintentional incorporation of
their associated security vulnerabilities. System complexity
and programmability can be leveraged by an attacker to cause
unintended behavior. A state-of-the-art flow-based microflu-
idic biochip is a complex cyberphysical system and as such
presents several attack surfaces for exploitation [13], [14].
Furthermore, as biochips become more advanced and move to
the commercial sector, a horizontally integrated supply chain
will become attractive [15]. This has been the predominant
design paradigm in the semiconductor industry for decades,
and has resulted in an untrusted supply chain where hardware
Trojans and intellectual property theft are prevalent [16]. This
is especially worrisome considering the potential catastrophic
consequences: result manipulation, and destruction of pre-
cious, difficult-to-replace samples [17].

Microfluidic security threats must be taken seriously given
that several cases of fraud and misconduct have been reported
in applications where microfluidics are designed to be em-
ployed. For instance, in 2013 it was revealed that a third-
party research laboratory tasked with FDA drug screening
was essentially fabricating test results [18]. Paradoxically, the
adoption of microfluidics may make successful attacks more
plausibly deniable; built-in monitoring and logging capabilities
may be difficult to bypass [17]. Microfluidic system designers
would do well to fully analyze the performance of their
systems under attack.

This paper investigates the analysis and design of one RFB
in detail: the microfluidic routing fabric based on transposer
primitives [11], which was employed as an efficient droplet
barcoding mechanism for single-cell analysis [19]. The trans-
poser primitive is illustrated in Fig. 1(a). Two fluid flow
channels with bridging channels are controlled with a set
of valves. In [11], this primitive was constructed using a
polydimethylsiloxane (PDMS) substrate with ablated polycar-
bonate stacked above. The valves are formed as discontinuities
in the channels, and can be normally open or normally closed.
An elastomeric membrane covers the valve. This membrane
distends into the gap upon vacuum actuation (or pressurized

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907881, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH 2019

Valve

P1

P2

P3

P4

(a) s (b) s
P1

P2

P3

P4

i
1

i
2

i
3

i
4

(c)

o
1

o
2

o
3

o
4

Fig. 1. (a) A 2-to-2 transposer primitive and its schematic representation.
Route P1 enables the valves in green and disables the valves in grey, causing
both fluids to be passed straight through, while route P2 enables the opposite
set of valves to make fluids cross over. (b) A 2-to-1 transposer primitive and
its schematic representation. Enabling either path P3 or P4 performs fluid
multiplexing. (c) Complex routing fabrics can be constructed using transposer
primitives, such as this 4-to-4 fabric that permits all permutations of inputs
to outputs [11].

actuation), causing fluid to flow (or be blocked).
Control lines for the six valves in Fig. 1(a) are grouped

into two pins. The state of the two control pins are always
complementary; either the controller ensures the correct anti-
polarity of control signals, or some fixed hardware provides
the inversion [20]. The two control pins can thus be considered
as a single control port accepting a single control bit. In one
state, the fluids flow straight through to the output ports. In
the other, the fluids cross over to the opposite port without
any contamination. The control signals used to program a set
of transposers is called a control vector and is denoted by s.

An alternative transposer is shown in Fig. 1(b). One output
port can select between two input ports, forming a microfluidic
2-to-1 multiplexer, or alternately, a 1-to-2 demultiplexer. The
transposer primitive is then used to build more complex
routing fabrics that can select between an arbitrary number
of inputs and outputs (Fig. 1(c)).

We study microfluidic routing fabrics under actuation tam-
pering attacks. We define an actuation tampering attack as a
malicious modification of the transposer control state. In this
work, we focus on actuation tampering achieved through the
injection of physical force directly into the control lines [21].
Such attacks are important to consider since one of the main
usage scenarios for microfluidic systems is at the point-of-care
(PoC), where devices are physically exposed. Furthermore,
physical tampering requires almost no technical sophistication
given that pneumatic control valves are large enough to be
manipulated by hand. While PoC diagnostics can greatly
increase the quality of care in medical applications by lowering
errors and result turnaround time, it has been noted that the
benefits of PoC diagnostics can only be realized with the
adoption of security mechanisms [22]. This work is a novel
hardware-based design technique contributing to goal of low-
error, trustworthy microfluidic systems deployable at the PoC.

Intuitively, a biochip designed for a single function is
physically unable to realize an undesired operation. On the
other hand, a reconfigurable biochip could be configured in a

way that is not only undesirable, but potentially destructive.
Thus, microfluidic routing fabrics have security implications.
This work is the first to address both the analysis and design
of secure RFBs. We call a routing fabric designed using our
methodology tamper-mitigating, as it probabilistically reduces
the consequences of an attack after it has occurred. The con-
tributions of this paper beyond those in the initial conference
publication are as follows:

1) We provide a high-level security assessment of flow-
based microfluidic platforms with an emphasis on actu-
ation tampering attack surfaces.

2) We describe an improved threat model that is more
realistic than that considered in the conference version.
From this, we show that the security of a routing fabric
is determined by the distribution of its routing states.

3) We present a probabilistic graphical model for evaluating
the state distribution, and define distributions and metrics
to classify the security of routing fabrics.

4) We show how to synthesize a routing fabric with arbi-
trary security attributes based on the merging of binary
decision diagrams.

5) We demonstrate how the proposed analysis and design
methodology can be used in practice for uncontrollable
and fail-safe operation.

We note that there are two design problems associated
with microfluidic routing fabrics, each with implications for
performance under actuation tampering attacks. The first is
architectural synthesis, which is the problem of constructing
the routing fabric with routability guarantees. For mason-brick
pattern fabrics, sufficient conditions for routing n inputs to
m outputs have been derived [19]. The initial version of this
paper studied the effect of reconfigurability and architecture on
security, which remains the focus of this paper. The second is
the routing problem, which is the determination of transposer
states such that the desired input fluids reach the desired output
ports. Algorithms have been proposed which leverage graph-
theoretic algorithms [11], [19]. We do not consider routing in
this paper, although it may be a promising area for research.

This paper is organized as follows. We perform a security
assessment of microfluidic routing fabrics in Section. II, de-
scribing attacks, attack surfaces and their implications. The
problem addressed in this work is summarized in Section III.
We present a framework for analyzing routing fabrics in
Section IV. We then present our synthesis methodology in Sec-
tion V. Applications in Section VI demonstrate how tamper-
mitigating routing fabrics can be designed and used in practice.
We review related works in Section VII. We conclude and
remark on future research in Section VIII.

II. SECURITY ASSESSMENT

The structure of a typical cyberphysical flow-based mi-
crofluidic biochip platform is illustrated in Fig. 2. Samples
and reagents are loaded manually onto the biochip, which
may contain hardware for manipulation of fluids. Inside the
platform, the biochip connects to a routing fabric for interface
with additional fluid processing blocks such as heaters and
detectors. The routing fabric is used to connect different fluid

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907881, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TANG et al.: ANALYSIS AND DESIGN OF TAMPER-MITIGATING MICROFLUIDIC ROUTING FABRICS 3

Benchtop Microfluidic Platform

Samples
Reagents

Embedded PC

Biochip

Pneumatic
Actuator

User Interface

Microfluidic
Routing Fabric

Fluid
Processing Block

Pressure
Control Line

Electronic
Signals

Fluid

Microfluidic
Biochip

Loading
Tray

Fluid

Physical
Tampering

Valve-based
Control Logic

k control bits

Fig. 2. Typical construction of a cyberphysical flow-based microfluidic
biochip platform. When deployed as a point-of-care solution, these platforms
are prone to physical tampering by end users and can result in undesired
operation.

processing elements and reservoirs, but is not used to process
fluids directly. It only serves as an interconnection network.
Pneumatic control lines are connected from the biochip to
actuators that are computer-controlled.

