
EURASIP Journal on
Embedded Systems

Mansour and Chasaki EURASIP Journal on Embedded Systems (2019) 2019:1
https://doi.org/10.1186/s13639-018-0087-0
RESEARCH Open Access
Adaptive security monitoring for
next-generation routers

Christopher Mansour and Danai Chasaki*
Abstract

In today’s Internet, modern routers rely on high-performance reliable general-purpose multi-core packet processing
systems in order to support the flexibility and the plethora of protocol operations and applications. These
processing systems are programmable and have replaced the traditional-fixed logic ASICs in the data path of such
routers. Hence, lots of vulnerabilities and faults are introduced as the result of such programmability making the
systems susceptible to attacks and failures. Particularly, it is a difficult task to detect whether a processing core
behaves correctly, or it has a failure resulting from errors or attacks. In this paper, we address this problem by
proposing a novel approach to verify the correct operation of the network processor. We propose a secure, fault-
tolerant, and reliable monitoring subsystem which functions in parallel with the processing core of the router and
aids in the detection of attacks changing the processing behavior of the processor. We prove experimentally that
our system has the ability to detect the malicious activity and securely restore the router’s operation to a different,
but functionally equivalent, state. We also show experimentally that our approach has a better efficiency when
compared with other existing work.

Keywords: Communications, Monitors, Network security
1 Introduction
The size, diversity, and complexity of modern networks
continue to increase resulting in the development of
new protocol and communication paradigms, such as
content-addressable networks, that need to be deployed
in order to improve the network operation. This entails
the use of programmable network processors to meet
such demands. Fortunately, the advances in the perform-
ance of general-purpose multi-core processors fulfilled
this necessity by enabling the development of routers
which are based on highly parallel, embedded multipro-
cessor systems-on-chip (MPSoCs) as an integral compo-
nent. Network vendors and operators can now achieve a
new level of flexibility due to the use of programmable
components in the data path [1]. In the past, to achieve
the performance and speed necessary for traffic forward-
ing, high-performance routers used application-specific
integrated circuits (ASICs) to implement forwarding sys-
tems. Even though this technology was costly to develop,
it represented the only way to achieve the required speed
* Correspondence: danai.chasaki@villanova.edu
Department of Electrical and Computer Engineering, Villanova University, 800
Lancaster Ave, Villanova, PA 19085, USA

© The Author(s). 2019 Open Access This article
International License (http://creativecommons.o
reproduction in any medium, provided you giv
the Creative Commons license, and indicate if
and performance. Such technology did not present any
potential target for attacks because once they are de-
signed, their functionality cannot be changed except by
replacing them with new hardware. However, by intro-
ducing programmability to the data plane of such
routers, this premise has changed. The general-purpose
processors do exhibit the same kind of vulnerabilities
that have been observed and exploited in conventional
end systems and embedded systems making them target
for attacks.
In today’s Internet, software is becoming an integral

part with the emergence of software-defined networking
(SDN) [2] and network function virtualization [3] intro-
ducing a lot of vulnerabilities. These vulnerabilities are
due to the weaknesses that exist in the trusted code that
might already be present in the system. Vulnerabilities
in the network infrastructure are particularly problem-
atic. This is because routers are shared infrastructure,
and outages can affect a large number of users. Add-
itionally, attacks targeting such vulnerabilities can under-
mine special-permission protocols and thus gain access
to sensitive data or system resources. The existing intru-
sion detection and prevention mechanisms largely target
is distributed under the terms of the Creative Commons Attribution 4.0
rg/licenses/by/4.0/), which permits unrestricted use, distribution, and
e appropriate credit to the original author(s) and the source, provide a link to
changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13639-018-0087-0&domain=pdf
http://orcid.org/0000-0002-0094-3629
mailto:danai.chasaki@villanova.edu
http://creativecommons.org/licenses/by/4.0/

Mansour and Chasaki EURASIP Journal on Embedded Systems (2019) 2019:1 Page 2 of 16
end systems [4]. Thus, they are insufficient against novel
attacks that target the vulnerabilities in such network
devices. Attackers may target the data plane of modern
routers to interrupt the service and perform malicious
activities. A carefully crafted packet from an attacker
might exploit a software vulnerability and cause a
complete system crash [5]. Considering the potential im-
pact of a denial-of-service attack launched from a core
router connected to dozens of links with 40 Gbps data
rates, it becomes clear that there is a need to protect
these systems.
A wide range of hardware monitoring techniques have

been proposed in order to reduce the vulnerabilities
existing in embedded systems [6] and packet processing
systems [7]. Most of such approaches use the informa-
tion about the correct processor execution tracking the
instructions being executed by the processing core. An
attack on the processor will then be detected by using
such information, and the processor will be restored to
its initial state. However, the recovery mechanism in
such approaches does not eliminate the vulnerability
that caused the attack in the first place, even if the pro-
cessor has been restored to operate correctly. Thus, an
attacker could keep sending attack packets, initiating the
recovery process more than once and causing unneces-
sary overhead to the processor’s operation.
In this paper, we propose a novel monitoring tech-

nique that monitors the network processor’s operation
and checks whether the processor’s execution trace falls
within the allowed behavior or not. We base our moni-
toring design on the concept of software diversity to en-
hance the security requirement and to ensure a high
level of adaptivity and resilience. The software diversity
in our design will help in generating several versions of
the program to be executed. This offers different ver-
sions of the code that are functionally equivalent and
can be used after the recovery process. Hence, this will
eliminate the possibility of targeting the same vulnerabil-
ity and preventing the processor from completing the re-
quired functionality.
The specific contributions of this paper are as follows:

� We present a new hardware monitoring system that
can co-exist with the networking processor, check
its execution trace, and detect unusual activities
based on the instruction execution flow.

� We implement the monitor using ternary content-
addressable memory (TCAM) to ensure fast detec-
tion and recovery mechanisms.

� We build our design on the concept of software
diversity in order to ensure its adaptivity, reliability,
and resilience.

