Int J Softw Tools Technol Transfer (2017) 19:309-324
DOI 10.1007/s10009-016-0437-y

@ CrossMark

MBTCLOUD

Combining usage-based and model-based testing
for service-oriented architectures in the industrial practice

Steffen Herbold! - Patrick Harms! - Jens Grabowski!

Published online: 21 September 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Usage-based testing focuses quality assurance on
highly used parts of the software. The basis for this are usage
profiles based on which test cases are generated. There are
two fundamental approaches in usage-based testing for deriv-
ing usage profiles: either the system under test (SUT) is
observed during its operation and from the obtained usage
data a usage profile is automatically inferred, or a usage pro-
file is modeled by hand within a model-based testing (MBT)
approach. In this article, we propose a third and combined
approach, where we automatically infer a usage profile and
create a test data repository from usage data. Then, we create
representations of the generated tests and test data in the test
model from an MBT approach. The test model enables us to
generate executable Testing and Test Control Notation ver-
sion 3 (TTCN-3) and thereby allows us to automate the test
execution. Together with industrial partners, we adopted this
approach in two pilot studies. Our findings show that usage-
based testing can be applied in practice and greatly helps
with the automation of tests. Moreover, we found that even
if usage-based testing is not of interest, the incorporation of
usage data can ease the application of MBT.

Keywords Usage-based testing - Model-based testing -
Usage monitoring - Web service testing - TTCN-3

B Steffen Herbold
herbold @cs.uni-goettingen.de

Patrick Harms
harms @cs.uni-goettingen.de

Jens Grabowski

graboswki@cs.uni-goettingen.de

Institute of Computer Science, Georg-August-Universitét
Gottingen, Gottingen, Germany

1 Introduction

One of the major challenges in quality assurance is the effi-
cient spending of available resources to get the largest benefit
out of them. One strategy is to put the user-experienced qual-
ity at center stage through usage-based testing [26]. The idea
is to focus the quality assurance on the highly used parts of
a system under test (SUT), and, thereby, assure that the core
functionalities often required by the users are well tested.
The core of usage-based testing are usage profiles. A usage
profile is a stochastic description of the utilization of a SUT.
The usage profile obtains information on which events are
triggered by the users. Within this article, we consider the
testing of service oriented architectures (SOAs). Hence, the
events which model the usage of the SUT are the requests
and responses exchanged between services within a service
orchestration.

Within the current state of the art, the usage profiles are
either modeled completely manually (e.g., [15,17,44]) or
automatically inferred from observed usage data of the SUT
(e.g., [23,36,37]). In case of manual modeling, the usage
profiles can directly be embedded in an environment for
further test automation (test generation, test execution,...)
like it is done within the tool MaTeLo [15]. However, such
manual modeling requires a lot of effort. Moreover, with
manual modeling, the test designer must make assump-
tions about the SUT’s usage to create the usage profile.
The assumptions might not reflect reality accurately, which
would lead to an inaccurate usage profile. In case the usage
profiles are inferred from usage data, it is guaranteed that
the usage profile reflects the real usage accurately. More-
over, there is no manual effort involved in the creation of
the usage profile. However, it is a hard task to embed an
automatically inferred usage profile into other tools and
modeling languages to allow further automation of the

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-016-0437-y&domain=pdf

310

S. Herbold et al.

testing. To the best of our knowledge, no such approach
exists.

However, when it comes to the practical application of
usage-based testing, the combination of the integration with
tooling for further test automation with the advantages of
automated inference of usage profiles is the best solution.
Within this article, we present an approach for the combina-
tion of usage-based testing based on automatically inferred
usage profiles with model-based testing (MBT) that we
developed as part of the MIDAS project [30]. With our
approach, we focus on SOA applications. We start with the
monitoring of the SOA application to obtain usage data.
To this aim, we defined a new usage monitoring approach
for SOAs that is easy to integrate and does not slow down
the observed system. From the usage data, we create a test
data repository and infer a usage profile. Then, we create
interaction sequences from the usage profile. We translate
these interaction sequences including the related test data
into test cases in the MIDAS domain specific language
(DSL), an MBT modeling language based on unified mod-
eling language (UML) and the UML testing profile (UTP).
The MIDAS DSL allows for the definition of concepts like
test contexts, where the setup of the SUT is described as
well as interface and data type descriptions of the services
within the SUT. The generated tests are fully compliant with
the MIDAS DSL and can, therefore, fully harness testing fea-
tures offered to DSL models, including automated generation
of executable Testing and Test Control Notation version 3
(TTCN-3) code. Hence, we demonstrate with our approach a
complete end-to-end cycle for usage-based testing that starts
with the monitoring of the SUT, then infers a usage profile,
from which we can generate tests, which can automatically
be executed against complex SUTs.

We evaluate our approach based on two pilot studies from
different domains that offer different challenges on the usage-
based testing. One pilot has a complex protocol, and the other
complex data types. Through the pilots, we evaluate the capa-
bilities of our testing approach and the readiness for use in
industry. From these studies we gained valuable insights into
practical considerations for usage-based testing and the com-
bination of usage-based testing and MBT. In summary, the
contributions of this article are the following:

— A generic and easy-to-integrate usage monitoring facility
for SOAs.

— The creation of a test data repository from usage data.

— The combination of usage-based testing with MBT
through the generation of tests in the MIDAS DSL, which
can then be transformed into executable TTCN-3 from
usage profiles.

— An evaluation of the approach from an industrial point of
view based on two pilot studies.

@ Springer

The remainder of this paper is structured as follows.
In Sect. 2, we discuss the work related to ours. Then,
we introduce our approach for the usage-based testing of
SOA orchestrations in Sect. 3. Afterward, we consider the
most praxis-relevant aspects of our implementation of the
approach in Sect. 4. In Sect. 5, we introduce the results of
two pilot studies in which we investigate the feasibility of
our approach in the industry. Within the discussion of our
pilot studies, we also address the threats to the validity of our
findings.

2 Related work

In this section, we discuss the literature related to our work.
We split the discussion into two parts: the monitoring of
SOA, which is platform specific and a general and platform-
independent discussion of the related work on usage-based
testing.

2.1 Monitoring of SOAs

Monitoring of SOAs is a topic that emerged together with the
development of SOAs themselves for debugging purposes.
Dan et al. [48] provide categories for monitoring approaches.
They divide between hard-coded in the services, soft-coded
through, e.g., code injection and agnostic-coded which is
external to the services. Our monitoring approach is external
to services and, hence, belongs to the latter category.

Similar to our approach, Dan et al. [48] propose a further
approach and category being between soft coded and agnos-
tic coded. For this, they utilize proxies deployed in the same
application context as the SOA to be monitored. We also uti-
lize proxies, but they can be in separated application contexts
and are more loosely coupled to the services.

Chen et al. [10] identified the properties required to be
able to monitor SOA applications with respect to the identi-
fication of workflow executions. These properties are service
id, interface id, process id, and sequence id. The first two
are used to identify the communication partners. The sec-
ond represents information about an executed workflow. As
Chen et al. note, the information about the communication
partners can easily be retrieved and is often supported by
SOA frameworks. Information about the executed workflows
instead is harder to identify [31]. In our approach, we monitor
both the communication partners and executed workflows.
We show that for the communication partners, a host name is
not sufficient. In addition, we show a solution for monitoring
workflows that does not require changes of the SIT which is
usually done in other approaches.

Combining usage-based testing with model-based testing for service-oriented architectures. .. 311

2.2 Usage profile and usage-based testing

Within this section, we only consider the literature with
a direct relation to software testing. The literature that
describes how usage information is exploited for other pur-
poses is not discussed and we refer interested readers to
appropriate literature reviews instead, e.g., [27,34].

The notion of usage profiles for quality assurance was first
introduced by Littlewood [29] and Cheung [11] for reliablity
estimation. They modeled the probabilities that a component
is called. For test generation, this concept was picked up by
Whittaker et al. [43,44], Walton et al. [40], and Wesslén and
Wohlin [42] for test generation. Woit [45,46] used a similar
approach, but proposed a different model that allowed restric-
tions on which events are possible. All these approaches
model the usage profile manually. Additionally, the models
are simple graph structures and not based on modern model-
ing languages like UML.

Tonella and Ricca transferred the approach of usage-based
testing to Web applications [36-38]. They provide a fully
automated approach that also includes usage profile inference
fromrecorded usage. In comparison to our work, Tonella and
Ricca focus only on Web applications, whereas we consider
event-driven software in general. Furthermore, they use sim-
ple graph-based models, which may contain inaccuracies,
whereas we support UML models that accurately model the
SUT’s behavior.

An approach for the accurate inference of the structure of
a usage profile has been proposed by Dulz and Zhen [15],
Le Guen et al. [28] and Feliachi and Le Guen [17]. The
resulting tool MaTeLo [7] allows extending state machines
with probabilities to generate test cases based on the modeled
usage. In comparison to our work, MaTeLo does not allow
the inference of probabilities from usage data. Instead, the
probabilities are, e.g., derived from requirements.