We assume that the biochips under consideration utilize
a state-of-the-art process with the ability to integrate valve-
based control logic [23], [24], [25]. Such a biochip would
allow the designer to incorporate blocks such as multiplex-
ers, demultiplexers, and even processors such that a single
pneumatic control line can drive all the control valves in the
biochip [26], [27]. Control signals are sent serially over the
pneumatic control line and decoded on-chip using valve-based
control logic. This is critical as pneumatic control lines are
often bulky, with dimensions on the order of millimeters [11].
Recent research [28] has sought to address precisely this issue
through pin-constrained design but this is beyond the scope of
this work as they are targeted toward more complex biochips.

A. Threat Model: Physical Tampering

The attacker is a malicious end user or someone with
physical access to the microfluidic platform at the point-of-
care. They are interested in stealthily altering results. Such an
attacker poses the greatest threat to undermining the quality of
a diagnostic test result as the barrier to tampering is low [22]
while motivation is high—spoofed results can be used to
falsify compliance when the true result does not match the
attacker’s desired outcome [18], [29]. Note that this stealthy
attack model excludes denial-of-service (DoS) attacks.

Such an attacker, under the tampering taxonomy in [30], is
a Class I attacker: a clever outsider who lacks detailed knowl-
edge of the system and has little to no access to sophisticated
equipment. Such an attacker will often attempt to leverage
existing weaknesses rather than create new ones. We assume
that the majority of end users are potential Class I attackers.
Expending effort to reduce Class I attacks is warranted given
that no evidence exists for Class II (knowledgeable insider)
and Class III (funded organization) attacks in the context of
microfluidic platforms and medical devices in general.

The attacker induces faulty operation of the routing fabric
such that the fluids to be routed are misdirected to the wrong
ports. Inducing faults using the fluid control valves leverages

the physical vulnerability of the microfluidic platform and
requires less expertise than software attacks. Related attacks in
the literature are classified as fault injection attacks. In crypto-
graphic hardware, such attacks [31], [32] can facilitate crypt-
analysis techniques such as differential fault analysis [33].

We assume the attacker is able to open the microfluidic
platform to expose the pneumatic control lines. This is a given
since these platforms are often constructed using sheet-metal
chassis and standard screws. Constructing a platform that
is physically tamper-resistant would drive up manufacturing
costs while reducing serviceability. Further, we assume the at-
tacker does not possess a device that can synchronize injected
faults with the biochip controller. Since a single pneumatic
control line drives the entire biochip, the attacker has to
perfectly time their fault injection attacks in order to precisely
control the state of the biochip. The attacker is motivated to
tamper with the control state rather than directly swapping the
fluid input ports for several reasons:

• Swapping the inputs will likely result in a DoS attack.
• Sensors in the microfluidic platform may easily detect if

the samples/reagents at the input reservoirs are incorrect.
• Switching fluids during the execution of an assay through

manipulation of valves is stealthy and minimally invasive.
• Routing fabrics can be used as an intermediary between

other functional blocks and as such may not have a direct
relationship with the inputs of the system.

When the control signals are tampered with, the result is
modeled as a change in the control vector from a known state
to a randomly selected control vector. The set of control vec-
tors maps into routing fabric states, and therefore the routing
fabric states induce a probability distribution. We note that
by considering this threat model, we eliminate “low-hanging
fruit” for attackers. Consider the alternative: a biochip with
parallel control lines fully exposed. By visual inspection [34],
an attacker can precisely change the biochip state.

B. Attack Implications

Under the previously described threat model, the practical
implication of an attack are as follows:

1) Fluid Redirection. The purpose of a microfluidic routing
fabric is to direct a set of fluids from the input ports
to the output ports. Under an attack, some fluids may
be redirected to the incorrect port. In Fig. 3, we see
that attacking a single transposer in the routing fabric in
dashed lines causes fluids at output ports 1 and 2 to be
swapped. In an application where each of the fluids is
used for a chemical reaction, the fluids at port A and B
may be so different as to cause complete failure of the
reaction. In a droplet barcoding application, this attack
can cause cells to be mislabeled which has consequences
for the integrity of scientific inquiry.

2) Fluid Mixing. If the control signals of a transposer are
fully accessible, then it is possible to place the valves
into a state where the input fluids mix. Such an attack
has consequences that have yet to be fully understood.
Since the control valves in a single transposer cannot be

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907881, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH 2019

A

B

C

D

1

2

3

4

A

B

C

D

1

2

3

4

(a)

(b)

Fig. 3. Fluid redirection under attack. (a) Each color represents a different
fluid flow under normal operation. (b) The transposer in the dashed outline is
under attack, causing fluids intended for output ports 1 and 2 to swap places.

actuated simultaneously, fluid mixing can only occur at
the architectural level.

3) Inducement of Failure Modes. Reconfiguring the rout-
ing fabric into a prohibited state may cause premature
failure. Certain hardware primitives may allow multiple
inlet valves to flow into the same port, causing excess
pressure to build up. Additionally, repeated actuation of
the control valves may lead to premature wear. Tech-
niques have been developed to increase the reliability
of routing fabrics under disconnection fault models due
valve failure [35].

It is clear that microfluidic routing fabrics are vulnerable
to many security threats with serious real-world implications.
The problem is thus how to analyze and design routing fabrics
with quantifiable security guarantees.

III. PROBLEM OVERVIEW

Without the ability to synchronize and perfectly alter the
serial pneumatic control signal, the attacker is essentially
limited to guessing a random control vector. The physical
routing that results is therefore randomly chosen from a sample
space consisting of all the possible transposer states.

Several transposer states may map into equivalent phys-
ical routings. Therefore, some physical routings are more
likely than others. The routing fabric architecture induces a
probability distribution, and this distribution determines the
performance of the fabric under attack (Fig. 4). Put another
way, given a routing fabric, we would like to know what will
most likely occur if the operator of the microfluidic platform
is to lose control of the system? Then, we would like to know
how do we design a microfluidic routing fabric that mitigates
actuation tampering attacks? These are the analysis and design
problems described in Section IV and VI, respectively.

IV. ROUTING FABRIC ANALYSIS

In this section, we develop an efficient analysis framework
for evaluating security properties of routing fabrics.

…

Routing Fabric

Distribution of States

Random
Attack

Ω

Graph
Model

Fig. 4. Overview of the problem. A routing fabric admits several states
as a function of a control vector. An attacker can only randomly choose
control vectors, so the state space forms a probability distribution. We seek
to analyze this distribution, and understand how to synthesize routing fabrics
with desirable distributions.

A. Modeling Preliminaries

Fig. 5(a) illustrates a generic routing block with a set of n
input fluids {i1, i2, ..., in} and m output ports {o1, o2, ..., om}.
The control port accepts a control vector s ∈ {1, 0}k where
k is the number of binary reconfigurable primitives in the
fabric. The result of applying a particular control vector
can be observed at the output as a vector with m entries,
taking on values from the set {1, 2, ..., n} to indicate which
input fluid is present. If we assume that m,n, k are fixed
parameters, then the routing fabric can be interpreted as a
function f : {1, 0}k → {0, 1, 2, ..., n}m where the domain is
the set of all control vectors and the range is the set of all
output vectors.

We model attacks using a set of random variables
{X1, X2, ..., Xk} where each Xi ∼ Bernoulli(0.5) corre-
sponds to a transposer control line and k is the number of
control bits. This model is based on two assumptions: first,
that an attacker randomly perturbs the pneumatic control line
as a function of time and second, that the attacker must guess
how many faults to inject. In order to know how many faults to
inject, an attacker must know the current routing fabric state.
Extracting this information is impractical given the physical
tampering point-of-care threat model and the fact that multiple
routing fabric states can be used to achieve the same fluid
routing (i.e., the routing problem [19]). We can define a related
random variable Yi = fi(X1, X2, ..., Xk) for each output port
oi, that indicates which input fluid ii appears. The function fi
describes how the routing fabric architecture behaves given a
realization of the control vector.