� We implement an integrity checking mechanism
using SHA-256 [8] hash to check the code integrity
before execution, thus eliminating the possibility of
instruction memory modifications and bit flips.

� We present experimental comparison between our
design and existing techniques to show how our
design is able to detect attacks and malicious activity
that changes the processor’s execution flow more
efficiently with less resource requirements.

� We present experimental results from a prototype
implementation of our monitor on a NetFPGA to
demonstrate its activity and the way it can detect an
attack and initiate a recovery process.

Overall, we believe that this system provides a novel
efficient approach in the detection of malicious behavior
of network processors in general. Additionally, it does
not only detect an unusual activity but rather can initiate
a secure fast recovery process.
The remainder of the paper is organized as follows:

Section 2 discusses some literature review and presents
experimental comparisons with other existing tech-
niques. We discuss the security model we implement in
Section 3. In Section 4, we present our adaptive monitor
design. Section 5 describes the evaluation process. Re-
source utilization is presented in Section 5.3. Section 6
summarizes and concludes this paper.

2 Literature review
2.1 Related work
Most of the security issues in networking are related to
end systems and protocols. Research in network security
has focused on many topics ranging from secure
end-to-end protocols, such as IPsec [9] to anomaly de-
tection [10]. Packet marking strategies have been also
proposed in order to identify attack sources [11] and
protect against denial-of-service attacks. From the net-
work side, firewalls [4] and intrusion detection systems
[12] can protect some systems from some known
attacks.
On end systems, virus scanner software can also iden-

tify some other attacks. However, using a virus scanner
software as a defense mechanism against intrusion as-
sumes that a sufficiently powerful processor and operat-
ing system are available. This assumption does not hold
when considering embedded packet processors on
routers. These systems frequently use network proces-
sors, which are embedded multi-core systems-on-a-chip
that operate without operating system support to
maximize throughput performance. These embedded
processing systems are vulnerable to intrusion just as
conventional end systems are [13].
When addressing security issues in the network infra-

structure itself, very little work can be found in the lit-
erature. The study in [13] surveyed network devices that
are vulnerable due to exposed interfaces which are part

Mansour and Chasaki EURASIP Journal on Embedded Systems (2019) 2019:1 Page 3 of 16
of the control plane and can be protected by better man-
agement methods. However, in our work, we consider
the data plane which inherently needs to be exposed and
thus propose a novel protection technique. Some de-
fenses may be based on techniques from embedded sys-
tem security [14]. Other defenses are based on
monitoring.
Several processor monitoring techniques have been

proposed in the literature. In [15], Tokuda et al. pro-
posed a monitoring technique by installing a special
software on each processing core; this software can be a
code instrumentation inside the network processing ap-
plication or a dedicated code executed outside of the ap-
plication. The monitoring information is then
communicated to a central control processor using the
same interconnect as that of the processing core for
moving packets and other data. Such monitors require
processing resources on the network processor and thus
reduce the overall system performance. Additionally,
software monitors require modification to the applica-
tion binary and other additional specialized codes and
does not scale well. Furthermore, monitoring techniques
based on software are themselves pieces of code that can
be targeted by attacks and thus are vulnerable to corrup-
tion [6]. However, it is important to note that our hard-
ware monitor does not execute any code itself; rather, it
only ensures that the processor is behaving correctly and
going through the expected legitimate instructions.With
the holistic view that the SDN offers, several solutions
were proposed to monitor and detect network attacks by
collecting the network statistics. In [16], the authors
propose a flow-graph model learned from SDN messages
to detect network level attacks on the network topology
and the data plane forwarding. In [17], Braga et al. sug-
gest an application to monitor the network flows to de-
tect network flooding attacks. Similarly, netfuse [18] was
proposed in order to monitor the network and find sus-
picious flows. Unlike such approaches, which act at the
application layer of the SDN hierarchy, our hardware
monitor acts at the data plane layer to detect attacks
and prevent recursive in-network attacks that target the
same vulnerability. Additionally, the aforementioned
monitoring approaches do not detect attacks that change
the instruction execution of the network processor [7]
since they only rely on the flow statistics; however, our
monitoring approach ensures that the right execution
flow is being followed by the network processor. Fur-
thermore, the monitoring approaches mentioned will
be software applications running on top of an operat-
ing system (Network Operating System such as NOX
[19], etc.). Hence, they need the services and func-
tions provided by the OS to operate and thus will
have less performance compared to our monitoring
approach which acts at the data plane layer without
any service requirements from the network operating
system.
In terms of hardware monitoring techniques, Mao and

Wolf [20] proposed a hardware monitor for embedded
systems that can track each instruction of the processor
and compare it to the processing model used by the
monitor. In [21], Ragel et al. presented a novel hard-
ware/software technique at the granularity of
micro-instructions to reduce overheads considerably.
Arora et al. [6] presented a hardware-assisted paradigm
to enhance embedded system security by detecting and
preventing unintended program behavior. Similarly, the
work proposed in [22] determines correct operation
based on a block of instructions. Unlike our monitor,
such approaches operate at the granularity of basic
blocks, thus requiring more memory resources for the
monitoring system, are slower in detecting attacks, and
require more resources in terms of memory and execu-
tion time. A detailed comparison between our hardware
monitoring design and existing techniques is provided in
the following section.
Other techniques [23, 24] extend the processor in-

struction set and micro-architecture to support special
verification steps. In [25], Chen et al. proposed an ap-
proach to verify the correct operation of packet proces-
sors by analyzing the packet latency and throughput. In
[26], Mansour and Chasaki proposed an approach to de-
tect faults and attacks in network processors through
power monitoring. Our work extends the idea of hard-
ware monitoring further and enhances it. The monitor
we propose is adaptive, fault-tolerant, and reliable be-
cause it utilizes the idea of software diversity. It is also
secure because the code integrity is checked before exe-
cution. Attacks in our design can be detected within a
few instructions rather than at the end of a longer code
block. The detection and recovery are fast processes be-
cause the monitor is based on a TCAM memory.
This article is an extension of the work that has

been presented previously in a short poster paper
[27] and in [28].
3 Framework security model
A best practice when designing a security design is to
have a security model. Therefore, the monitoring system
we present implements a security model which reflects
the operation of the current Internet. We assume that
the initial code on the router is benign and an attacker
aims to modify the code maliciously to perform mali-
cious activities. Such malicious activities may include a
stack smashing/buffer overflow attack that can corrupt
local variables and the function’s return address and thus
might return to another malicious code hidden inside
the packet payload [5, 7].