A different way to harness usage profiles for testing than
justthe generation of tests was proposed by Tonella et al. [39].
They assume that if the test model is only an approximation
of the real SUT, e.g., because they are automatically created,
some of the generated tests are potentially infeasible and
must be removed. They propose that if usage information is
used to rate the generated tests and select those that match the
usage best, it leads to a higher likelihood of only selecting
feasible test cases. They use n-grams for their scoring and
show that the usage data indeed helps with selecting feasible
test cases from automatically inferred models.

Herbold et al. [24] describe how usage-based testing can
be performed in an abstract and platform-independent way.
They propose a layered model in which the usage-based test-
ing works on abstract events and a translation layer works
as intermediate between the testing and concrete platforms.
The approach was later implemented in the tool AutoQUEST
[25]. AutoQUEST was also used as foundation for the usage-

based testing presented in this paper and extended with the
required capabilities to support SOAs and the MIDAS DSL.
We believe that all of the above approaches may be
extended for SOA testing if they are properly extended. The
greatest challenge will be the inclusion of the data complexity
of SOAs, which none of the above addresses. Within this arti-
cle, we describe how AutoQUEST was extended for SOAs
and thereby describe the steps that other approaches must
consider when extending usage-based testing to SOAs.

3 Approach

Our approach for usage-based testing consists of six steps,
which are visualized as rectangles in Fig. 1. Some steps are
split up into multiple rectangles in the figure. The parallelo-
grams in the figure are the artifacts produced by one step and
the input of other steps. The steps are:

1. Monitoring of the

SOA
Usage
Journal
2 L 4
2. Usage Profile 3. Test Data 4a: T.%t UL
] . definition by test
Inference Engine Repository Creator N
engineer

v

/ Usage Profile //

Test Data
Repository
|

v

5. Usage-based Test
Case Generation

// Test Model

4b. Importer for
Service Descriptions

and Data Types
A

A
Test Model
with Test
Suite

6a. TTCN-3
Generator

Compilable
TTCN-3

//

WSDL and
XSD service
description
I
v

6b. Compilation and
Execution with TTwb

Test Results

Fig. 1 Approach for usage-based testing of SOAs. The rectangles rep-
resent tasks to be performed either by software or manually, and the
parallelograms represent artifacts that are created

@ Springer

312

S. Herbold et al.

1. Monitoring of the SOA: the SUT is monitored during its
execution to obtain a usage journal.

2. Usage profile inference: a usage profile is automatically
inferred from the information in the usage journal.

3. Test data repository creation: we utilize the information
in the usage journal to create a repository with test data
that can be used for the test generation.

4. Test model definition: a test model of the SUT structure
is defined in the MIDAS DSL. Partially, the definitions
are imported from existing Web Service Description Lan-
guage (WSDL) and XML Schema Definition (XSD) files
of the SUT.

5. Test generation: generation of tests in the MIDAS DSL
with the usage profile as an extension of the test model.

6. Test execution: being a combination of generation, com-
pilation, and execution of TTCN-3 code from the test
model for the execution of the generated tests.

In the following subsections, we describe each of these steps
and explain how the steps interact with each other.

3.1 Monitoring of SOAs

SOAs consist of several services performing an orchestra-
tion. A service offers functions that can be called by another
service. We refer to the service offering a function as a server.
The service calling a function is a client. Typically, functions
are provided as calls with parameters and return values. For
monitoring interactions of services in an SOA, we moni-
tor function calls of clients on servers. This includes storing
information about the client, the server, as well as parameter
values and return values of the function calls.

For monitoring function calls, we utilize an approach
based on proxies located in front of any server in an SOA.
Any function call of a client on a server is routed through a
proxy. The proxy receives a function call, forwards it to the
server, receives the results, sends the result back to the client,
and logs the request and the result. The basic approach of
utilizing proxies for monitoring is shown in Fig. 2. In this fig-
ure, the components of a simplified SOA are the gray boxes.

Proxy |_ | Server Proxy _ | Server

1 1 1 2
Client | Central logging sewerJ

Proxy |, Server
3

1

Fig. 2 Example of monitoring a SOA

@ Springer

The hatched components between the SOA components are
proxies. If the client calls a function on, e.g., Server I, then
this call is routed through Proxy I which stores the corre-
sponding request and response. The advantage of this kind of
monitoring is that neither the server’s nor the client’s imple-
mentations need to be adapted. Only the SOA setup, which is
usually done by configuration of the services, needs to take
the proxies into consideration so that requests are sent to the
proxy instead of sending them directly to the server.

In SOAs, typically one client calls several servers and
performs the actual orchestration. This also implies that there
are several proxies for different servers. However, to create
a single log file for complex orchestration, our proxies can
be configured to send decentrally recorded function calls to
a central logging server. This is also shown in Fig. 2. There,
the proxies send the logged exchanges to a central logging
server which writes the log file.

The log file stored by the central logging server is in
an XML format. It contains entries, one for each recorded
function call. We call these entries exchanges. Any exchange
consists of information about the client, the server, the func-
tion call, the parameters, and the return values. This allows to
trace all information exchanged between a client and a server
for a specific function call.

For some function calls, a server can become a client of a
further server. An example is shown in Fig. 2. There, Server I
may call Server 2 to handle a specific call of the client. As
our proxies only log an exchange after the result has been
received, in such a scenario the exchange between the client
and Server I would be logged after the exchange between
Server 1 and Server 2. To overcome this misordering, we
include in any request and response an ordering ID. As this
must be unique for all recorded requests and responses, it
is retrieved from the central logging server at the time the
request or the response is received by a proxy. Through
this, we can subsequently identify the order of requests and
response in which they were observed by the proxies, but still
each function call is a single entry in the log file. Through
this, we can also handle ordering issues that may occur due
to communication delays between the proxies and the central
logging server.

When monitoring function calls, it is important to identify
the client that performed a specific function call. In many sit-
uations, it is sufficient to know the host from which a request
came. But if several clients run on the same host, the host
itself is not sufficient anymore. Even the port number of the
clients is not helpful, as this usually changes on any function
call. To be, however, able to identify clients, we set up sev-
eral proxies for the same server, each dedicated to a specific
client. Afterward, a client calls a server only through its ded-
icated proxy. Through this, we can identify which client sent
a specific function call to a server.

Combining usage-based testing with model-based testing for service-oriented architectures. .. 313

In this paper, we monitor only SOAs being set up using
SOAP via hypertext transfer protocol (HTTP). Hence, our
proxies are HTTP proxies and record HTTP requests and
responses. This may also lead to recording other exchanges
than SOAP messages. For example, we also record HTTP
requests for retrieving the WSDL of a service.

3.2 Usage profile inference

Once we have the usage data available from the monitoring,
we create a usage profile of the behavior of the SUT. For
this, the most important part is not the inference of the profile
itself, but rather the preprocessing of the usage data. This is
due to the fact that the monitored usage data contains multiple
sources for noise in the data, which would lead to a bad usage
profile if they were not treated.

The first preprocessing step happens directly during the
parsing of the usage data. Since the monitor observes an
actually deployed version of the SUT, the usage data contains
references to the deployed services instead of logical names
for the services. For the creation of a good usage profile, we
require logical names, otherwise the usage profile would be
bound to a specific deployment of the SUT. To this aim, we
define a mapping between the paths of the deployed services
and the logical names of the services. For example, we map
the following path in a service unified resource locator (URL)

/ws/WarehouseReferenceImplementation
Service

to the logical service name warehouseService. More-
over, we also require to know from which client a call to a
service came. To be able to resolve this, we require that each
client calls a service on a different port which we achieve by
setting up the dedicated proxies. Then, we use the port num-
bers to identify from which logical client a call came from.
For example, if a call to the warehouseService was on
the proxy port 8087, we know it came from a service of
the type transportService. Through this logical map-
ping, we keep the details of the service deployment out of the
usage profiles and internally just have a view on the logical
communication that took place, based on the clients that sent
requests and the services that received them. In the following,
we refer to each logical communication as event.

As further preprocessing, we remove all recorded
exchanges that were not SOAP requests, e.g., the WSDL
retrievals. Then, we split the exchanges consisting of request
and response within the usage data into separate events: one
for the request and the other for the response. After splitting,
we sort the events using the ordering ID assigned by the mon-
itor. Now we have all service calls in the correct order and the
requests and responses are separated from each other. Next,
we normalize the method names. Due to the underlying tech-

nologies', for some service calls a suffix Request/Response
is added to the service operations. We remove these suffixes
automatically for two reasons. First of all, they would lead
to different names for the requests and responses of the ser-
vice operations, which would make matching of pairs later
on more difficult. Second, it would interfere with the gener-
ation of tests in the MIDAS DSL later on (see Sect. 3.6). As
a final step of the preprocessing, we remove calls to services
that shall be ignored in the usage profile and, consequently,
in the test generation. This may be due to the fact that the
testing shall only be done for a subsystem of the complete
SUT. Hence, we drop all calls to or from the ignored services.