B. Physical Graph Model

Any routing fabric can be described in terms of an equiv-
alent directed acyclic graph (DAG) Fn×m = (Dn×m,Sn×m)
where each vertex di ∈ Dn×m represents a decision point and

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907881, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TANG et al.: ANALYSIS AND DESIGN OF TAMPER-MITIGATING MICROFLUIDIC ROUTING FABRICS 5

i1

in-1

in

i2

o1

om-1

om

o2Routing
Fabric

k-bit control vector

(a)

o1

3-bit control vector

o2

o3

i1

i2

i3

(b) (c)

i1

i2

i3

o1

o2

o3

x1

x3

x1

x2

x3

x2

12x3

2 1

3

d=0

1

2

3

x1

x3x2

12x3

2 1

3

d=0

1

2

3

x2

x1

12

3

d=0

1

2

3

(d) (e) (f)

B1 B2 B3

1 2 3

Output port Input portFluid branching point

Fig. 5. Routing fabric analysis. (a) Generic routing fabric with n inputs and m outputs, consisting of k transposers. (b) A 3-to-3 routing fabric (F3×3)
composed of 3 transposers. (c) Physical graph model used for routing. (d) Routing graph models explicitly show how transposer states lead to fluid routings.
B1 has five possible routings. (e) Sub-routing graph model B2. (f) Sub-routing graph model B3. Note that the arrows are opposite to the direction of fluid
flow.

each edge si ∈ Sn×m represents a fluid flow channel between
the decision points [11], [19]. We call such a representation
the physical graph model of the routing fabric, as the model
can be uniquely mapped to a hardware implementation. This
representation can be extended to be state-dependent in order
to explicitly model the changes in topology that occur when
fluids are actively routed [36], [21]. Consider the 3-to-3 routing
fabric in Fig. 5(b). Its physical graph model is shown in
Fig. 5(c), and shows all the possible fluid pathways. Edges
in dashed lines are included for clarity, but are not part of the
model used for routing [19].

C. Routing Graph Model

While directed acyclic graphs provide a physical interpreta-
tion of a routing fabric, they obscure the relationship between
control and the intended result. Previous studies investigated
the effect of different control states using the state-dependent
graph [36] representation, where each related sub-graph must
be generated and evaluated [1]. This is computationally ex-
pensive and does not facilitate the design of new routing
fabric architectures. To address this problem, we propose to
transform the physical graph model into an equivalent graph
which explicitly represents the fluid routing possibilities.

Definition. A routing graph B̂ = (V̂, Ê) consists of a set of
m rooted directed binary trees {B1,B1, ...,Bm}, where each
Bi = (Vi, Ei) and

1) Each Bi for 1 ≤ i ≤ m corresponds to fluid output om,
and is called a sub-routing graph.

2) Each vi ∈ Vj for 1 ≤ j ≤ m represents a transposer-
based branching point in the routing fabric reachable
by output om.

3) Each ei ∈ Ej for 1 ≤ j ≤ m represents a physical
pathway between transposers reachable by output om.

The root of each sub-routing graph represents one of the out-
put ports. Input ports are represented by leaf vertices (vertices
with no outgoing edges) which are labeled to indicate which
input port in they flow from. Schematically, we will show
input vertices as squares and output vertices as diamonds. All
other vertices are labeled with xi where i corresponds to a
transposer and are shown as circles. As we will see, such a
representation lends itself to efficient security analysis. The
dependencies between states are encoded in the tree structure
while the output states are explicitly represented for intuitive
interpretation. Derivation of the routing graph from the phys-
ical graph can be done with complexity O(m · (|V | + |E|)),
using depth-first search or breadth-first search for each of the
m outputs. Note that the routing graph model is constructed
from the perspective of the output ports and that the directed
edges are oriented opposite of fluid flow. This is because of
the perspective of the security evaluation in the next section,
which is concerned with what input fluid arrives at each output.

Fig. 5(c-f) shows the routing graph models of the 3-to-
3 routing fabric. Note that each output is interpreted as a
separate rooted binary tree. Isomorphic subgraphs could have
been shared among the three inputs, forming a multi-rooted
shared decision diagram [37], [38]. However, the focus of
this work is not finding the most efficient implementation
but rather on easily-understandable analysis, so we keep the
trees separated. Also note that the routing graph model can be
derived directly from the routing fabric rather than through the
physical graph model. We have described the physical graph
model for completeness and to set up a framework for the
synthesis phase, where we build a routing fabric using routing

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907881, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH 2019

TABLE I
PROBABILITY MASS FUNCTIONS FOR THE 3-TO-3 ROUTING FABRIC.

Variable p(y = 1) p(y = 2) p(y = 3)

Y1 3/8 3/8 1/4
Y2 3/8 3/8 1/4
Y3 1/4 1/4 1/2

graphs as building blocks.

D. Evaluating Security

Given that an attack is probabilistic under the threat model
described previously, we would like know which input fluid
will likely be routed to each output. Therefore, evaluating
the security of a routing fabric is reduced to computing the
probability distributions induced by the routing graph model.
Given the routing graph model B̂ = {B1,B2, ...,Bm} we
can calculate the induced probability mass functions (PMFs)
P̂ = {p(Y1), p(Y2), ..., p(Ym)} as follows. Each sub-routing
graph has n different leaf vertex labels and therefore each
of the m PMFs has n outcome probabilities {p1, p2, ..., pn}.
Each of the leaves on the tree has a probability 2−d where d
is the depth of the leaf, since it is assumed that the transposers
are i.i.d Bernoulli(0.5). Therefore each of the pi is found by
summing leaf probabilities with the same label. This can be
written as a binary expansion:

pi =
∑
d∈Di

2−d (1)

where Di is the set of depths associated with leaf vertices
labeled i. That is, each each probability is constructed out of
“atoms” of the form 2−d. This bears similarity to the concept
of a generating tree by Knuth and Yao [39]. However, gen-
erating trees simulate arbitrary distributions by decomposing
them into dyadic atoms and assigning them to leaves of the
tree (here we only evaluate the distributions). This can be
interpreted as a procedure for simulating distributions through
the use of a single unbiased coin flip.

Referring back to the examples in Fig. 5(c-f), we see that
each leaf at depth level 2 has probability 1/4 while those
at depth 3 have probability 1/8. Summing common leaf
vertices, the PMFs are evaluated in Table I. Interpretation
of the probability distribution depends on the intent of the
designer. We will revisit interpretation and security metrics
in Section VI, after describing applications with interesting
desired behaviors. We note that Knuth and Yao’s generating
tree represents a procedure, or an algorithm, for a simulating
an arbitrary distribution, while the routing graph in this work is
a representation of fluid flow paths. The practical implication
of this is that generating trees can be more expressive, as
they can have feedback and be infinite. This concept has been
extended to show that arbitrary rational distributions can be
generated in stochastic flow networks [40].

V. ROUTING FABRIC SYNTHESIS

In routing fabric analysis, we start with a complete architec-
ture and decompose it into its constituent parts to evaluate the

induced probability distribution. In routing fabric synthesis,
we proceed in the opposite direction. We start with a routing
graph model and assign transposers to each vertex such that
it represents a unique architecture. Constructions of routing
graphs will be provided in Section VI. For now, we assume
they are given. In Fig. 6(a,c) we have two alternate transposer
assignments for the same routing graph models. In Fig. 6(a),
the root vertices have been assigned different transposers,
while in Fig. 6(b), they are the same. While this is a small
difference, it leads to considerable changes in the resultant
architecture. Fig. 6(b,c) illustrate a synthesized design that
uses four transposers, while Fig. 6(e,f) uses only three. The
routability of both designs are also drastically different, as
Fig. 6(c) allows any input-output permutation while Fig. 6(f)
cannot simultaneously route i1 with i2 nor i3 with i4.