Mansour and Chasaki EURASIP Journal on Embedded Systems (2019) 2019:1 Page 4 of 16
For a secure packet processing system, there exist the
following security requirements [7]:

� The network processor should not deviate from any
normal forwarding behavior. The network processor
should always execute the instructions that are
loaded to the instruction memory. No other
instructions should be executed.

� Any malicious attempts through the data plane
should be detected and lead to a packet drop.
Malicious attempts should be detected by our
monitor, and a recovery mechanism should be
initiated to restore the processor to a secure
functional state.

� If an intrusion was successful and was able to
change the internal state of the processor, a recovery
mechanism should reset the router into an
equivalent functional state. This can be done by first
dropping the packet that started the malicious
activity by causing the network processor to deviate
from the expected behavior.

� Recovery overhead from malicious attempts should
not lead to a denial-of-service.

In the context of our security model, we assume that
an attacker is able to perform the following actions:

� Send abnormal packets to the network processor to
trigger a malicious behavior. An example of such a
behavior would be a buffer overflow on the packet
processor. This latter can lead to a stack-smashing
attack, which can be used to modify the control flow
of the packet processing program redirecting the
control flow to a malicious piece of code contained
in the packet payload.

� Gain remote access to the system in which he can
change the memory contents of the instruction
memory, log files, or extract and modify secret keys.

� Launch a denial-of-service by resending the mali-
cious packets over and over. Such malicious packets
will always be detected by the monitor we are
proposing.

� Use reprogramming interfaces to control the router.

It is important to note that attackers do not have phys-
ical access to the router and thus cannot access the bin-
ary files of the application being loaded and executed on
the packet processor. This is because such files reside
outside the platform. However, once the application bin-
aries are loaded on the instruction memory, the latter is
considered to be a potential attack target.
One potential attack example could be as follows: An

adversary transmits a data packet that contains malicious
code (e.g., within the packet header or the packet
payload). If the packet is carefully crafted, a buffer over-
flow on the network processor may occur. This leads to
a stack-smashing attack, which can be used to modify
the control flow of the packet processing program. A
possible target for the redirected control flow is the ma-
licious piece of code contained in the packet. If that
code is executed, the attacker can execute arbitrary op-
erations on the packet processor causing
denial-of-service. The crafted packet will target a par-
ticular version of the code that can be avoided by an-
other version through diversity.
In our design, the existence of the hardware monitor

detects the abnormal packets and initiates a fast and se-
cure recovery process. The code integrity check we per-
form before code execution eliminates the scenario of
instruction memory modification. Furthermore, the inte-
gration of software diversity into our design eliminates
the denial-of-service scenario since a new version of the
code would have been loaded and will not be affected by
the same vulnerability.
Furthermore, since our monitoring components are

embedded in the system hardware, it is difficult for an
attacker to attack both the processor and the monitor
(which is hard to access) at the same time. Thus, this ap-
proach by design provides more security than a conven-
tional general-purpose processing system.

4 Monitor design
In this section, we present the adaptive design of our
monitoring subsystem which validates the router’s cor-
rect operation by monitoring the “processing flow” of
the network processor. The overall system architecture
is presented in Fig. 1, and the logic operation is pre-
sented in Fig. 2. Our design constitutes of two phases,
an offline phase and a runtime phase. In the offline
phase, we apply the concept of software diversity and
prepare the monitor. The runtime phase includes the
monitoring operation in parallel with the processing
flow and the recovery operation which is triggered when
a malicious behavior is detected. Additionally, at the be-
ginning of the runtime phase and after each recovery, a
code integrity check occurs to verify the integrity of the
code being loaded to the instruction memory and elim-
inate the possibility of memory modification.
When designing the hardware monitor, several chal-

lenges were taken into consideration:

� Correct detection: it is an important specification for
a processor monitor to be effective. The design we
propose achieves this by checking for any deviation
from the expected operations prepared during the
offline analysis.

� Fast detection: intrusions should be detected quickly
in order to reduce or even eliminate their impact on

Fig. 1 Network processor with hardware monitor

Mansour and Chasaki EURASIP Journal on Embedded Systems (2019) 2019:1 Page 5 of 16
the network performance. The design we propose is
fast because it uses the TCAM memory.

� Low overhead: resources in a network processor is
an important factor in order to limit the hardware
implementation cost. The design we propose unlike
other existing techniques requires a small
percentage of resources.

4.1 Software diversity in network processor
Software design diversity is not a new concept; there are
several ways to create different multiple software alter-
natives that are functionally the same [29]. An example
of software diversity in C language is provided in Figs. 3
and 4. Figure 3 represents a sample code to copy a string
from a source buffer “src” to a destination buffer “dst.”
The same functionality happens in the sample code of
Fig. 4. However, the latter is more secure because it per-
forms dynamic memory allocation unlike the former
which does not check for the size of the source buffer.
Hence, if an attacker targeted the vulnerability existing
in the first version of the code, the second version will
not be affected.
In the context of data plane attacks in routers, which

exploit protocol processing vulnerabilities, the benefit of
installing N versions of the protocol code is two-fold:

� The attacker has to spend a considerable effort to
craft different attack packets to target the particular
code vulnerabilities in multiple software designs.

� If only one version of the protocol binary is present,
the same protocol code will be reloaded during
recovery. However, with the use of software
diversity, N versions of the code exist, and thus, the
system can switch to a different version to avoid
subsequent attempts to stall the system by sending
the same attack packet over and over.