Once the pre-processing is completed, the usage profile
is derived. The usage profile is stateless and internally con-
tains a Markov model [12,18]. With Markov models, we can
model the probabilities of events, given the last events. The
number of events that influence the probability of the next
event is the Markov order. For example, with a Markov order
of one, only the last SOAP message sent influences the next
message within the usage profile; with a Markov order of
four, the last four messages influence the next message, etc.
With increasing Markov order, the internal state of the sys-
tem is better captured and the likelihood of capturing invalid
behavior in the usage profile decreases. On the other hand, a
high Markov order decreases the randomness of the usage-
based testing, which can be a disadvantage, as many different
tests shall be generated. We currently support any order of
Markov model and the concrete order can be defined by the
test engineer. In addition to the observed events, the usage
profile also contains a START and an END event. The START
event is prepended to each observed sequence, and the END
event is appended to each observed sequence. This way, the
usage profile also contains information about the first/last
event of a user session.

In Fig. 3, we show an example of a small usage profile
we inferred from an actual usage journal of a real world sys-
tem. The usage profile is a first-order Markov model. The
nodes represent the SOAP messages that were sent. The
edges denote the probability of the next SOAP message.
We deliberately selected a very small and linear example,
because the profiles grow rapidly. We only have two opera-
tion calls: a call from the pointOfSaleService to the
materialSupplierService of the operation

purchaseOrder (orderId,..)

and a call from the materialSupplierService to the
pointOfSaleService of the operation

purchaseOrderConfirmation (orderId,..).

1 E.g., JAX-WS (https://jax-ws.java.net/) creates for each operation
an input action and an output action. The input action gets the suffix
Request and the output action gets the suffix Response.

@ Springer

https://jax-ws.java.net/

314

S. Herbold et al.

1.0

v
REQUEST
- Client: pointOfSaleService
Service: materialSupplierService
Operation: purchaseOrder
l
1.0
\
RESPONSE
Client: pointOfSaleService
Service: materialSupplierService
Operation: purchaseOrder

—
0.2
l
0.4 0.8
\
REQUEST
Client: materialSupplierService
Service: pointOfSaleService
0.6
I

Operation: purchaseOrderConfirmation

l
1.0
\
RESPONSE
Client: materialSupplierService
Service: pointOfSaleService
Operation: purchaseOrderConfirmation

Fig. 3 Example for a usage profile with a Markov model of order one

For both operations, the request and the response are part of
the usage profile as separate events. The probabilities of 1.0
after the requests mean that the response always followed
the request®. After the responses, we have multiple edges
with different probabilities, depending on the likelihood of
the next message being sent.

3.3 Test data repository

A problem that frequently occurs with model-driven
approaches is that the generation of interactions is simple,
but the question remains where the test data comes from.
This means that test engineers must either manually define a
repository with test data or define a strategy for the random-
ized creation of valid test data. Through our usage journal,
we can offer an alternative to this. Since the usage journal
contains the complete interactions between services in the
SUT, this automatically means that it also contains the data
that were sent with these interactions, i.e., the data that were
part of the body of a SOAP request or response.

Our approach for the creation of a test data repository is
quite simple: for each combination of client, called service,

2 Please note that this does not have to be the case in synchronous
communication if a service internally sends a request to another service
before responding to the client.

@ Springer

and service operation, we create a set of all observed SOAP
bodies. Then, when we require test data for a SOAP opera-
tion, we can simply look up the set of SOAP bodies for the
SOAP operation and pick an entity of the test data we desire.
The repository itself does not restrict the test data selection
strategy and allows, e.g., the selection of always the same
entity from the data set (fixed value), a random SOAP body
that was observed, and even complex strategies where restric-
tions on the allowed SOAP bodies are defined, e.g., through
XPath expressions.

3.4 Test model definition

A step that can occur in parallel to the usage monitoring,
usage profile generation, and test data repository creation is
the definition of the test model. The test model contains a
formal description of the complete SUT in the MIDAS DSL.
The MIDAS DSL is based on UML [33] and UTP [8] and
was designed for the specific purpose of SOA orchestration
testing as part of the MIDAS European project [30]. It con-
sists of two parts. First, we have the definition of the SUT
infrastructure, i.e., the services and the operations they offer
as well as the data that is exchanged. Second, we have the
definition of test contexts which define the structure of con-
crete test beds for which tests cases shall be generated. The
tests themselves are described as UML interactions.

The first part, i.e., the infrastructure, can be automatically
created from the WSDL and XSD descriptions of the SUT
[41]. Through model transformation, UML entities for each
defined service and data type are created. Without automation
of this step, using the MIDAS DSL would be infeasible for
larger services and service orchestrations because the man-
ual modeling of the data types in UML would require too
much effort. Moreover, manual modeling of complex data
types is very error prone in comparison to automated trans-
formation. The second part, i.e., the creation of test contexts,
is manual. However, the required amount of work comprises
the following steps:

— Definition of logical service components: a UML com-
ponent for each logical service within the SUT is created
and the ports that the service offers for communication
are defined. The ports reference the service interfaces that
are automatically created during the first part of the DSL
model creation.

— Creation of a test context: a UML component diagram
that serves as the test context is created. The UTP Test-
Context stereotype is applied to the main component to
formally define the role of the component in the model.

— Addition test bed components: the UML components for
the services are added to the test context. To each of the
test components, the UTP TestComponent stereotype is
applied. To each of the services, a test to the SUT stereo-

Combining usage-based testing with model-based testing for service-oriented architectures... 315

«TestContexts =
Test Context

[«SUT» =]
‘ materialSupplierService
[

|mss_port : materialSupplier_Interface

[gmss _port
L
\
pos _ponh

«TestComponents =]
pointOfSaleService

Fig. 4 Example for a test context with two services, one with the role
of a test component that drives the testing and the other as the SUT

type is applied. There must be at least one component
with the TestComponent stereotype in each test context
to drive the testing.

— Addition of connectors: between the ports offered by the
components, connectors are added to create the commu-
nication infrastructure within the SUT.

Figure 4 shows an example for a test context with
two services: pointOfSaleService as test component
andmaterialSupplierService as SUT. The services
both offer a port by which they are connected for communi-
cation via the exchange of message.

Once the test context is created, it can be extended with
test cases. The test cases consist of two parts: a UML oper-
ation to which the UTP TestCase stereotype is applied and a
UML interaction that implements the logic of the test case.
Moreover, in case the messages that are created for the UML
interaction require test data, UML instance specifications for
the required data must be defined. It is possible to define such
tests manually. However, this is out of scope of this article.
Instead, we create the test cases automatically from our usage
journal.

3.5 Test generation

The test generation consists of two parts. First, we create a
sequence of interactions between services within the SUT.
Then, we create a representation of these interactions as test
case within a test context in the MIDAS DSL.

The foundation of the creation of a sequence of inter-
actions between services is the usage profile. We create
the sequences by randomly walking the usage profile. This
means, that we start with our START event and then randomly
draw the next event based on the probability we observe in the
usage profile. Since the events are the interactions between
services, we now have the first service call of our test case.
Then, we continue to draw events based on the probability in
which they occur. We get this probability also from the usage
profile and thereby create our complete interaction. We fin-

ish when we either reach the END event or a user-defined
number for the maximal test case lengths.

Due to the random nature of the test generation, it may
be possible that invalid test cases are generated. There
are two ways a test case can be invalid. The first is
that we stopped with the generation at an inappropriate
point of time. For example, we did not yet generate the
response event for an already created request event. We
can automatically detect such inconsistencies by simply
matching request/response pairs. We resolve any problems
we find by simply dropping the incomplete communica-
tions from the sequence of interactions. The second way
is that the service logic of the SUT orchestration is bro-
ken. For example, a service A might first expect a call
to operation X and then a subsequent call to operation
Y. Because the complete internal state of the SUT is
not known in the usage profile and it is only estimated
through the Markov order, we might generate a sequence
where we call operation Y without calling X first. Such
invalid test cases can only be excluded through manual
analysis of the sequences and/or the execution of tests.
However, by choosing a high Markov order, a test engi-
neer can avoid such inconsistencies. We elaborate on the
choice of a concrete Markov order in our case studies (see
Sect. 5).