Transposer assignment can be represented as a vertex col-
oring problem. By merging pairs of vertices together, we
take advantage of the transposer primitive’s ability to route
two fluids for one control input. We seek to reduce control
complexity by minimizing the number of transposers, while
ensuring that the resulting design is physically meaningful.

A. Problem Statement

The synthesis problem statement is defined as follows:
Input: A routing graph model B̂ = (V̂, Ê).
Output: A synthesized routing graph (B̂, c(v)), where c(v) is
a vertex coloring function vi ∈ V̂ → Z+.
Objective: Minimize the number of transposers.
Constraints: Ensure the design is physically realizable.

B. ILP-Based Synthesis

We propose to solve the transposer assignment problem
using integer linear programming (ILP). Such a formulation
naturally permits the description of synthesizability constraints
in a graph coloring optimization problem. We will use the term
color and transposer interchangeably. We define our model
as follows. We take a routing graph as input and divide the
vertices into three sets: VL is the set of leaf vertices, VR is the
set of root vertices, and VI is the set of all other vertices. That
is, V = VR ∪ VI ∪ VL. We denote the number of vertices as
N = |V |, and the maximum number of colors as K = |VI |.

Let xn,k be a binary variable that equals 1 if vertex vn has
been assigned color k, for 1 ≤ n ≤ N and 1 ≤ k ≤ K.
Let ck be a binary variable that is equal to 1 if color k has
been assigned to at least one vertex for 1 ≤ k ≤ K. This
can be modeled as a logical OR of the xn,k color assignment
variable, across all vertices:

ck =
∨

1≤n≤N

xn,k, 1 ≤ k ≤ K (2)

The optimization goal is to reduce the number of transposers,
which means assigning 1 to as few of the ck’s as possible.
Therefore, we state the objective function as:

min :
∑

1≤k≤K

ck (3)

Subject to the following constraints:

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907881, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TANG et al.: ANALYSIS AND DESIGN OF TAMPER-MITIGATING MICROFLUIDIC ROUTING FABRICS 7

(a)

x1

x3

43

x2

21

1

x4

x3

43

x2

21

2

x1

x3

43

x2

21

1

x1

x3

43

x2

21

2

(d)

i1

i2
o1

o2
i3

i4

i1

i2

i3

i4

o1

o2

1

4

2

3
(b) (c)

i1

i2
o1

o2
i3

i4

i1

i2

i3

i4

o1

o2

1

2

3
(e) (f)

Output port Input portFluid branching point

Fig. 6. Routing fabric synthesis. (a) Non-optimal coloring of vertices for two routing graphs. (b) Physical graph model of the non-optimal design. (c) Schematic
representation of the synthesized routing fabric. Four control lines are required to drive this design. (d) Optimal coloring. (e) Physical graph model of the
optimal design. (f) Schematic representation of synthesized optimal routing fabric. Only three control lines are required. However, this design has less routing
flexibility than (c). Saving even a single transposer has practical benefits, as pneumatic control lines add significant bulk and expense to microfluidic systems.

1) Limit on transposer input ports: Each transposer has two
distinct inputs and as such can only accept two unique
fluid flow paths. This means the set of predecessor colors
for each transposer color cannot exceed two. Define an
additional binary variable wi,j which equals 1 if color i
has color j as a predecessor.∑

1≤j≤K

wi,j ≤ 2, 1 ≤ i ≤ K (4)

2) Limit on transposer output branching paths: A trans-
poser can toggle an input fluid between two output ports.
Both input ports must obey the same restriction. There-
fore each color cannot have more than two different
colors as children.∑

1≤i≤K

wi,j ≤ 2, 1 ≤ j ≤ K (5)

3) Unintentional mixing: Leaf vertices must be driven by
only a single transposer. To do otherwise would imply
that two independently controlled paths are connected
to the same output port, meaning there exists a configu-
ration of transposers that would result in fluids mixing.∑

1≤j≤K

wi,j ≤ 1, ∀i ∈ VL (6)

This constraint can be removed to include mixing states.
4) All paths must have an assignment: Each vertex in the

routing graph must be assigned exactly one transposer.∑
1≤k≤K

xn,k = 1, 1 ≤ n ≤ N (7)

We summarize the notation used in our model in Table II.

TABLE II
NOTATION USED IN ILP FORMULATION.

Variable Description

VR set of root vertices
VI set of intermediate vertices
VL set of leaf vertices
K number of possible color assignments
N number of vertices in the routing graph
xn,k a 0-1 variable indicating if vertex vn is assigned color k
ck a 0-1 variable indicating if color k has been used
wi,j a 0-1 variable indicating if color i has j as predecessor

C. Fast Synthesis

The ILP model is optimal, however, the use of a general-
purpose ILP solver may require unacceptable computational
time as they explore a search space without exploiting any
domain-specific knowledge. Here, we show that the special
restricted variant of the synthesis problem as described in
the previous section is solvable in polynomial time. The ILP
formulation is still useful for precisely specifying the problem,
checking for correctness, and accommodating alternate con-
straints that may or may not yield a polynomial time solution.

We propose a fast synthesis algorithm that proceeds by se-
quentially evaluating unassigned vertices and deciding whether
to add them to the current transposer or start a new transposer
(Fig. 7). At the beginning of the routine, we form a new
transposer and iterate through unassigned vertices to find
a suitable candidate for linking. Linking is performed if a
vertex’s two children already have a color assignment. At
startup, the only vertices that satisfy this property are leaf
vertices. After the first assignment, we iterate through the
remaining unassigned vertices and see if they can be shared.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907881, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH 2019

Input: Routing graph B̂ = (V̂, Ê)
Output: Map c(v) from vertices to colors

1: c(v)← ∅,∀v ∈ V̂
2: currColor ← 1
3: while ∃∅ ∈ c(v) or new assignments made do
4: for each {vi ∈ V̂ : c(v) = ∅} do
5: if vi’s children have assigned color then
6: c(vi)← currColor
7: break
8: end if
9: end for

10: for each {vi ∈ V̂ : c(v) = ∅} do
11: if vi’s children colors match currColor’s children colors

then
12: if currColor already has two parent colors then
13: currColor ← currColor + 1
14: c(vi)← currColor
15: break
16: end if
17: c(vi)← currColor
18: end if
19: end for
20: currColor ← currColor + 1
21: end while
22: if {∃∅ ∈ c(v)} then
23: throw InfeasibleSolutionException
24: end if
25: return c(v)

Fig. 7. Fast routing graph synthesis pseudocode.

Sharing is performed if a vertex’s child vertices have the
same colors as the ones already associated with the transposer.
Once all vertices have been enumerated, a new transposer
is formed. This repeats until all vertices are assigned. Note
that an infeasible solution occurs when no new assignments
have been made between iterations of the loop and there exist
vertices without a color assignment.

Theorem 1. The fast synthesis algorithm solves the transposer
assignment problem optimally in O(N2).

Proof. We prove optimality in two parts.
(i) Assume a routing graph consisting of complete binary trees
with colored leaf vertices. Consider any arbitrary set D of
vertices such that the children of these vertices have a color
assignment. Let m be the number of colors assigned to d ∈ D.
m is minimized when all vertices d ∈ D with the same set of
children colors are assigned the same color. This shows how
to minimally color a set of vertices.
(ii) Let n be that the number of colors assigned to the children
of D, and assume that initially n = n0 and m = m0. If we
change the color assignments of the child vertices such that
n > n0, then m ≥ m0. That is, the number of colors used
in D cannot decrease as introducing new child colors will no
longer permit sharing of colors in D. For any set of vertices,
the number of colors is optimized when the number of children
colors are minimized.
Therefore, assigning colors according to (i) minimizes the
colors for a given set of vertices, and also sets up the
minimizing conditions (ii) for the parent vertices of this set.