Fig. 2 Monitoring system logic

Mansour and Chasaki EURASIP Journal on Embedded Systems (2019) 2019:1 Page 6 of 16
Figures 5 and 6 show the implementation of software
diversity. They show two different instruction sequences
for the same protocol, the IP-Forwarding in this ex-
ample. Having different instruction sequence leads to a
different monitoring graph. Furthermore, different in-
struction sequence means different execution flow and
thus prevents recursive in-network attacks triggered by
sending the same attack packet over and over. As an ex-
ample, if a packet targeted the sequence of instructions
Fig. 3 Sample software diversity in C: copying a string version 1
presented in Fig. 5, it would not be able to affect the se-
quence of instructions presented in Fig. 6; thus, the
router functionality did not change (since both instruc-
tion sequences correspond to the same function) but the
vulnerability was eliminated.
The importance of software diversity in our design is

that if one version of the code was a target for an attack
through a carefully crafted packet, the packet will be dis-
carded, the processing stack will be reset, and a new ver-
sion of the code will be loaded. The same attack packet
will not be able to affect the new version of the code,
since carefully crafted packets take advantage of specific
code vulnerabilities that will most likely not be present
in newer version of the code (e.g., buffer size allocation
through array instantiation vs. using malloc). This makes
such attacks harder since the attacker has to craft differ-
ent packets to target the different versions of the code
making the attack infeasible.
In our implementation, we modify the original C code

of the protocol under test and then compiled it.

Fig. 4 Sample software diversity in C: copying a string version 2

Mansour and Chasaki EURASIP Journal on Embedded Systems (2019) 2019:1 Page 7 of 16
Checking the assembly code reveals a change in the
opcodes or immediate values or even both in some
cases.

4.2 Monitoring graph generation
Figure 1 shows a network processor protected by our
hardware monitor. The main idea behind our monitor
system is to monitor the instruction execution flow by
the packet processor and detect any deviation. In order
to do this, we do the following:

� Perform an offline analysis of the protocol to be
executed (e.g., IP forwarding, IPSec, a firewall
service) and apply the concept of software diversity
generating N different binary versions.

� Generate the corresponding N compact monitoring
graphs which helps the monitor in observing the
core’s operation

� Generate a SHA-256 hash representation for each of
the N versions of the code

� Store the value of the SHA-256 hash at the begin-
ning of the monitoring graph
Fig. 5 Software diversity illustration: different instruction sequences for the
The latter hash value will be used in order to perform
code integrity check to ensure a secure version of the
code is being loaded.
4.3 Real-time monitoring
The network processor systems need to detect attacks or
failures and recover from them in order to guarantee its
operation. The hardware monitor we propose functions
independent from the packet processor but in parallel
with it. The monitor uses as few as possible separate
hardware resources. This guarantees that an attack tar-
geting the processor will not affect the security monitor’s
operation and that the monitoring speed remains syn-
chronized with the packet processing speed.
At the early stage of the runtime phase, only one of

the binaries generated during the offline analysis is
loaded on the network processor’s instruction memory
while its corresponding monitoring graph is stored in
the monitor’s memory. During runtime, the hardware
monitor checks the flow of instructions being executed
by the processor. If at any time it detects an abnormal
same protocol - version 1 [28]

Fig. 6 Software diversity illustration: different instruction sequences for the same protocol - version 2 [28]

Mansour and Chasaki EURASIP Journal on Embedded Systems (2019) 2019:1 Page 8 of 16
operation of the processor, the processing is terminated,
and a recovery process is triggered.

4.4 Recovery mechanism
In the case of an attack detection, the recovery process
in the scenario of network processors is easy. It can be
achieved by dropping the packets that caused the failure.
This can be done without any violation because the
packet delivery in the Internet protocol (IP) networks is
not guaranteed. Most of the network applications are
stateless, and thus, dropping partially processed packets
does not lead to any inconsistencies.
Since attacks are typically based on changes in pro-

gram execution, it is necessary to reset the processing
stack and instruction memory so that any potential vul-
nerable code is overwritten. Thus, the recovery process
includes the following steps:

� The packet buffer where the current packet is stored
is cleared and the packet is dropped.

� The processor core that is processing the offending
packet is reset: the processor stack and registers are
reset to recover from any tampering with the stack
pointer.

� The instruction memory is reset so that potentially
harmful code is overwritten and does not affect
future packets to be processed on this core.

� The control block of the N-to-1 MUX chooses at
random which version of the processing binary will
be reinstalled in the processor’s instruction memory
and which is the corresponding monitoring graph.
The protocol processing code is reloaded from on-
chip memory, which contains the instruction mem-
ory initialization values. That storage place is
assumed to be secure and not accessible by the
attacker.

� The recovery process continues further by loading
the new version of the code and its monitoring
graph.

During the code loading phase, a hash value of the
code being loaded is generated and compared with that
found in the monitoring graph to check the integrity of
the code.
Once the recovery process is completed, the processor

resumes its execution. An important aspect of this re-
covery process is that it happens quickly and ensures
that the possibility of a denial-of-service attack by send-
ing the same attack packet is eliminated. In terms of
clock cycles in our prototype implementation, the recov-
ery process utilizes 12 clock cycles.

4.5 Content-addressable memory (CAM)
CAMs in network processing are typically used for ap-
plications such as caching, address lookup, filtering, data
compression, packet classification, and various other
lookup functions [30]. They are frequently used instead
of algorithms executed on processors searching RAM.
Traditional RAM is composed of simple storage cells,
but each individual memory cell in a fully parallel CAM
implementation requires embedded matching circuitry.
A standard binary CAM is the simplest type of CAM.
These use data search words comprised of only 1 and 0
bits, and thus, only an exact match of the search data to
be performed. Ternary CAMs (TCAMs) include a third
“don’t care state” denoted by an X. When set locally, this
comes at an additional cost, as the internal memory cell
must encode three possible states instead of two. Such