Once the test sequences are created, they are converted
into MIDAS DSL compliant UML interactions in a test
context, with one interaction for each test sequence. The gen-
eration of the test case in the DSL consists of two parts. We
generate an operation with the UTP TestCase stereotype and
a UML interaction that defines the messages that are sent
as part of the test case. To this aim, we first have to create
lifelines for each component in the test context. The lifelines
represent the services in the SUT. Then, we create a message
for each event in our test sequence. We determine the source
and target lifelines of the messages from the client name and
called service name, respectively. Similarly, we determine the
service operation in the UML model via its name in the inter-
faces that are provided by the lifeline of the called service.
Figure 5 shows an example of a very simple test case where
two messages are exchanged, including their response. First,
the pointOfSaleService calls the purchaseOrder
operation of the materialSupplier and receives the

response to this call. Then, the
materialSupplier calls the operation
purchaseOrderConfirmation of the

pointOfSaleService and receives the response.

From the operation, we can also see the signature of the
method, i.e., the required test data. In case we are creating the
message for a request, we only set values for all parameters
that are marked as input or input/output parameters. All other
parameters are set to the UML literal NULL to signify that
they are empty. Similarly, in case we are creating the message

@ Springer

316

S. Herbold et al.

«TestComponents g] «SUT»
: pointOfSaleService : materialSupplierService

| [
| |
| 1: purchaseOrder() |

2: purchaseOrder response

3: purchaseOrderConfirmation()

4: purchaseOrderConfirmation response

Fig. 5 A UML sequence diagram that shows the UML interaction of
a simple test case where two messages are exchanged, including their
responses

for a response, we only set values for all parameters that are
marked as output or input/output parameters and set the other
to the UML literal NULL.

The assignment of the values to the parameters of the
operations is the second major part of the test generation. To
be able to assign values to messages within UML interac-
tions, we require UML instance specifications for the data
type of the operations parameter. An instance specification
can be considered as the UML equivalent of an initialization
of a data type. UML instance specifications can be added
as the values for messages in UML interactions. We explain
our concept through an example. Figure 6 shows a data type
including its nested sub-type on the left as well as the respec-
tive instance specifications on the right, which we will now
use for the explanation of our approach.

Within our models, we have different kinds of data
types: primitive types, enumerations, and complex data
types. The primitive types are, e.g., strings and integer
and their values can be set directly. In our example,
the type orderMessageType has internally two strings
and one integer, which are primitive types. The instance
specification purchaseOrderXML_Instance directly
contains the values of the strings and the integer. The same
holds true for enumerations, which can have a fixed list of
values that can be directly set. Complex data types are more
difficult. Here, we require a separate instance specification
for each nested sub-type. In the example, we see that within
the instance specification purchaseOrder_Instance

Listing 1 Example for the body of a SOAP.

<S:Body>
<purchaseOrder>
<purchaseOrderXMIL>
<idOrder>order—18gog</idOrder>
<idProduct>POTATOES/idProduct>
<quantity>5000</quantity>
</purchaseOrderXMI >
<purchaseOrder>
</S:Body>

for the type purchaseOrder, the value of the attribute
purchaseOrderXML is the instance specification
purchaseOrderXML_Instance.

To generate the values within the instance specifications,
we harness our test data repository. It contains the bodies
of the SOAP requests that fit the messages. Hence, we can
find the values for the parameters within the body. Listing 1
shows the body of a SOAP request associated with the above
data. We create the instance values by mapping the elements
of the SOAP body to the elements of the UML model. Every
time we encounter an attribute that is a complex type, we
create the appropriate instance specification for the complex
type and recursively continue with the creation of instance
values. When we encounter an enumeration or primitive type,
we set the values directly, as we infer them from the matching
element in the SOAP body.

3.6 Test execution

After the extension of the test model with the interactions
for the test cases including all test data, we go from the test
generation part to the test execution part of our approach.
As back-end for the test execution, we use TTCN-3 [19].
Hence, the first step is the transformation of the test model in
the MIDAS DSL into TTCN-3. Here, we utilize an approach
based on a model-driven architecture (MDA) framework.
This framework is already used to import the service descrip-
tions from the WSDLs and XSDs into the MIDAS DSL.
The test descriptions are on the Platform Independent Model
(PIM) layer of the model. Using model transformations, the

Fig. 6 Example for UML data

. . «dataTypes
types and their respective UML

purchaseOrder

purchaseOrder Instance : purchaseOrder
purchaseOrderXML = purchaseOrderXML_Instance

instance specification in the
MIDAS DSL

-purchaseOrderXML : orderMessageType

«dataTypes
orderMessageType

purchaseOrderXML Instance : orderMessageType
idOrder="order-18gog"

-idOrder : String
-idProduct : String
-quantity : Integer

idProduct="POTATOES"
quantity= 5000

@ Springer

Combining usage-based testing with model-based testing for service-oriented architectures. .. 317

~ VN

e \/ e v 7
//—fl:MIDAS Testing as a Service Platforﬁin\\
/ J
\ N
A TTCN-3 ‘
Usage Monitor / MIDAS. Cors Generation —
(Services X N
p Service)
r 4
\ Usage Profile TTCN-3 A
. . Inference Compilation J
Eclipse with | Service Service \
Papyrus UML _ \/
(
\ Usage-based TTCN-3)
\\7/‘ Test Generation Execution)
\ Service Service T‘,,,,/

i
TN AN N

Fig. 7 Overview of the components provided to support the usage-
based testing with MIDAS

MDA framework automatically translates the test model into
TTCN-3 that is compatible with the codecs and adapters for
WSDLs and XSDs provided by the tool TTworkbench [35].
The complete model transformation approach by the MDA
framework that is implemented for the MIDAS DSL is out
of scope of this article and explained in detail in [41]. We
use the TTthree and TTman components of of TTworkbench
for the compilation and execution of the generated tests and
collect the test result for presentation to the users.

4 Implementation

Since we are concerned with the applicability of our approach
in practice, we now give a brief overview over the tooling we
provided by the MIDAS project. Figure 7 shows the most
important components of our approach. MIDAS provides a
cloud platform that we refer to as testing as a service (TaaS).
Our tooling is divided into two parts: components running
outside the MIDAS TaaS platform and components on the
platform. Outside of the platform, we have the usage monitor
which is described in Sect. 3.1 and Eclipse Papyrus UML
editor [16] for the creation of MIDAS DSL models. Papyrus
UML is based upon the Eclipse UML framework. Within
MIDAS, we work with the Kepler release of Eclipse UML.
We cannot support other UML editors in our implementation
due to inconsistencies between XMI documents used to store
and exchange UML models created by various UML tools.
As part for the MIDAS platform, we have several services
available to the users. The MIDAS core services provide
functionalities like file management, user management, and
the execution of other services like the usage profile inference
service. Details on the core services and the underlying cloud
platform are found in [13, 14]. As we describe in Sect. 3.6, we
use TTworkbench for the compilation and execution of the
tests. The TTCN-3 compilation service and the TTCN-3 exe-
cution service are wrappers for the execution of the respective

TTworkbench functions on the cloud platform. The licensing
of TTworkbench is handled by the MIDAS platform. Details
on this are discussed in [14].

The components related to usage-based testing, i.e., the
usage monitor, the usage profile inference service and the
usage-based test generation service are all based on Auto-
QUEST [25], atool suite for usage-based analysis of software
independent of the platform. AutoQUEST was extended with
a monitor for HTTP communication which can be utilized
for usage monitoring of SOA applications. The created usage
journals can be processed by AutoQUEST and are com-
pliant with the abstract representation of events required
by AutoQUEST. Based on this representation, we extended
AutoQUEST with the required processing steps discussed
in Sect. 3.2 to provide a clean usage journal as foundation
for the usage profile inference. AutoQUEST natively offers
various usage profiles, e.g., Markov models of any order as
well as the generation of event sequences from usage profiles
according to the defined probabilities. A further extension to
AutoQUEST we provided is the extension with a test data
repository for the monitored service usage data, as described
in Sect. 3.3. Moreover, we added the capability to create
MIDAS DSL compliant test cases from event sequences con-
sisting only of the client name, called service name, operation
name, and whether it is a REQUEST or not (see Sect. 3.5 for
an explanation of the approach).

5 Pilot studies

To prove the feasibility of our approach to industrial appli-
cations, we applied it in pilot studies in two real-world SOA
applications. The studies have the aim to provide insights
into usage-based testing from an industrial point of view.
Within this section, we first define the concrete objectives
we investigate with the pilot studies. Then, we describe
the methodology followed in the pilots. Afterward, we dis-
cuss for both pilot studies the concrete SUT and the results
achieved with the usage-based testing.

5.1 Objectives

With our pilot studies, we hope to get feedback from the
industry on the following issues:

— the feasibility as well as the usefulness of usage-based
testing in practice,

— the usage data collection in a privacy critical domain, and

— the applicability in domains with complex data types and
complex protocols.

@ Springer

318

S. Herbold et al.

5.2 Methodology

For the pilots, we worked together with industrial partners. In
the following, we describe how we implemented the usage-
based testing in our pilots. For each step, we detail if the
industrial partners executed the step by themselves or how
we supported them.