For worst-case complexity, we observe that the algorithm
consists of one outer loop and two inner loops. The first inner

Input: Routing graph B̂ = (V̂, Ê), map c(v)
Output: Physical graph Fn×m

1: for each {e = {s, t} ∈ E} do
2: s← c(s), t← c(s)
3: end for
4: delete redundant edges in E
5: for each {v ∈ V with two incoming edges} do
6: create duplicate of vertex v̂ = v
7: redirect one of the incoming edges of v to v̂
8: end for
9: return Fn×m = modified B̂

Fig. 8. Routing graph reduction pseudocode.

loop iterates through all unassigned vertices until a suitable
candidate is found for adding to the current color, which is
O(|V̂|). The second inner loop iterates through all unassigned
vertices, excluding the one that was just assigned, which is
O(|V̂|). At each iteration of the outer loop, the worst-case
behavior is that only a single color is assigned to each vertex,
so this completes in O(|V̂|) as well. Therefore, the overall
worst-case complexity is O(|V̂|2).

Theorem 2. The routing fabric synthesis problem is
polynomial-time solvable in O(|V̂|2).

Proof. This follows directly from the preceding theorem.

D. Routing Graph Reduction

After the routing graph has been synthesized, we can
convert it into a physical graph model using a reduction
algorithm, similar to the reduce process used in binary decision
diagrams [41]. Leaf vertices map to unique output ports,
so all leaf vertices with the same label must be merged
together, with all incoming edges redirected to the merged
vertex. Intermediate vertices with the same label and with
matching predecessors can be merged together. Note that
vertex labels can appear twice in the final physical graph
model, as they represent unique input ports on a single
transposer. The common label refers to the shared control.
This can be performed quickly using the algorithm in Fig. 8
with complexity O(|V̂| + |Ê |). The unique colors in the map
c(v) defines vertices in the physical model. We then enumerate
the edges in the routing graph and translate them into edges in
the physical model based on the color of the edge’s vertices.
Then we delete redundant edges, and expand vertices with two
incoming edges. The transformed graph is a physical graph
model. This physical graph model represents a completed
routing fabric design with desirable security properties when
driven by a serial control line.

E. Caveats

Note that only the specific instance of transposer assignment
as described in the ILP model is polynomial-time solvable.
Changing the ILP model to accommodate alternate primitives
or to permit mixing of fluids may not yield fast solutions. It is
an open question as to what effect the ordering of leaf vertices
has on optimality of transposer assignment. Furthermore, the
synthesis methodology presented here does not specify how

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907881, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TANG et al.: ANALYSIS AND DESIGN OF TAMPER-MITIGATING MICROFLUIDIC ROUTING FABRICS 9

the input routing graphs are generated. The routing graphs can
satisfy any functionality (within some practical limitations)
desired by the system designer, as we will demonstrate in the
following design example.

VI. DESIGN OF TAMPER-MITIGATING ROUTING FABRICS
FOR FORENSIC DNA BARCODING

We now turn to the development of some simple con-
structions to generate routing fabrics with desirable security
properties, targeted for a forensic DNA barcoding application.

A. Forensic DNA Barcoding

Forensic DNA analysis is a major application of microflu-
idics and is ripe for tampering at the point-of-care [42]. Mi-
crofluidic technology has made high-throughput DNA analysis
and barcoding a reality, allowing scientists to study gene
expression as a function of cell type. Cellular analysis is a
widely used procedure in clinical diagnostics, pharmaceutical
research, and forensic science [43]. With evidence that cells,
even within the same clonal population, are heterogeneous in
their genomic responses, a large number of single-cell analysis
methods have been established using microfluidic devices [44].
Single-cell analysis relies on encapsulation of individual cells
inside droplets and tagging these droplets with unique DNA
barcodes; this procedure is referred to as DNA barcoding [45].
Barcoded samples can then be processed through a variable
sequence of biochemical operations while their genomic iden-
tity is preserved. To control the DNA barcoding of thousands
of heterogeneous cells, a microfluidic routing fabric has been
efficiently used [19].

B. Security Implications

The routing fabric utilized in [19] has 6 levels, and permutes
8 inputs to 2 outputs. (Fig. 9(a,b)). Eight types of barcoding
droplets, identified by the letters A through H, are connected
to the input ports, to be dispensed on-demand to any of the
two output ports. Once dispensed, these droplets are routed
to the rest of the platform for further processing and sensing
using digital microfluidic technology integrated with actuators
and optical detectors.

To illustrate what can potentially go wrong, we show an
example fluid routing in Fig. 9(a). Barcode type A is to be
dispensed to port 2 while barcode type F is to be dispensed
to port 1. These barcodes are intended for simultaneous
application to two cell droplets. If an attacker causes a fault
through the serial control line such that all transposer states
happen to be swapped, we see that barcode A is halted at an
intermediate transposer. Barcode F is still able to make it to
the correct port. Barcode H, which was never intended for use
at this point in the protocol, is now dispensed to port 2.

The practical implication of this attack for the cell study
is that the biochemical procedure will provide misleading
outcomes. As a consequence of this attack, a cell that has
been identified as type A (based on the in vivo activity of
a certain biomarker) will be wrongly tagged with a barcode
that belongs to a different sub-population of type H. During

A

B

C

D

E

F

G

H

k=10

A

B

C

D

E

F

G

H

k=10

(a)

(b)

1

2

1

2

Fig. 9. (a) Routed fabric used in a DNA barcoding application under normal
operation. Fluid A (blue) is routed to output port 2 while fluid F (green) is
routed to output port 1. (b) After all transposers are attacked, fluid H (red)
ends up at output port 2 while fluid F (green) moves to port 1. Fluid A (blue)
is blocked at an intermediate transposer.

the process of biomolecular analysis, cells are lysed and type-
driven DNA analysis is applied by using the barcode. Hence,
the alteration of barcoding causes the gene reads of type-A
cells to be interpreted as a part of type-H genomic landscape,
thus leading to a false conclusion on the gene expression
of type-A cells. If this routine analysis is carried out as a
part of a DNA forensic investigation, a suspect (with type-
A cells collected from a crime scene) may eventually escape
prosecution.

Single-cell applications such as DNA forensics assume
that the cells under study were collected and barcoded in a
trustworthy manner and therefore allow making clinical or
judicial decisions based on the genomic study. As we can see,
an attacker could potentially skew the barcoding process by
launching attacks on the control vectors for routing fabrics. To
secure the barcoding platform against such attacks, we can use
the methodology presented in this work. First, ensure that the
mapping between control vectors and control valves cannot be
determined by the attacker, and then design the routing fabric
in such a way that random perturbations cannot produce a
meaningful result.

C. Tamper-Mitigating Routing Graph Constructions

We demonstrate how our synthesis methodology can be used
with routing graphs designed from scratch to secure against
actuation tampering attacks. The simple constructions devel-
oped here can be adapted for other uses, but more interestingly,
the general formulation means that new constructions can be
tailored to the application.

In the DNA barcoding application, we would like to prevent
the attacker from biasing the barcoding process using the
concept of uncontrollability as follows (Fig. 10(a)):

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907881, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH 2019

i1

in-1

in

i2

o1

om-1

om

o2Routing
Fabric

k-bit control vector

i1

in-1

in

i2

o1

om-1

om

o2

(a)

i1

in-1

in

i2

o1

om-1

om

o2

(b)

Random Attack

???

Indicator Line

Fail-Safe
Operation

Uncontrollable
Operation

Fig. 10. (a) Uncontrollable operation. Under attack, it is unknown which
input fluid will be directed to a particular output. (b) Fail-safe operation. One
routing is more likely than all others, and can be connected to an “indicator
line” where some inert low-cost fluid is easily detected at the output.