Mansour and Chasaki EURASIP Journal on Embedded Systems (2019) 2019:1 Page 9 of 16
an arrangement can be used to find a longest matching
prefix, for example, as used in IP address lookup.
We use the TCAM memory in order to perform fast

matching on the instruction being executed by the pro-
cessor to determine the correct secure flow of instruc-
tions to follow.
4.6 Compact monitoring graph architecture
The monitoring graphs are simple state machines where
each state represents a specific instruction. They are de-
rived from an offline analysis of the processing code bin-
aries. During this analysis, the binaries are divided into
basic blocks. The first and final instructions of each
basic block are extracted and are used by the hardware
monitor to verify that the instructions executed on the
processor in real time are correct. The monitoring
graphs are kept relatively small using compact nondeter-
ministic finite automata (NFA) as building blocks of
their state machines.
The hardware implementation of the monitor consists

of a ternary content-addressable memory (TCAM) ac-
companied with a Block RAM memory as shown in
Fig. 7. We use the TCAM to store the final instruction
of each basic block which is usually a branch instruction
and the BRAM to store the branch target. The TCAM
performs content matching rather than the address
matching performed by standard memory cores. The
content matching approach enables faster data searches
than can be achieved by sequentially checking each ad-
dress location in a standard memory for a particular
value. The higher speed searches are achieved by using
content values as an index into a database of address
values. The additional ability to perform content com-
pares in parallel enables even higher speed searches.
Fig. 7 Hardware monitoring graph representation [28]
4.7 Monitor operation
During the operation, the current instruction being exe-
cuted by the packet processor is fed to the monitor, spe-
cifically to the TCAM memory inside the monitor. The
latter performs a fast search, matching its contents with
the current instruction; if there is a match, the match
address is provided as an index to the BRAM memory.
The BRAM memory performs a read operation return-
ing the next instruction to be executed, that is the
branch target. Meanwhile, the current instruction is also
stalled using a FIFO buffer for additional two clock cy-
cles where it is compared with the returned branch ad-
dress. If they match, then this is a benign instruction
and there is no malicious activity. However, if the com-
parator finds a mismatch and the next instruction is dif-
ferent from the one expected, this automatically means
that a malicious activity is being executed. In the latter
scenario, the monitor sends a reset signal to the packet
processor which performs the recovery procedure.

5 Evaluation
In this section, we evaluate our design in two different
scenarios: (i) an attack scenario in which the processor
deviates from the expected behavior (i.e., as a result of
code injection attack or stack-smashing attack) and thus
will be detected by our monitor and (ii) an instruction
memory modification scenario (due to faults resulting
from radiation or an attack targeting instruction mem-
ory) which will be detected during the loading phase
through the integrity checking mechanism.
We present the evaluation results from a prototype

implementation based on a 1st Generation NetFPGA
[31] which includes a Virtex II-Pro FPGA and is used for
experimental purposes. We also implement a 32-bit
synthesizable MIPS Plasma processor [32] to run the

Mansour and Chasaki EURASIP Journal on Embedded Systems (2019) 2019:1 Page 10 of 16
protocols as a prototype proof of concept. The first task
is to decide the format of the continuous monitoring
stream between the packet processor and the monitor.
Several options exist to monitor the execution path of
the processing which include [7] the following:

� Opcode: By sending to the monitor opcode
information, we can monitor the operations
performed on the processor, which indicate the
functionality of the executed application. An
attacker should change the whole set of opcodes to
successfully execute an attack. This is then easily
detected.

� Instruction address: The instruction address is the
unique memory address used to store the
instruction set. Since this is unique, it can be used
to verify the flow of instructions being executed. An
attacker needs to install his malicious code in the
exact memory addresses to deceive the monitor.

� Instruction address + instruction word: The
concatenation of both the instruction address and
the instruction word increases the uniqueness and
ensures the fact that they can be used in the
monitoring process.

� Hash of any of the above: Due to the hash
properties, hashing any of the above results in a
unique value that can also be used in monitor.

For our prototype implementation, we choose the in-
struction address as the format of the monitoring stream
because such a pattern uses less memory resources while
making it hard for an attacker to come up with an attack
code.
5.1 Attack detection scenario
In the attack detection scenario, we choose to imple-
ment the IP-forwarding protocol to verify the functional-
ity of our design; we note though that any protocol can
work following the same procedure. Before we load the
processing code to the packet processor, we perform off-
line analysis applying the software diversity concept and
generating different versions of the code. We then break
each binary file into basic blocks extracting each branch
origin and target to build-up our monitoring graph. We
later calculate the SHA-256 hash value of each binary
file and store it in the monitoring graph to verify the
code during loading (this will be demonstrated in the
following section).
If the application code loaded at some point executes

a branch instruction, two possible outcomes exist:

� The branch is taken, and the next instruction to be
executed is the branch target.
� The branch is not taken, and the next instruction to
be executed is that at address pc + 4.

We implement the monitor to consider both benign.
However, if a different outcome results, then it is de-
tected by the monitor as a malicious activity, and thus, a
recovery action is triggered.
Figure 8 represents the application disassembled code.

This code should execute a branch at memory address
0x38. The branch target if taken should be 0x30; other-
wise, the next instruction to be executed is at address
0x3c. Figure 9 represents the monitoring graph we pre-
pared for the benign nonmalicious code. For the moni-
toring graph, the right branch target is 0x3f instead of
0x30 if the branch is taken. Figure 10 shows the oper-
ation of the whole system (the packet processor and the
monitor). This figure shows that when the instruction
0x38 is being executed, it is directed to the TCAM elem-
ent of the monitor at the same time. It takes two clock
cycles for the TCAM memory to find a match and a
matched address is ready. This matched address is pro-
vided as an index to the BRAM memory which returns
the next address that is the branch target. The latter is
compared with the instruction being executed by the
processor taking into consideration the number of cycles
already passed. In this case, the monitor expects an in-
struction 0x3f whereas theinstruction being executed is
0x34.
The monitor detects this malicious activity and initi-

ates the recovery procedure by sending a reset signal to
the packet processor. The operation as a whole is as fol-
lows: the detection of the malicious activity occurs after
three clock cycles, and the recovery process is triggered
at the fourth cycle.