The first step is the installation of the usage monitoring in
the reference implementations of the SUTs. The pilots could
perform this without trouble with the monitoring tool we
gave them. There were some discussions between us and the
industrial partners on the best setup for monitoring proxies.
While we provided the input, the final decisions were made
by the pilot partners. Moreover, the pilot partners were also
responsible for the installation and setup of the monitoring
within their environment, without intervention from our side.

For the creation of the test models, we provided the part-
ners with the imported libraries and a user guide on how
to create test models. Moreover, we conducted two face-to-
face training sessions to teach the usage of the MIDAS DSL.
Afterward, the industrial partners created the test models,
i.e., the test context, ports, etc. on their own.

For the remaining steps of the approach, i.e., usage profile
inference, test generation, TTCN-3 generation, and TTCN-3
execution, we gave the industrial partners a simple running
example, together with an explanation of how the example
works. The execution of tests and the adoption of the exam-
ples to their needs were performed by the industrial partners
on their own. However, we were always available to answer
further questions and give suggestions on how to apply our
approach.

5.3 Systems under test

In this article, we consider two pilot systems for our studies,
which we discuss in the following.

5.3.1 Supply chain management pilot

The pilot system is a supply chain management (SCM) sys-
tem based on the GS1 LIM standard [20] for the interoperable
implementation of services within a supply chain. Our part-
ner for performing a pilot study was ITAINNOVA [3], a
research institute from Spain with a close relationship to the
industry. The pilot does not implement the complete GS1
LIM standard due to its overall complexity. Instead, only
services for four types of participants in a supply chain are
used:

— a material supplier service,
a transport service,

a warehouse service, and
— apoint of sale service.

@ Springer

The services interact with each other to perform operations
within a supply chain. For example, the point of sale can
order materials from a material supplier and the shipment
of the materials is organized by contacting a transport ser-
vice. Overall, with just the four service types, the number
of possible exchange sequences is already exploding. In our
pilot setup, we only consider one service of each type, i.e.,
one material supplier, one point of sale, and so on. With more
instances of each service, the complexity would soon become
overwhelming, which would be counterproductive for an ini-
tial evaluation of the capabilities of the usage-based testing.
To give an impression of the complexity of the underlying
protocol within the pilot, Figure 8 shows just the protocol
of the transport service on its own, without even taking the
other services into account.

The data types of this pilot are of medium complexity,
because the pilot uses a slimmed down version of the GS1
LIM standard. Due to these modifications, no new primi-
tive types are introduced, e.g., by defining restrictions on the
range of an integer or the values of a string. Moreover, only
multiplicities of exactly one are used for the data types and
there are no optional elements or choices.

5.3.2 Health care pilot

The second pilot is a health-care system based on stan-
dards from the Health Level Seven International (HL7) [2]
Healthcare Services Specification Program (HSSP) [22] for
the creation of interoperable solutions for management of
patients and their datarelated to health care. The pilot exposes
only two of the HSSP standard services to be tested with
MIDAS, even if four of them have been implemented in
the overall platform. The standardization follows an MDA
approach, i.e., Computation Independent Model (CIM), PIM,
and Platform-Specific Model (PSM) layers are defined for all
services. Both services used in the pilot are a joint specifica-
tion effort by HL7 for the CIM layer and the OMG [5] for the
PIM and PSM layers. Our second partner for performing this
pilot study was Dedalus S.p.A. [1], a provider of health-care
systems.

The first implemented service specification is the Retrieve
Locate Update Service (RLUS) [32]. Its scope is the harmo-
nization of how information resources are
stored, retrieved and updated, independently of their nature
and format in a cross-organizational framework. RLUS
exposes two service interfaces within our pilot. The RLUS-
ManagementAndQuerylnterface to manage the persistence
and retrieval of health-care data and the RLUSMetadataln-
terface for the definition of the so-called semantic signifiers,
a construct of the standard that defines the meaning of the
exposed data.

The second standard is identity cross-reference ser-
vice functional model (IXS) [21], an HL7 standard for

Combining usage-based testing with model-based testing for service-oriented architectures...

319

StateMachineTransportService

transportStatusRequest

Initial
transportinstruction

StateProcessTransportinstructio

pickUpRequest

StatePickUpReceived

transportinstructionConfirmation

StateTransportinstructionReceive

pickUpRequest

StateTIPickUpReceived

dropOffRequest

transportinstructionConfirmation

StateTIDropOffReceive

dropOffRequest pickUpRequest

pickUpConfirmation
StateNegotiatePickUp StateWaitPickUpDropOffConfirmation:

pickUpRequest

transportinstructionConfirmation

@ Finalstate

transportinstructionConfirmation

dropOffRequest

finalTranspor ification

StateDropOffReceive

dropOffReg

equest

ructionConfirmation

StatePickUpDropOffReceived

StatePickUpDropOffConfirmed

dropOffConfirmation,

StatePickUpConfirmed

pickUpConfirmation

pickUpConfirmation

dropOf

dropOffC

StateNegotiateDropOfi

dropOffConfirmation

StateDropOffConfirme

Fig. 8 State machine that describes the behavior of the transport service in the supply chain management pilot

the identification of entities within the health-care sys-
tem (e.g., patients, health-care provides, devices and so
on). The standard defines how demographic and other
identifying characteristics called traits are used to resolve
unique identifiers. Within our pilot, IXS exposes three ser-
vice interfaces: the IXSManagementAndQuerylnterface for
the resolution of identifiers; IXSAdminEditorInterface for
the administration of identifiers (e.g., merging of identi-
ties); and the IXSMetadatalnterface for the definition of
semantic signifiers that define the meaning of the concrete
identifiers.

From a testing point of view, this pilot is the opposite of the
SCM pilot. Both RLUS and IXS are basically standards for
create/read/update/delete (CRUD) operations, which means
that there is no complex protocol involved. However, the data
types involved are extremely complex and utilize nearly the
full flexibility offered by XML Schema, including choices,
nested constructs of sequences and choices, restrictions on
primitive types, and even the ANY construct that allows
an arbitrary element. This is made even more complex
by the fact that the service specifications are generic and
different semantic signifiers can be added over time to
be able to handle new resources in RLUS and traits in
IXS.

5.4 Results

Within this section, we present the result of the application
of our approach to our pilot systems, with a focus on the
overall feasibility, open problems, and the effort required to
implement our approach. We go over the results step by step,
following the approach we defined in Sect. 3.

5.4.1 Usage monitoring of the SOA

The collection of usage data was different for both pilots.
For the SCM pilot, only a reference test implementation that
did not have real users was available. Here, sample scenar-
ios were executed against the reference implementation to
provide usage data for us. For the health-care pilot, on the
other hand, a real system that received new calls daily was
running.

For the SCM, we ran into the issue that several clients
were installed on the same host. Hence, the pilots had to
install multiple proxies for the same server, each receiv-
ing the requests of a different client. But the pilot partner
found a setup for this that was easy to adapt if a new
version of the monitor is to be installed. For the health-
care pilot, we did not observe this issue. This showed that

@ Springer

320

S. Herbold et al.

depending on the complexity of the SOA, the initial config-
uration effort for the monitoring may increase from easy to
medium [9], but still the maintenance effort for the proxies is
low.

The SCM pilot used a central logging server. The health-
care pilot only used a single proxy as all servers were installed
in the same application server and there was no commu-
nication recorded between the services. In contrast to our
expectations, both pilots did not report any problems with
the efficiency of the SOAP message processing or a slow-
down of the SUT.

The amount of data collected for the SCM pilot was less
than 1 MB, since only sample scenarios were executed. For
the health-care pilot, we recorded several GB of data over
the course of 1 year. The data contained millions of calls
to the system. Due to the proprietary nature of the system,
we cannot report on the exact number here, but only the
scale. The monitoring process did not slow down the system
noticeably, even the growing data. Larger scales of data due
to more heavily used systems were not considered in our
work and may require the usage of big data techniques for
scalable monitoring and also the subsequent parsing of the
recorded data. This would require a replacement of the XML-
based log format, e.g., with an NoSQL database to which the
records are written.

5.4.2 Generated usage profiles

The usage profile inference worked fine and without prob-
lems. AutoQUEST provided a good and stable foundation for
this purpose, with which we could create usage profile with
different Markov orders for both pilots without any prob-
lems. From our pilot’s point of view, the complexity of the
usage profile inference was completely hidden away. They
only needed to specify two parameters: the Markov order
and file containing the usage journal. No detailed knowledge
about usage profiles was required, except some hints on how
to select the Markov order. Here, our pilots followed our
initial proposals and used a Markov order of four (i.e., the
last two exchanges consisting of request and response were
considered).

5.4.3 Test data repositories

From an implementation point of view, the test data reposi-
tory worked fine and did not cause any problems. The pilots
did not even realize that we were creating a test data repos-
itory internally, until we told them. They worked with the
assumption that getting the test data for the automatically
generated tests was not problematic.