Definition 1. A routing fabric is uncontrollable if an attacker
is unable to reliably route a specific input fluid to specific
output port.

In other words, the PMF p(Yi) is a uniform distribution.
We extend the definition of uniform distribution to mean that
the PMF will either take on uniform values or 0. This is to
accommodate fabric designs where certain outcomes are not
possible.
Security Metric: Normalized Entropy. The information-
theoretic concept of entropy naturally captures the security
of the distribution:

Ĥ(Yn) = −
∑
yi∈S

p(yi) log2(p(yi))

log2(|S|)
(8)

where S as the set of all desired outcomes and the log2 term
expresses the entropy in units of bits. By “desired outcomes”
we mean to exclude inputs that we may wish to behave
in a biased manner, as we will see when we introduce the
concept of indicator lines. It is well-known that for discrete
distributions, entropy is maximized when the distribution is
uniform [46]. We use the normalized form of entropy so
that the quantity can be compared across routing fabrics
irrespective of the number of input ports n.
Construction: If we assume that n is a power of 2 (i.e., the
number of input ports is dyadic), then a balanced binary tree
of depth log(n) implements a uniform distribution with the
minimum number of vertices. However, it may be desirable to
realize a tree of greater depth in case the synthesis algorithm
returns an infeasible solution. We define a parameter r as
the redundancy of an uncontrollable routing graph, which
increases the number of branching points while keeping the
induced probability distribution constant. We construct an r-
redundant uncontrollable routing graph by duplicating the r-
1 routing graph and connecting the two subgraphs with one
branching point (Fig. 11).

As a secondary countermeasure, we would also like to detect
if an attack has occurred. This can be achieved by using an
indicator fluid. In normal operation, the microfluidic platform
will never route the indicator fluid to any of the output ports.

4321

(a)

4

32

1

(b)

2 3 4 321

(c)

2 3 41

Fig. 11. (a) Optimal balanced tree construction for n = 4 outcomes. (b)
r-1 expansion of the optimal tree. (c) r-2 expansion of the optimal tree.
Expansions can continue indefinitely by selecting two leaf vertices of the
same depth and converting them into branching vertices with two children
with the same labels.

Under attack, the routing fabric will dispense indicator fluid
with high probability, which can easily be detected by on-
board sensors. An indicator fluid can be as simple as water
with dye. Detection can be implemented with a fail-safe
routing fabric (Fig. 10(b)).

Definition 2. A routing fabric is fail-safe if, under a random
control vector, one fluid routing is more likely than all others.

Security Metric: Relative Likelihood. We introduce factor
εn as the ratio between the most probable outcome and the
second most probable outcome corresponding to Yn. Let pm
be the m-th highest probability defined by the probability mass
function (PMF) p(Yn). Then,

εn =
p1(Yn)

p2(Yn)
(9)

A PMF with a uniform distribution will thus have ε = 1, while
on the other extreme, a Bernoulli(1) distribution will have
ε =∞. It is desirable to maximize this quantity.
Construction: The requirement that one outcome be much
more likely than all other outcomes places little restriction on
the distribution of the unlikely outcomes. Therefore, instead
of attempting to provide an optimal construction, we simply
provide a simple method for augmenting an existing routing
graph to become fail-safe: define a new root vertex, and
connect the old root vertex to one of outgoing edges, and
connect the fail-safe outcome to the other outgoing edge. The
relative likelihood is thus ε ≥ 2, since all of the original
outcome probabilities are now bounded by 1/2 (Fig. 12).
Intuitively, connecting an extra transposer in this manner
extends the state space such that when this extra transposer
is active, the routing fabric functions normally, and when it is
inactive, the routing fabric is diverted to an indicator line.

We then propose an iterative design procedure, where
we start with an minimal construction and then perform r-
expansion until a feasible solution is found (Fig. 13).

D. Experimental Results

Using the constructions derived here, we generated two
identical sub-routing graphs. First, we generate an uncontrol-
lable routing graph to prevent biasing the droplet barcodes
towards any particular label. Then we apply the augmentation
operation to provide fail-safe functionality. The construction
is shown in Fig. 14(a).

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907881, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TANG et al.: ANALYSIS AND DESIGN OF TAMPER-MITIGATING MICROFLUIDIC ROUTING FABRICS 11

4321

(a)

4321

(b)

5

Fig. 12. (a) Original routing graph taken as input. (b) Augmented routing
graph where a new fail-safe state 5 has been introduced. Root-level augmen-
tation guarantees that ε ≥ 2.

OUTPUT:

Physical Graph

Construct m

-expanded Treesr n

Feasible?

r=0 r++

Synthesize
Routing Graph

INPUT:

m, n

NOYES

Augmentation
(optional)

Fig. 13. A simple iterative procedure to generate n− to−m routing fabrics
with uniform distributions and optionally, a fail-safe mode. Start with the
minimal construction achieving the design goals, and incrementally r-expand
the routing graphs until a feasible solution is found.

The result of applying either the ILP-based or heuristic
synthesis algorithms on these routing graph constructions is
shown in Fig. 14(b). By design, the probability distribution
induced by this routing fabric is well-defined. The only down-
side to this design is that pipelining operations are not defined.
The induced probability mass functions are shown in Table III.
We see that this work is both fail-safe and uncontrollable,
while the original routing fabric is ambiguous as to what
guarantees it can provide. We evaluate relative likelihood
ε = 8 and ε = 5.33 for this work and the augmented CoSyn
fabric, respectively. Ignoring the fail-safe states induced by
the indicator lines, we evaluate normalized entropy as Ĥ = 1
and Ĥ = 0.48, showing that the synthesized fabric maximizes
uncertainty for the attacker.

What this means for an attacker is that with probability
equal to a fair coin flip, any attempt to control the routing
fabric will result in their attack being detected. If they happen
to succeed in activating the fail-safe mode, then they can only
select a droplet barcode with uniform probability. That is, they
will be unable to bias the outcome through repeated attacks.
Furthermore, repeated attacks will exponentially increase the
likelihood of inducing the failure more. In comparison with
the original 8-to-2 routing fabric, the attacker would be able
to bias the barcoding operation toward barcodes located at
ports 1 and 2. This will introduce false biases into the cell
study, leading to incorrect results.

(a)

1

4321 87654321 8765

9

(b) (c)

Indicator Line 1 Indicator Line 1

Indicator Line 2 Indicator Line 2

Fig. 14. (a) Routing graph construction. Two identical graphs are used as
input to the synthesis routine. (b) Result from synthesis. The tamper-mitigating
routing fabric achieves a controlled state distribution, with the same routing
flexibility, while using fewer transposers. (c) Original 8-to-2 routing fabric
design as described in [47].

TABLE III
PROBABILITY MASS FUNCTIONS AND SECURITY METRICS FOR 8-TO-2

ROUTING FABRICS.

Augmented CoSyn [19] This Work

n p(Y1 = n) p(Y2 = n) p(Y1 = n) p(Y2 = n)

1 0.1875 0.1875 0.0625 0.0625
2 0.1875 0.1875 0.0625 0.0625
3 0.1563 0.1563 0.0625 0.0625
4 0.1563 0.1563 0.0625 0.0625
5 0.0938 0.0938 0.0625 0.0625
6 0.0938 0.0938 0.0625 0.0625
7 0.0625 0.0625 0.0625 0.0625
8 0.0625 0.0625 0.0625 0.0625
9 0.5000 0.0000 0.5000 0.0000
10 0.0000 0.5000 0.0000 0.5000

Ĥ(Yn) 0.48 0.48 1.00 1.00
εn 5.33 5.33 8.00 8.00

VII. RELATION TO PRIOR WORK

This work is the first to address both the analysis and
synthesis of secure microfluidic routing fabrics. However, our
concepts share similarities with many prior works, which we
mention here for the interested reader.