5.2 Integrity checking mechanism scenario
In this scenario, we demonstrate the integrity checking
mechanism in our design. The main purpose of this
mechanism is to insure the code integrity, that is, the
code being loaded has not been modified. This mechan-
ism will happen during the code loading phase.
Figures 11 and 12 show the hash calculation during

the loading phase of the binary code. However, Fig. 11
shows the loading of a code that has not been modified
or tampered with or even faulty. The hash calculated
was as the expected hash value stored in the monitoring
graph. Therefore, the processor and the monitor will
proceed with the expected operations. On the other
hand, Fig. 12 shows a case where the calculated hash of
the loaded code is different from the expected hash
stored in the monitoring graph and that is why the reset
signal was initiated. Hence, Fig. 12 proves how our in-
tegrity checking mechanism can detect whether the code
has been modified or has been tampered with. It is

Fig. 8 Disassembled application code [28]

Mansour and Chasaki EURASIP Journal on Embedded Systems (2019) 2019:1 Page 11 of 16
worth noting that code modifications can be the result
of a bit flip in the storage or the result of an attack.
5.3 Resource utilization
The C-based implementation of the protocol used in this
experiment produces a 16 K bits binary file. This size is
considered adequate for simple implementation of popu-
lar routing services. Table 1 shows the resource con-
sumption of our design on the NetFPGA. In terms of
memory, an average processing binary file utilizes three
BRAM16 blocks, where each BRAM block is equivalent
to 18 K bits of memory. This represents a very small
percentage of 1.3% of the available BRAM-16 blocks in
the NetFPGA-1G platform. If the same design was
ported to the NetFPGA-10G platform, which contains a
Vertex-V FPGA, each processing binary file will take up
to 0.46% of the available memory. The latter resource
utilization shows that we can easily afford to design mul-
tiple versions of the same program without exhausting
the available resources.
Fig. 9 Monitoring graph entries [28]
In terms of TCAM memory requirements, one
sample-monitoring graph corresponding to the previ-
ously produced binary file has a size < 1 kbit (480 bits to
be specific). For the current TCAM resources available
in today’s routers (18 Mbits [33]), such monitoring graph
will utilize < 0.5% of the available resources. Therefore,
the performance overhead of our design is not a burden
on the available TCAM resources in today’s modern
routers.
In terms of speed and throughput, we are limited by

the capabilities of the FPGA. It runs at 62.5 MHz, but
even at such a low clock rate, we can achieve an average
throughput of 64.1 Mbps. While interpreting the results,
we should also consider that we experiment with the
IP-forwarding protocol over small packets. The rates
may increase with the increase of the size of the packets
being forwarded.
In terms of LUT slices, our design utilized 278 LUT

slices for the monitor implementation and 2284 LUT
slices for the monitor and processor combined. Add-
itionally, the SHA-256 hashing module utilized 639 LUT
slices. These resources are considered adequate and effi-
cient on the FPGA used for the prototype
implementation.

5.4 Experimental comparison with state of the art
techniques
In this section, we present an experimental comparison
between our design and two other state of the art tech-
niques existing in literature: the “IMPRES: Integrated
Monitoring for Processor Reliability and Security” design
[21] and the “Secure Embedded Processing through
Hardware-Assisted Run-Time Monitoring” design [6].
In [21], the authors presented the Integrated Monitor-

ing for Processor Reliability and Security technique

Fig. 10 Simulation results [28]

Mansour and Chasaki EURASIP Journal on Embedded Systems (2019) 2019:1 Page 12 of 16
which is a hardware/software technique that acts at the
granularity of the micro-instructions. They proposed
such technique to detect code injection attacks and bit
flips in instruction memory. In their design, they divide
the binary code into different basic blocks, evaluate a
checksum for each block, encrypt the checksum with a
secret hardware key during loading, and recalculate the
Fig. 11 Integrity checking: hash calculation of a benign code
encrypted checksums during runtime. In order to imple-
ment their design, they had to modify the binary code
adding a “chk” instruction at the beginning of each basic
block that carries the encrypted checksum for the corre-
sponding basic block. Unlike the approach in [21], the
design we are proposing does not modify the binary
code by any means. We perform an offline analysis and

Fig. 12 Integrity checking: hash calculation of a modified code

Mansour and Chasaki EURASIP Journal on Embedded Systems (2019) 2019:1 Page 13 of 16
extract a compact monitoring graph which corresponds
to the first and final instruction of each basic block.
Additionally, we only perform the hash evaluation once,
i.e., during the secure loading phase of the code which
also saves in memory, time, and performance.
Furthermore, in [21], the authors do not implement

any approach to address the existence of the vulnerabil-
ity in the first place. They are able to detect it, but it is
still there. An attacker can thus persist on resending the
attack packet over and over leading to a denial of service
for legitimate processing tasks. However, in our ap-
proach, we implement the concept of software diversity
which replaces the vulnerable version of the code with a
new secure version and thus eliminating the possibility
of the aforementioned attack.
In [6], the authors presented a hardware-assisted para-

digm to enhance the embedded system security by de-
tecting and preventing unintended program behavior. In
their work, the authors presented an architecture where
the processor is augmented with a hardware monitor
Table 1 Resource consumption and performance of the
monitoring graph

Our design NetFPGA-1G NetFPGA - 10G

BRAM-16 1 232 648

Speed (MHz) 62.5 62.5 550

Throughput (avg in Mbps) 64.1 N/A N/A
that monitors the processor’s dynamic execution trace,
checks whether it falls within the allowed program be-
havior, and flags any deviation. Additionally, the authors
identified certain properties that can be used to define
permissible program behavior. These properties include
the inter-procedural control flow of the program, the
intra-procedural control flow for each function, and the
integrity of the instruction stream. In order to imple-
ment the inter-procedural control flow checking mech-
anism, they had to utilize two look-up tables that store
the function start and return addresses. Each look-up
table was implemented using a TCAM memory, thus
using an expensive resource in the available routers.
Additionally, to implement the intra-procedural control
flow checker, they utilize a basic block table where each
entry consists of additional subentries and thus utilizing
more memory from the available resources. Further-
more, their integrity checking mechanism is based on
basic block hash calculation where during program exe-
cution, the monitor buffers the instruction stream corre-
sponding to each basic block until a jump/branch
instruction is encountered, after which happens the hash
calculation and comparison. If the buffer becomes full at
any time, the processor is stalled in order to allow the
integrity checking mechanism to catch up. Finally, in
their design and after extracting the aforementioned in-
formation, the extracted information is translated into
data and appended to the program’s binary code.