@ Springer

5.4.4 Test model definition

The definition of the test model was the biggest challenge
for our pilots. Both pilot providers were not experts on UML
and not familiar with the Papyrus UML editor. We performed
two 1-day face-to-face training sessions during which we
described the complete workflow and identified problems the
pilots had with the MIDAS DSL. During these sessions, the
key problem identified was that the number of data types was
overwhelming and must be imported directly. Once we added
support for this and provided the pilots with a UML library
that already contained all data types and service interfaces,
the creation of test contexts became straightforward and the
pilots were able to create the test models on their own.

5.4.5 Test generation

The test generation worked without major problems. The
pilots were able to change the number of generated tests
cases without trouble by adapting a configuration file. More-
over, they were able to calibrate the testing through defining
minimal and maximal lengths for tests. For the generation
of the SOAP call sequences, AutoQUEST already provided
a stable foundation for us. The generation of UML interac-
tions to represent the tests in the MIDAS DSL also worked,
but could cause problems if there were even only very small
flaws in the test model or the logical names of the services
assigned during the preprocessing of the usage journal. This
is due to the fact that we match the services by name to the
entities in the test model. Hence, if there are discrepancies in
the naming, it is not possible to match the services.

We were able to help our pilots to avoid this problem
through the provisioning of a usage-based model validation
service that compares the preprocessed information in the
usage journal with the test model before the generation of
the tests starts. The validation checks the consistency in the
naming and gives hints about the possible sources of mis-
matches which facilitate the quick finding of problems and
correction of the test model and/or the configuration of the
preprocessing.

Regarding the logic of the test cases, we did not observe
many logical inconsistencies within our testing. Due to the
controlled data we got for the SCM pilot, no problems were
observed. For the health-care pilot, there was no underlying
protocol, i.e., the service is stateless anyways. This means
that basically all communication is valid, as long as the test
data are valid. Since the test data come directly from observed
usage, all data we have were valid.

However, we observed limitations of our approach when
it comes to the automated generation of test data for the test
cases. In our test data repository, we only collect the SOAP
bodies of the messages being sent. For the test generation,
we need to map the information in the bodies to entities in

Combining usage-based testing with model-based testing for service-oriented architectures. .. 321

the test model (see Sect. 3.5). While we were able to support
this for nearly all of the data types in both pilots, we found
limitations where this is not possible anymore. This led to two
limitations with the adoption of our approach in the health-
care pilot: the use of ANY and nested structures of sequences
and choices.

The ANY construct undermines our general strategy for
the generation of instance specifications in the test model
from the test data repository: we infer the concrete data type
by looking at which data type is expected. If the model allows
ANY data type, we cannot automatically decide which data
types to choose. This problem is still unresolved and requires
further research. However, to our opinion, this may be a gen-
eral limitation of automated test data generation and can only
be overcome if the actual data types could still be mapped
unambiguously despite ANY.

The nested sequence and choice structures are a problem
for the MIDAS DSL in general. This is due to the fact that
such restrictions are not directly supported by UML data
types. Hence, an artificial construct using anonymous inner
types that represent the sequences and choices was created.
Similar to the ANY problem, this also breaks our strategy
for the type inference of the test data we generate. Strictly
speaking, there is no type for the sequence in the test data.
However, we somehow have to handle this in the model,
where we suddenly find an anonymous inner type. To be
able to still work with the health-care pilot, we currently
use a semi-hard coded solution. We look for the keywords
sequence and choice within the data types, in case we suspect
that a type might actually be an anonymous inner type. If this
is the case, we continue to look for the actual type within the
children of the type, until we find a match. This solution is
not ideal, but working for now.

5.4.6 Test execution

During the test execution, we did not observe any issues
that occurred due to the usage-based testing. This does not
mean that we did not face significant challenges. Due to
the complexity of the data types, the automated genera-
tion of TTCN-3 code for the health-care pilot was not fully
supported by the prototypical implementation of the MDA
approach for TTCN-3 generation [41]. However, this is not a
problem of the usage-based testing, but of the generation
of automatically executable tests in the underlying MBT
approach facilitated by the MIDAS DSL.

With the SCM pilot, the TTCN-3 generation from the
tests was not problematic. However, the provided reference
implementation was not set up in a testable way at first.
The end points for sending exchanges were fixed within
the scenario. Hence, the pilot did not communicate with
our TTCN-3 testbed as expected, but rather to the hard-
coded targets of the calls. For example, if we called the

purchaseOrder operation of thematerial Supplier
service, according to the protocol, the next thing that should
happen is that the material- Supplier reacts with
a purchaseOrderConfirmation call to our testbed,
where we simulate a pointOfSale service.

However, this purchaseOrderConfirmation was
not called on our testbed, but on the pointOfSale service
in the reference implementation. This problem was addressed
by defining the end point using the WS-addressing stan-
dard [47]. Once these problems where resolved, we could
successfully execute ten generated tests against the refer-
ence implementation. The rather small number is due to a
small usage profile, as there was only sample usage avail-
able for the SCM pilot. However, we uncovered 18 defects
through our efforts: 6 race conditions, 3 missing threads, 4
hard-coded responses, 2 problems with the port configura-
tion, and 3 unlimited loops [9].

5.5 Discussion

Our results regarding the practical application of usage-based
testing to SOA applications are mostly positive. We could
define a stable component for the usage monitoring that did
not cause any problems over an extended period of time.
Moreover, our pilots stated that the installation of the usage
monitor was simple and updating it was unproblematic. This
means that the first precursor for our approach, the usage
data, does not pose problems. The only potential issue raised
by one of our pilot partners was that the quality assurance in
case of updates to the monitor must be very good, because
problems with the monitor can potentially block all commu-
nication between services and, thereby, break the complete
SOA application. From our point of view as the engineers of
the usage monitor, the most problematic part is the identifi-
cation of callers by using different ports. We hope to be able
to change this in the future by instead using WS-addressing.
However, the change of our SCM pilot to WS-addressing was
very late within our experiments and did not allow the update
of the usage monitor with that capability for this study.

The results of combining usage-based testing with a pre-
defined test model, i.e., the MIDAS DSL, was also for the
most part positive. While there was trouble during the pilot
studies due to bad or changing naming conventions, which
caused problems with the matching of services operations to
the actual SUTs, these problems were all easily resolved by
introducing the usage-based model validation service. Our
experience with the test data repository is also very positive.
Other partners working with the MIDAS DSL even requested
that we create test data for them, because the manual creation
of data in the DSL is a very labor-intensive task. We think that
this might be the biggest insight we gained from our exper-
iments: the problems with test data can be resolved through
such automated imports from usage data.

@ Springer

322

S. Herbold et al.

Similarly, other users of the MIDAS DSL were interested
in manually creating tests with the MIDAS DSL. They also
found it easier to generate tests with the usage-based test
generator and then adapt them according to their wishes and
purposes. Through the automated generation of the tests, they
also had directly test data available, which they could manip-
ulate if desired.

Regarding the test results, the main challenge with com-
plex SOA orchestrations seems to be implementing them in
a way that meaningful tests are possible at all. In our health-
care pilot, we did not observe such problems, but we attribute
this to the fact that there is no internal communication within
the orchestration, just shared databases. Hence, we are tech-
nically rather performing tests of single services together,
than the testing of an orchestration. With the SCM pilot,
we first experienced the problem of the answering locations.
However, even after we resolved that, we first needed to adapt
our test engine to deal with that appropriately. Once this
was done, we still could only validate the functionality at
the boundary of the service orchestration and were not able
to validate the internal communication within the orchestra-
tion. For this, we would have to add additional interceptors
between the services in the orchestration that report the inter-
nal communications to the test engine. Such interceptors are
in principle similar to our usage monitor, but with a different
task, i.e., report to the test engine. We could resolve this by
creating a new version of the usage monitor that can serve a
TTCN-3 test component.

5.6 Threats to validity

We identified several threats to the validity of our study, both
internal and external nature.

5.6.1 Internal threats

We were working together with our pilot partners for three
years, which means that the pilot systems and parts of our
approach were developed in parallel. This may have affected
the development of the pilots in such a way that they were
not representative of industrial software anymore. However,
since both pilots are based on standards and are working with
standardized protocols and data types, it is unlikely that such
an effect occurred in a way that it changes our findings.
Similarly, the MIDAS DSL was also developed in paral-
lel to our testing approach. The combination of usage-based
testing with other MBT approaches might be more difficult,
because our requirements for usage-based testing might also
have affected the development of the MIDAS DSL. From
our point of view, this was not the case, as part of the DSL is
based on the already standardized UTP 1.2 and the remainder
is used as input for the currently ongoing standardization of
UTP 2.0. These standardization influences outweigh any ben-

@ Springer

efits through tailoring the DSL to the needs of usage-based
testing. This is exemplified in a way that no real logical iden-
tifiers for service types were added to the DSL and we had
to match them by name instead.