• Graphical Models: Algebraic decision diagrams [38] and
their precursors, ordered binary decision diagrams [41],
have lent themselves to efficient manipulation of boolean
functions and as such have had a tremendous impact on
the CAD industry since their introduction in the late 70s.
This work does not leverage features that have become
synonymous with BDDs, such as canonicity through
graph reduction and ordering of variables.

• Probabilistic Graphical Models: The physical graph
model could be interpreted as a Bayesian network,
and the act of determining most probable outcomes
as Bayesian inference [48]. However, the analysis of
transposers is slightly more complicated due to the in-

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907881, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH 2019

terdependence of fluid routing paths and their control;
physical graph models contain repeated vertices.

• Scattering-based Analysis: [1] analyzed security perfor-
mance in terms of the probability of scattering, where
scattering is defined as a fluid being redirected more than
d coordinate spaces away from its desired destination.
This was also evaluated under the assumption of a certain
attack class, organized by the number of bit flips induced
by the attack. Such a model presumed the attacker was
limited in attack capability while still being forced to
randomly choose control lines to tamper with. Here, we
argue that such a limitation is unrealistic in practice
and that introducing randomness leads to more feasible
analysis and design.

• Fault-Tolerant Design: This work differs from general
fault-tolerant architecture research in several important
ways [49]. First, there is no known transposer failure
mode that manifests itself as a flipped state; doing so
would require the simultaneous transient failure of several
valves [35]. Only an attacker is capable of inducing
such a state. Second, while many fault-tolerant systems
incorporate redundancy that can be leveraged in case of
failure, many of these systems require the detection of a
fault and active redirection of resources. During an attack,
no such advantage may be conferred since the attacker
may be actively tampering with these systems.

• Interconnection Networks: And lastly, we note that the
concept of a microfluidic routing fabric has historical
precedent in interconnection networks. The study of in-
terconnection networks began with the introduction of the
Clos network [50], which was designed for telephony ap-
plications. In Clos’ original paper, conditions were proved
for ensuring that the network is non-blocking. Other
interconnection toplogies include Banyan and Omega
networks [51]. Later, these concepts were adopted for
networking and computer architectures, and analyzed for
their fault-tolerant behavior. The routing fabrics consid-
ered in this work are of a mason-brick topology and are
not employed in these related fields.

VIII. CONCLUSIONS

We presented a security assessment of an emerging mi-
crofluidic hardware primitive: the transposer-based routing
fabric driven through a serial control line. We then formulated
an analysis and design methodology under a random control
vector attack model. Two classes of security, fail-safe and
uncontrollable, were defined and case studies were presented
to show how such characteristics could be leveraged in practice
as a tamper mitigation mechanism. Such a design-time tamper
mitigation technique eliminates one of the simplest methods
for tampering with a physically vulnerable device employed
at the point-of-care.

One major limitation of this work is the restriction on
distributions being dyadic. As shown in recent works, feedback
greatly increases the expressivity of flow networks, permitting
arbitrary rational distributions in compact form [40]. With-
out feedback, an infinite number of branching points are

required [39]. As feedback is prohibited in microfluidic flow
networks, it would be interesting work to see if arbitrary distri-
butions could be efficiently approximated for implementation
in a routing fabric. Other limitations include: the fact that
pipelining cannot be specified as a design criterion [19], and
the number of transposers in the final design is not guaranteed
to be minimized.

If we were to consider DoS attacks, then the performance
of the routing fabrics in this work would be degraded. For
instance, an attacker could perturb only a single transposer in
the hope of causing a failure. The fail-safe mechanism would
then be activated with probability 1/K instead of 1/2, where
K is the number of transposers. Evaluating the probability that
a fluid input would deviate from its correct path must take the
current transposer state into account and would thus require
scattering-based analysis as presented in [1].

Future work could address the problem of designing a
tamper-mitigating routing fabric with security guarantees at
the joint probability distribution level. This is especially
challenging, given that the joint probability distributions we
consider are actually functions of probability distributions
defined through multiple graphical models. We also note that
our work is a passive mitigation technique, as it requires no
active input or control to work. Alternate mitigation techniques
could use active feedback to correct anomolous behavior. New
microfluidic routing primitives could be investigated; it was
noted that in [11] that multiplexer-demultiplexer pairs could
have been implemented instead of the transposer primitive.

Finally, we note that this work is among one of the first
hardware architecture-based defenses against tampering in
microfluidics. The intent is not to replace well-designed cy-
berphysical systems implementing standard security measures
such as encryption. Rather, this work aims to bolster security
in the physical domain, which is often overlooked.

REFERENCES

[1] J. Tang, M. Ibrahim, K. Chakrabarty, and R. Karri, “Security trade-offs
in microfluidic routing fabrics,” in Proc. IEEE Int. Conf. Comput. Des.,
Newton, MA, Nov. 2017, pp. 25–32.

[2] G. M. Whitesides, “The origins and the future of microfluidics,” Nature,
vol. 442, no. 7101, pp. 368–373, 2006.

[3] D. Mark, S. Haeberle, G. Roth, F. Von Stetten, and R. Zengerle,
“Microfluidic lab-on-a-chip platforms: requirements, characteristics and
applications,” in Microfluidics Based Microsystems. Dordrecht, Nether-
lands: Springer, 2010, pp. 305–376.

[4] M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake,
“Monolithic microfabricated valves and pumps by multilayer soft lithog-
raphy,” Science, vol. 288, no. 5463, pp. 113–116, 2000.

[5] J. Melin and S. R. Quake, “Microfluidic large-scale integration: the
evolution of design rules for biological automation,” Annu. Rev. Biophys.
Biomol. Struct., vol. 36, pp. 213–231, 2007.

[6] L. R. Volpatti and A. K. Yetisen, “Commercialization of microfluidic
devices,” Trends Biotechnol., vol. 32, no. 7, pp. 347–350, 2014.

[7] T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale
integration,” Science, vol. 298, no. 5593, pp. 580–584, 2002.

[8] S. Bhattacharjee, S. Poddar, S. Roy, J.-D. Huang, and B. B. Bhat-
tacharya, “Dilution and mixing algorithms for flow-based microfluidic
biochips,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 36, no. 4, pp. 614–627, 2017.

[9] K. Hu, T. A. Dinh, T.-Y. Ho, and K. Chakrabarty, “Control-layer routing
and control-pin minimization for flow-based microfluidic biochips,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 36, no. 1,
pp. 55–68, 2017.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907881, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TANG et al.: ANALYSIS AND DESIGN OF TAMPER-MITIGATING MICROFLUIDIC ROUTING FABRICS 13

[10] K. Hu, F. Yu, T.-Y. Ho, and K. Chakrabarty, “Testing of flow-based
microfluidic biochips: fault modeling, test generation, and experimental
demonstration,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 33, no. 10, pp. 1463–1475, 2014.

[11] R. Silva, S. Bhatia, and D. Densmore, “A reconfigurable continuous-
flow fluidic routing fabric using a modular, scalable primitive,” Lab.
Chip, vol. 16, no. 14, pp. 2730–2741, 2016.

[12] L. M. Fidalgo and S. J. Maerkl, “A software-programmable microfluidic
device for automated biology,” Lab. Chip, vol. 11, no. 9, pp. 1612–1619,
2011.

[13] A. Cardenas, S. Amin, B. Sinopoli, A. Giani, A. Perrig, and S. Sastry,
“Challenges for securing cyber physical systems,” in Proc. Workshop
Future Dir. Cyber-physical Syst. Security, Newark, NJ, Jul. 2009, p. 5.

[14] J. Giraldo, E. Sarkar, A. Cardenas, M. Maniatakos, and M. Kantarcioglu,
“Security and privacy in cyber-physical systems: A survey of surveys,”
IEEE Design & Test, 2017.