Mansour and Chasaki EURASIP Journal on Embedded Systems (2019) 2019:1 Page 14 of 16
Unlike the design presented in [6], we do not modify
the binary code in the design we are proposing neither
by adding additional instructions nor by appending more
information to the data section. In our design, we per-
form a similar approach to the inter-procedural and
intra-procedural control flow checking through one step,
thus utilizing less look-up tables (less TCAM memory)
and less BRAM memory for the basic blocks (check
Fig. 13) saving on memory resources. Additionally, the
hash calculation in our design is done during the loading
phase only, not the runtime phase, and thus, the proces-
sor will never be stalled for the hash calculation. Fur-
thermore, storing the hash values with the data being
hashed together is a security weakness that can be a tar-
get for a smart attacker. Finally, in [6], once the vulner-
ability is detected, it is still there and can be used for a
denial of service attack; whereas in our design, we utilize
the software diversity to load a new secure version of
the code and thus preventing such types of attack.
Figure 13 shows a detailed comparison between our

design and the aforementioned approaches when run-
ning three different protocols: CM-protocol (a protocol
Fig. 13 Detailed comparison between our design, IMPRESS [21], and hardw
written by us for experimental purposes), IP-forwarding,
and IP-Sec protocols. The comparison is in terms of four
main categories: additional clock cycles required, binary
code size (lines of code), TCAM memory required re-
sources, and BRAM memory required resources.
The efficiency of our design is evident from Fig. 13.

Both designs [6, 21] require additional amount of clock
cycles to perform their monitoring functionality. This is
because in both designs, the monitors perform runtime
hash calculation for each basic block, unlike our design
which checks the integrity of the code during loading
phase only. Considering the additional lines of code, the
IMPESS design [21] has a higher percentage than the
hardware-assisted runtime monitoring approach because
additional “chk” instructions are added for each basic
block. On the other hand, the hardware-assisted runtime
monitoring approach rarely adds a “jmp” instruction
when necessary. In contrast to both designs, our ap-
proach does not modify the binary code at all. Addition-
ally, when considering the memory resources required,
the hardware-assisted runtime monitoring design will al-
ways require more TCAM resources than our design
are-assisted run time monitoring [6]

Mansour and Chasaki EURASIP Journal on Embedded Systems (2019) 2019:1 Page 15 of 16
due to the existence of two lookup tables. Furthermore,
considering the BRAM memory resources required, both
designs require more memory resources than our design
because they store more information about each basic
block and its corresponding hash. Unlike both designs,
we only store one hash value and the target of branches
extracted from the basic blocks. Hence, our design out-
performs the state-of-the-art monitoring techniques
found in literature.

6 Conclusion
The use of routers equipped with general-purpose pro-
cessing engines and executing software-based packet
processing is becoming more prevalent in the Internet.
Using software-based processing in the data plane of the
network presents a target for novel intrusion and
denial-of-service attacks. This can have a significant im-
pact on the overall security of the network. In our work,
we present the design of an adaptive security mechanism
for modern packet processors. We present a prototype
implementation of a secure monitoring system which
can be used in order to detect the attacks targeting the
data plane of the network. This monitoring system is
fault tolerant and reliable taking advantage of software
design diversity comparing the operation of the process-
ing cores to its corresponding expected behavior ob-
tained by the offline analysis of the packet processing
binary. The monitoring system will include different be-
haviors corresponding to different executions of the bin-
ary to be processed. The system continuously checks the
execution of the processor and triggers a recovery mech-
anism if a deviation from the behavioral execution path
is detected. The monitoring system we present is fast be-
cause it implements a new type of memory, the TCAM
memory, performing fast searching and matching within
two clock cycles. It is also a secure monitoring system
implementing a SHA-256 hash which ensures the integ-
rity of the binary code loaded. The prototype implemen-
tation of our monitoring system shows that our system
is an effective approach in protecting the networking in-
frastructure in the future Internet with a negligible add-
itional resource utilization and a very good speed.

Abbreviations
ASICs: Application-specific integrated circuits; FIFO: First In First Out;
FPGA: Field Programmable Gate Array; MPSoC: Multiprocessor systems-on-
chip; NFA: Nondeterministic finite automata; RAM: Random access memory;
SDN: Software-defined networking; TCAM: Ternary Content-Addressable
Memory

Acknowledgements
Not applicable

Funding
This research was not supported by any external funding source.

Availability of data and materials
Please contact authors for data requests.
Authors’ contributions
DC conceived of the study and its design and coordinated and helped to
draft the manuscript. CM implemented the design, performed the
experimental work, and drafted the paper. Both authors read and approved
the final manuscript.

Authors’ information
Not applicable

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 24 April 2018 Accepted: 27 December 2018

References
1. Jacobson, V., Smetters, D. K., Thornton, J. D., Plass, M. F., Briggs, N. H., &

Braynard, R. L. (2009). Networking named content. In Proceedings of the 5th
International Conference on Emerging Networking Experiments and
Technologies (pp. 1–12). ACM. https://dl.acm.org/citation.cfm?id=1658941

2. Kirkpatrick, K. (2013). Software-defined networking. Communications of the
ACM, 56(9), 16–19.

3. Anderson, T., Peterson, L., Shenker, S., & Turner, J. (2005). Overcoming the
Internet impasse through virtualization. Computer, 38(4), 34–41.