The obtained usage data were partially due to sample
usages of the service orchestrations and not from the field.
Our results might change if data from the field were used.
This could be especially problematic for the robustness of
the test generation which may lead to invalid tests being gen-
erated, due to either bad test data or bad capturing of the
orchestration protocol.

5.6.2 External threats

We considered only two domains in which SOAs are applied,
with the logistics and health-care domain. The considerations
regarding usage-based testing might be different in other
domains. Moreover, experience with additional pilot stud-
ies with partners that do not receive close support from us
may lead to different results.

Furthermore, we did not consider larger pilots with a
higher amount of exchanged requests. If the approach is
applied to larger-scale systems, there may be issues with
high amounts of monitored data and, hence, corresponding
requirements toward the data analysis and the performance
of the monitoring infrastructure.

6 Lessons learned

From our experiences we gathered during the implementation
of our approach and due to the adoption of the approach
in two pilot projects, we gained three valuable insights into
considerations for the application of usage-based testing in
practice.

One problem with usage-based testing is that it is hard to
make tests executable. The usage profiles only contain logic
about the system behavior. Knowledge about how to execute
this system behavior is missing. Up till now, we followed the
approach to provide a translation from the abstract events
directly into a format to be executed by a test driver, e.g.,
for Java with Jacareto [4], for HTML with Selenium [6],
or for Microsoft Foundation Classes (MFC) based applica-
tions with a home-brewed test driver [23]. In this article, we
present a different approach. Instead of directly generating
executable tests, in this case of TTCN-3, we use the MIDAS
DSL for MBT as an intermediate representation, from which
we can then generate executable tests.

This approach offers two powerful advantages: 1) it
enables MIDAS DSL users to harness the test data and test
cases generated from the usage-based testing; 2) in case the
MIDAS DSL supports the generation of executable tests for
adifferent technology than SOAs, this functionality becomes

Combining usage-based testing with model-based testing for service-oriented architectures. .. 323

directly available for usage profiles of this platform. There-
fore, the first lesson we learned is the following.

Combining usage-based testing with MBT is a challeng-
ing problem, but yields advantages for both sides.

The second lesson can be seen as a corollary of our first
lesson. The biggest problems the pilots had with the MIDAS
DSL were related to the test data, due to its complexity. They
had problems with the modeling of the data types, which
could be resolved through an automated import of the data
types from the XSD and WSDL descriptions of the services.
Moreover, they had problems with creating instances of the
data types in the MIDAS DSL for the same reasons. This
problem could be resolved by creating instances of the test
data directly from the usage data. Therefore, we learned the
following for domains where test data are quite complex and
otherwise hard to obtain.

Usage data are a valuable source for test data.

The third lesson is specifically for the usage-based testing
of SOAs. Service orchestrations are already complex, when
one just considers their implementation. Due to this complex-
ity, testability is often neglected. This problem seems to be
worse for usage-based testing approach. Since we try to auto-
mate the testing process as much as possible, we have some
requirements regarding the compliance of the SUT, e.g., that
we are able to identify from which logical entity (e.g., another
service or an end user) a call of a service operation came. Such
consideration must be structurally supported by the SUT and
are hard to add retrospectively. Similarly, the SUT must not
be deployed in a way that our monitor is not installable, e.g.,
because re-routing the service calls through the monitoring
proxy is not possible due to hard-coded information. Hence,
we learned the following lesson for the future.

Concerns regarding usage-based testing should already
be considered early during the system development to
facilitate a testable and monitorable structure of the
SOA. Otherwise, the application of usage-based testing
can be infeasible, e.g., due to hard-coded relationships
and or the inability to infer the source of a service oper-
ation call.

7 Conclusion

Within this article, we discussed the application of usage-
based testing in practice. To this aim, we proposed an

approach for the application of usage-based testing to SOA.
The first part of our approach is a usage monitor for SOA
that is non-intrusive and easy to integrate. Then, we use the
obtained usage data from the monitor to train a usage pro-
file from which we can generate test sequences. Moreover,
we create a repository with test data from the usage data.
We combine the usage-based testing with an MBT approach
based on the MIDAS DSL, a UML and UTP-based language
for the definition of tests. Through this combination, we were
able to automatically generate executable tests. We evaluated
the approach in two pilot studies, in which we gained valuable
insights into the practical feasibility of usage-based testing.

During our pilot studies, we observed some problems
that should be addressed in the future. Most importantly,
the monitoring of the clients of service calls is currently
quite complicated and requires the usage of different ports to
identify different callers. Here, a more powerful and flexible
way with less effort for the configuration of the SUT would
greatly help with the applicability of the method. Moreover,
we would like to go further ahead with the integration of
usage-based testing with MBT. To this aim, we would like to
extend state machines that describe the behavior of the ser-
vices within the MBT approach with usage information. This
way, we can change the models within the MBT environment
into usage profiles, which should enable new and improved
methods for test generation.

Acknowledgements This work was done in the context of the “Model
and Inference Driven-Automated testing of Services architectures”
(MIDAS) European project (project number 318786). We would like
to thank Testing Technologies for their support in terms of licensing as
well as feedback to support requests regarding TTworkbench; Fraun-
hofer FOKUS for the creation and maintenance of the MIDAS DSL
and TTCN-3 generation; and our pilot partners from ITAINNOVA and
Dedalus S.p.A. for their support in conducting the pilot studies.

References

1. Dedalus. http://www.dedalus.eu/

. Health Level Seven International. http://www.hl7.org.uk/

. Itainnova-instituto tecnolégico de aragén. http://www.itainnova.
es/

. Jacareto. http://sourceforge.net/projects/jacareto/

. Object management group (omg). http://www.omg.org

. Selenium webdriver. http://www.seleniumhq.org/

. ALLATEC: MaTeLo. http://www.all4tec.net/index.php/en/model-
based-testing/20-markov-test-logic-matelo(linkcheckedJune2nd,
2014)

8. Baker, P, Dai, Z.R., Grabowski, J., Haugen, O., Schieferdecker, I.,
Williams, C.: Model-driven testing: using the uml testing profile.
Springer-Verlag New York Inc, Secaucus (2007)

9. Barcelona Liédana, M.A., Lépez-Nicolds, G., Garcia-Borgoiién,
L.: Practical experiences in the usage of midas in the logistics
domain. Software Tools for Technology Transfer (STTT), accepted
(2016)

10. Chen, C., Zaidman, A., Gross, H.G.: A framework-based runtime

monitoring approach for service-oriented software systems. In:

[SSIN S

~N N A

@ Springer

http://www.dedalus.eu/
http://www.hl7.org.uk/
http://www.itainnova.es/
http://www.itainnova.es/
http://sourceforge.net/projects/jacareto/
http://www.omg.org
http://www.seleniumhq.org/
http://www.all4tec.net/index.php/en/model-based-testing/20-markov-test-logic-matelo(linkcheckedJune2nd,2014)
http://www.all4tec.net/index.php/en/model-based-testing/20-markov-test-logic-matelo(linkcheckedJune2nd,2014)
http://www.all4tec.net/index.php/en/model-based-testing/20-markov-test-logic-matelo(linkcheckedJune2nd,2014)

324

S. Herbold et al.

11.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Proceedings of the International Workshop on Quality Assurance
for Service-Based Applications, QASBA 11, pp. 17-20. ACM,
New York, NY, USA (2011). doi:10.1145/2031746.2031752
Cheung, R.C.: A user-oriented software reliability model. IEEE
Trans. Softw. Eng. 6(2), 118-125 (1980). doi:10.1109/TSE.1980.
234477

Cover, T.M., Thomas, J.A.: Elements of information theory, 2nd
edn. Wiley, Hoboken (2006)

. De Francesco, A., Di Napoli, C., Giordano, M., Ottaviano, G.,

Perego, R., Tonellotto, N.: A soa testing platform on the cloud:
The midas experience. In: Intelligent Networking and Collabo-
rative Systems (INCoS), 2014 International Conference on, pp.
659-664 (2014). doi:10.1109/INCo0S.2014.62

Di Napoli, C., De Francesco, A., Giordano, M., Ottaviano, G.,
Tonellotto, N., Perego, R.: Midas: a cloud platform for soa testing
as a service. International Journal of High Performance Computing
and Networking (2015) (in press)

Dulz, W., Zhen, F.: MaTeLo—statistical usage testing by annotated
sequence diagrams, Markov Chains and TTCN-3. In: Proceedings
of the 3rd International Conference on Quality Software (QSIC)
(2003)

Eclipse Foundation: Papyrus. https://eclipse.org/papyrus/
Feliachi, A., Le Guen, H.: Generating transition probabilities for
automatic model-based test generation. In: Proceedings of the 3rd
International Conference on Software Testing, Verification and Val-
idation (ICST) (2010). doi:10.1109/ICST.2010.26