[15] S. S. Ali, M. Ibrahim, J. Rajendran, O. Sinanoglu, and K. Chakrabarty,
“Supply-chain security of digital microfluidic biochips,” Computer,
vol. 49, no. 8, pp. 36–43, 2016.

[16] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware
security: models, methods, and metrics,” Proc. IEEE, vol. 102, no. 8,
pp. 1283–1295, 2014.

[17] S. S. Ali, M. Ibrahim, O. Sinanoglu, K. Chakrabarty, and R. Karri,
“Security assessment of cyberphysical digital microfluidic biochips,”
IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 13, no. 3, pp. 445–
458, 2016.

[18] R. Garver and C. Seife. (2013, Apr.) FDA Let Drugs
Approved on Fraudulent Research Stay on the Market. [Online].
Available: https://www.propublica.org/article/fda-let-drugs-approved-on-
fraudulent-research-stay-on-the-market

[19] M. Ibrahim, K. Chakrabarty, and U. Schlichtmann, “CoSyn: efficient
single-cell analysis using a hybrid microfluidic platform,” in Proc. Conf.
Des. Autom. Test Europe, Lausanne, Switzerland, Mar. 2017.

[20] S. Potluri, A. Schneider, P. Pop, J. Madsen et al., “Synthesis of on-chip
control circuits for mVLSI biochips,” in Proc. Conf. Des. Autom. Test
Europe, 2017, pp. 1799–1804.

[21] J. Tang, M. Ibrahim, K. Chakrabarty, and R. Karri, “Security implica-
tions of cyberphysical flow-based microfluidic biochips,” in Proc. IEEE
Asian Test Symp., Taipei, Taiwan, 2017, pp. 110–115.

[22] G. J. Kost, “Preventing medical errors in point-of-care testing: security,
validation, performance, safeguards, and connectivity,” Arch. Pathol.
Lab. Med., vol. 125, no. 10, pp. 1307–1315, 2001.

[23] I. E. Araci and P. Brisk, “Recent developments in microfluidic large
scale integration,” Current Opinion in Biotechnology, vol. 25, pp. 60–
68, 2014.

[24] S.-J. Kim, D. Lai, J. Y. Park, R. Yokokawa, and S. Takayama, “Mi-
crofluidic automation using elastomeric valves and droplets: reducing
reliance on external controllers,” small, vol. 8, no. 19, pp. 2925–2934,
2012.

[25] B. Mosadegh, T. Bersano-Begey, J. Y. Park, M. A. Burns, and
S. Takayama, “Next-generation integrated microfluidic circuits,” Lab.
Chip, vol. 11, no. 17, pp. 2813–2818, 2011.

[26] P. N. Duncan, S. Ahrar, and E. E. Hui, “Scaling of pneumatic digital
logic circuits,” Lab. Chip, vol. 15, no. 5, pp. 1360–1365, 2015.

[27] M. Rhee and M. A. Burns, “Microfluidic pneumatic logic circuits and
digital pneumatic microprocessors for integrated microfluidic systems,”
Lab. Chip, vol. 9, no. 21, pp. 3131–3143, 2009.

[28] M. Ibrahim, A. Sridhar, K. Chakrabarty, and U. Schlichtmann, “Sortex:
Efficient timing-driven synthesis of reconfigurable flow-based biochips
for scalable single-cell screening,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Des., Nov. 2017, pp. 623–630.

[29] H. Fereidooni, J. Classen, T. Spink, P. Patras, M. Miettinen, A.-R.
Sadeghi, M. Hollick, and M. Conti, “Breaking fitness records without
moving: Reverse engineering and spoofing fitbit,” in International Sym-
posium on Research in Attacks, Intrusions, and Defenses. Springer,
2017, pp. 48–69.

[30] D. G. Abraham, G. M. Dolan, G. P. Double, and J. V. Stevens,
“Transaction security system,” IBM Systems Journal, vol. 30, no. 2, pp.
206–229, 1991.

[31] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault injection
attacks on cryptographic devices: theory, practice, and countermeasures,”
Proc. IEEE, vol. 100, no. 11, pp. 3056–3076, 2012.

[32] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The
sorcerer’s apprentice guide to fault attacks,” Proc. IEEE, vol. 94, no. 2,
pp. 370–382, 2006.

[33] E. Biham and A. Shamir, “Differential fault analysis of secret key
cryptosystems,” in Proc. Annual International Cryptology Conference.
Santa Barbara, CA: Springer, Aug. 1997, pp. 513–525.

[34] H. Chen, S. Potluri, and F. Koushanfar, “Biochipwork: Reverse engineer-
ing of microfluidic biochips,” in Proc. IEEE Int. Conf. Comput. Des.,
Newton, MA, Nov. 2017, pp. 9–16.

[35] Y. Moradi, M. Ibrahim, K. Chakrabarty, and U. Schlichtmann, “Fault-
tolerant valve-based microfluidic routing fabric for droplet barcoding in
single-cell analysis,” in Proc. Conf. Des. Autom. Test Europe, 2018.

[36] M. Mesbahi, “State-dependent graphs,” in Proc. IEEE Conf. Decision
and Control, vol. 3, Lahaina, HI, Dec. 2003, pp. 3058–3063.

[37] S.-i. Minato, N. Ishiura, and S. Yajima, “Shared binary decision diagram
with attributed edges for efficient boolean function manipulation,” in
Proc. IEEE/ACM Des. Autom. Conf., 1990, pp. 52–57.

[38] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii,
A. Pardo, and F. Somenzi, “Algebric decision diagrams and their
applications,” Formal methods in system design, vol. 10, no. 2-3, pp.
171–206, 1997.

[39] D. E. Knuth and A. C. Yao, “The complexity of non-uniform random
number generation,” in Algorithms and Complexity: New Directions and
Recent Results, J. F. Traub, Ed. New York, NY: Academic Press, Inc.,
1976, pp. 357–428.

[40] H. Zhou, H.-L. Chen, and J. Bruck, “Synthesis of stochastic flow
networks,” IEEE Trans. Comput., vol. 63, no. 5, pp. 1234–1247, 2014.

[41] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. Comput., vol. 100, no. 8, pp. 677–691, 1986.

[42] K. M. Horsman, J. M. Bienvenue, K. R. Blasier, and J. P. Landers,
“Forensic dna analysis on microfluidic devices: a review,” J. Forensic
Sci., vol. 52, no. 4, pp. 784–799, 2007.

[43] J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature, vol.
442, no. 7101, pp. 403–411, 2006.

[44] S. Hosic, S. K. Murthy, and A. N. Koppes, “Microfluidic sample
preparation for single cell analysis,” Anal. Chem., vol. 88, no. 1, pp.
354–380, 2015.

[45] A. M. Klein, L. Mazutis, I. Akartuna, N. Tallapragada, A. Veres, V. Li,
L. Peshkin, D. A. Weitz, and M. W. Kirschner, “Droplet barcoding for
single-cell transcriptomics applied to embryonic stem cells,” Cell, vol.
161, no. 5, pp. 1187–1201, 2015.

[46] T. M. Cover and J. A. Thomas, Elements of Information Theory. John
Wiley & Sons, 2012.

[47] M. Ibrahim, K. Chakrabarty, and K. Scott, “Synthesis of cyberphysical
digital-microfluidic biochips for real-time quantitative analysis,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 36, no. 5, pp.
733–746, 2017.

[48] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1988.

[49] L. Xing and S. V. Amari, Binary Decision Diagrams and Extensions for
System Reliability Analysis. Beverly, MA: Scrivener Publishing, 2015.

[50] C. Clos, “A study of non-blocking switching networks,” Bell Labs
Technical Journal, vol. 32, no. 2, pp. 406–424, 1953.

[51] J. Duato, S. Yalamanchili, and L. M. Ni, Interconnection Networks:
An Engineering Approach. San Francisco, CA: Morgan Kaufmann
Publishers, 2003.