Feller, W.: An introduction to probability theory and its applica-
tions. Wiley, Hoboken (1971)

Grabowski, J., Hogrefe, D., Réthy, G., Schieferdecker, 1., Wiles,
A., Willcock, C.: An introduction to the testing and test control
notation (TTCN-3). Comput. Netw. 42(3), 375-403 (2003). doi:10.
1016/S1389-1286(03)00249-4

GS1: Logistics interoperability model version 1. http://www.gs1.
org/lim (2007)

Health Level Seven International: H17 version 3 standard: Iden-
tification service (is), release 1. http://www.hl7.org/implement/
standards/product_brief.cfm?product_id=87 (2014)

Healthcare Service Specification Project (HSSP): Hssp specifica-
tions. https://hssp.wikispaces.com/specs

Herbold, S., Biinting, U., Grabowski, J., Waack, S.: Deployable
capture/replay supported by internal messages. Adv. Comput. 85,
327-367 (2012)

Herbold, S., Grabowski, J., Waack, S.: A Model for Usage-based
Testing of Event-driven Software. In: 3rd International Workshop
on Model-Based Verification & Validation From Research to Prac-
tice. IEEE Computer Society (2011)

Herbold, S., Harms, P.: AutoQUEST—automated quality engineer-
ing of event-driven software. In: Proceedings of the IEEE 6th
International Conference on Software Testing, Verification and Val-
idation Workshops (ICSTW) (2013). doi:10.1109/ICSTW.2013.23
International Software Testing Qualitifications Board (ISTQB):
Standard glossary of terms used in Software Testing, Version 2.1
(2010)

Kosala, R., Blockeel, H.: Web mining research: a survey. ACM
SIGKDD Explor. Newsl. 2(1), 1-15 (2000). doi:10.1145/360402.
360406

Le Guen, H., Marie, R., Thelin, T.: Reliability estimation for sta-
tistical usage testing using markov chains. In: Proceedings of the
15th International Symposium on Software Reliability Engineering
(ISSRE) (2004). doi:10.1109/ISSRE.2004.33

Littlewood, B.: A reliability model for systems with Markov struc-
ture. J. R. Stat. Soc. Ser. C (Applied Statistics) 24(2), 172-177
(1975)

@ Springer

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

MIDAS Consortium: Model and Inference Driven Automated test-
ing of Servicesarchitectures (MIDAS). http://www.midas-project.
eu (link checked June 2nd, 2014)

Motahari-Nezhad, H.R., Saint-Paul, R., Casati, F., Benatallah,
B.: Event correlation for process discovery from web service
interaction logs. VLDB J. 20(3), 417-444 (2011). doi:10.1007/
s00778-010-0203-9

Object Management Group (OMG): Retrieve, locate, and update
service (rlus). http://www.omg.org/spec/RLUS/ (2011)
Rumbaugh, J., Jacobson, I., Booch, G.: Unified modeling language
reference manual, the (2nd edition). Pearson Higher Education,
New York (2004)

Srivastava, J., Cooley, R., Deshpande, M., Tan, PN.: Web usage
mining: discovery and applications of usage patterns from Web
data. ACM SIGKDD Explor. Newsl. 1(2), 12-23 (2000). doi:10.
1145/846183.846188

Testing Technologies: Ttworkbench. http://www.testingtech.com/
products/ttworkbench.php

Tonella, P., Ricca, F.: Dynamic model extraction and statistical
analysis of web applications. In: Proceedings of the 4th Interna-
tional Workshop on Web Site Evolution (WSE) (2002)

Tonella, P., Ricca, F.: Statistical testing of web applications. J.
Softw. Maint. Evol. Res. Pract. 16(1-2), 103-127 (2004). doi:10.
1002/smr.284

Tonella, P., Ricca, F.: Dynamic Model extraction and statistical
analysis of web applications: Follow-up after 6 years. In: Proceed-
ings of the 10th International Symposium on Web Site Evolution
(WSE) (2008)

Tonella, P., Tiella, R., Nguyen, C.D.: Interpolated n-grams for
model based testing. In: Proceedings of the 36th International Con-
ference on Software Engineering, ICSE 2014, pp. 562-572. ACM,
New York, NY, USA (2014). doi:10.1145/2568225.2568242
Walton, G.H., Poore, J.H., Trammell, C.J.: Statistical testing ofsoft-
ware based on a usage model. Softw. Pract. Ant Exp. 25(1), 97-108
(1995). doi:10.1002/spe.4380250106

Wendland, M.E., Schneider, M., Hoffmann, A.: A model-driven
approach to test automation for soa systems. Software Tools for
Technology Transer (submitted) (2015)

Wesslén, A., Wohlin, C.: Modelling and generation of software
usage. In: Proceedings of the 5th International Conference on Soft-
ware Quality (1995)

Whittaker, J.A., Poore, J.H.: Markov analysis of software specifi-
cations. ACM Trans. Softw. Eng. Methodol. 2(1), 93-106 (1993).
doi:10.1145/151299.151326

Whittaker, J.A., Thomason, M.G.: A Markov chain model for sta-
tistical software testing. IEEE Trans. Softw. Eng. 20(10), 812-824
(1994). doi:10.1109/32.328991

Woit, D.M.: Specifying operational profiles for modules. SIG-
SOFT Softw. Eng. Notes 18(3), 2-10 (1993). doi: 10.1145/174146.
154187

Woit, D.M.: Conditional-event usage testing. In: Proceedings of
the 1998 conference of the Centre for Advanced Studies on Col-
laborative research, CASCON 98, p. 23. IBM Press (1998)
World Wide Web Consortium (W3C): Web services addressing
(ws-addressing). http://www.w3.org/Submission/ws-addressing/
(2004)

Yufang Dan Nicolas Stouls, S.F.C.C.: A Monitoring approach
for dynamic service-oriented architecture systems. In: SERVICE
COMPUTATION 2012: The Fourth International Conferences on
Advanced Service Computing, pp. 20-23. XPS (Xpert Publishing
Services) (2012)

http://dx.doi.org/10.1145/2031746.2031752
http://dx.doi.org/10.1109/TSE.1980.234477
http://dx.doi.org/10.1109/TSE.1980.234477
http://dx.doi.org/10.1109/INCoS.2014.62
https://eclipse.org/papyrus/
http://dx.doi.org/10.1109/ICST.2010.26
http://dx.doi.org/10.1016/S1389-1286(03)00249-4
http://dx.doi.org/10.1016/S1389-1286(03)00249-4
http://www.gs1.org/lim
http://www.gs1.org/lim
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=87
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=87
https://hssp.wikispaces.com/specs
http://dx.doi.org/10.1109/ICSTW.2013.23
http://dx.doi.org/10.1145/360402.360406
http://dx.doi.org/10.1145/360402.360406
http://dx.doi.org/10.1109/ISSRE.2004.33
http://www.midas-project.eu
http://www.midas-project.eu
http://dx.doi.org/10.1007/s00778-010-0203-9
http://dx.doi.org/10.1007/s00778-010-0203-9
http://www.omg.org/spec/RLUS/
http://dx.doi.org/10.1145/846183.846188
http://dx.doi.org/10.1145/846183.846188
http://www.testingtech.com/products/ttworkbench.php
http://www.testingtech.com/products/ttworkbench.php
http://dx.doi.org/10.1002/smr.284
http://dx.doi.org/10.1002/smr.284
http://dx.doi.org/10.1145/2568225.2568242
http://dx.doi.org/10.1002/spe.4380250106
http://dx.doi.org/10.1145/151299.151326
http://dx.doi.org/10.1109/32.328991
http://dx.doi.org/10.1145/174146.154187
http://dx.doi.org/10.1145/174146.154187
http://www.w3.org/Submission/ws-addressing/

	Combining usage-based and model-based testing for service-oriented architectures in the industrial practice
	Abstract
	1 Introduction
	2 Related work
	2.1 Monitoring of SOAs
	2.2 Usage profile and usage-based testing

	3 Approach
	3.1 Monitoring of SOAs
	3.2 Usage profile inference
	3.3 Test data repository
	3.4 Test model definition
	3.5 Test generation
	3.6 Test execution

	4 Implementation
	5 Pilot studies
	5.1 Objectives
	5.2 Methodology
	5.3 Systems under test
	5.3.1 Supply chain management pilot
	5.3.2 Health care pilot

	5.4 Results
	5.4.1 Usage monitoring of the SOA
	5.4.2 Generated usage profiles
	5.4.3 Test data repositories
	5.4.4 Test model definition
	5.4.5 Test generation
	5.4.6 Test execution

	5.5 Discussion
	5.6 Threats to validity
	5.6.1 Internal threats
	5.6.2 External threats

	6 Lessons learned
	7 Conclusion
	Acknowledgements
	References