4. Mogul, J. C. (1989). Simple and flexible datagram access controls for... (In
USENIX Conference Proceedings). Citeseer. http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.187.9099

5. Chasaki, D., Wu, Q., & Wolf, T. (2011). Attacks on network infrastructure. In
2011 Proceedings of 20th International Conference on Computer
Communications and Networks (ICCCN) (pp. 1–8). IEEE. https://ieeexplore.ieee.
org/abstract/document/6005919

6. Arora, D., Ravi, S., Raghunathan, A., & Jha, N. K. (2005). Secure embedded
processing through hardware-assisted run-time monitoring (pp. 178–183).
Munich: Proc. of the design, automation and test in Europe conference and
exhibition (DATE’05).

7. Chasaki, D., & Wolf, T. (2013). Attacks and defenses in the data plane of
networks. IEEE Transactions on Dependable and Secure Computing. https://
ieeexplore.ieee.org/document/6231636

8. Standard, D. E. (2002). Federal Information Processing Standards Publication
(FIPS PUB) 180-2, National Institute of Standards and Technology (NIST).

9. Kent, S., & Atkinson, R. (1998). Security architecture for the Internet protocol.
RFC 2401.

10. Estevez-Tapiador, J. M., Garcia-Teodoro, P., & Diaz-Verdejo, J. E. (2004).
Anomaly detection methods in wired networks: a survey and taxonomy.
Computer Communications, 27(16), 1569–1584.

11. Savage, S., Wetherall, D., Karlin, A., & Anderson, T. (2001). Network support
for IP traceback. IEEE/ACM Transactions on Networking (TON), 9(3), 226–237.

12. Caswell, B., & Roesch, M. (2004). Snort: the open source network intrusion
detection system.

13. Cui, A., Song, Y., Prabhu, P. V., & Stolfo, S. J. (2009). Brave new world:
pervasive insecurity of embedded network devices. In Recent Advances in
Intrusion Detection (pp. 378–380). Springer. https://www.springer.com/us/
book/9783642043413

14. Parameswaran, S., & Wolf, T. (2008). Embedded systems security an
overview. Design Automation for Embedded Systems, 12(3), 173–183.

15. Tokuda, H., Kotera, M., & Mercer, C. E. (1988). A real-time monitor for a
distributed real-time operating system (Vol. 24). ACM. https://dl.acm.org/
citation.cfm?id=69222

16. Dhawan, M., Poddar, R., Mahajan, K., & Mann, V. (2015). Sphinx: detecting
security attacks in software-defined networks. NDSS. https://dblp.uni-trier.de/
rec/bibtex/conf/ndss/DhawanPMM15

17. Braga, R., Mota, E., & Passito, A. (2010). Lightweight DDoS flooding attack
detection using NOX/OpenFlow. In Local Computer Networks (LCN), 2010
IEEE 35th Conference On (pp. 408–415). IEEE. https://ieeexplore.ieee.org/
document/5735752

18. Wang, Y., Zhang, Y., Singh, V., Lumezanu, C., & Jiang, G. (2013). Netfuse:
short-circuiting traffic surges in the cloud. In Communications (ICC), 2013

https://dl.acm.org/citation.cfm?id=1658941
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.187.9099
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.187.9099
https://ieeexplore.ieee.org/abstract/document/6005919
https://ieeexplore.ieee.org/abstract/document/6005919
https://ieeexplore.ieee.org/document/6231636
https://ieeexplore.ieee.org/document/6231636
https://www.springer.com/us/book/9783642043413
https://www.springer.com/us/book/9783642043413
https://dl.acm.org/citation.cfm?id=69222
https://dl.acm.org/citation.cfm?id=69222
https://dblp.uni-trier.de/rec/bibtex/conf/ndss/DhawanPMM15
https://dblp.uni-trier.de/rec/bibtex/conf/ndss/DhawanPMM15
https://ieeexplore.ieee.org/document/5735752
https://ieeexplore.ieee.org/document/5735752

Mansour and Chasaki EURASIP Journal on Embedded Systems (2019) 2019:1 Page 16 of 16
IEEE International Conference On (pp. 3514–3518). IEEE. https://ieeexplore.
ieee.org/document/6655095

19. Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., & Shenker,
S. (2008). NOX: towards an operating system for networks. ACM SIGCOMM
Computer Communication Review, 38(3), 105–110.

20. Mao, S., & Wolf, T. (2007). Hardware support for secure processing in
embedded systems. In Proceedings of the 44th Annual Design Automation
Conference (pp. 483–488). ACM. https://dl.acm.org/citation.cfm?id=1278605

21. Ragel, R. G., & Parameswaran, S. (2006). IMPRES: integrated monitoring for
processor reliability and security. In Proceedings of the 43rd Annual Design
Automation Conference (pp. 502–505). ACM. https://ieeexplore.ieee.org/
document/1688849

22. Ragel, R. G., Parameswaran, S., & Kia, S. M. (2005). Micro embedded
monitoring for security in application specific instruction-set processors. In
Proceedings of the 2005 International Conference on Compilers, Architectures
and Synthesis for Embedded Systems (pp. 304–314). ACM. https://dl.acm.org/
citation.cfm?id=1086337

23. Nakka, N., Kalbarczyk, Z., Iyer, R. K., & Xu, J. (2004). An architectural
framework for providing reliability and security support. In 2004
International Conference on Dependable Systems and Networks (pp. 585–594).
IEEE. https://ieeexplore.ieee.org/document/1311929

24. Zambreno, J., Choudhary, A., Simha, R., Narahari, B., & Memon, N. (2005).
SAFE-OPS: an approach to embedded software security. ACM Transactions
on Embedded Computing Systems (TECS), 4(1), 189–210.

25. Chen, X., Chasaki, D., & Wolf, T. (2013). External monitoring of highly parallel
network processors. In 2013 IEEE 14th International Conference on High
Performance Switching and Routing (HPSR) (pp. 197–204). IEEE. https://
ieeexplore.ieee.org/document/6602312

26. Mansour, C., & Chasaki, D. (2016). Power monitoring of highly parallel
network processors. In 2016 International Conference on Computing,
Networking and Communications (ICNC) (pp. 1–5). IEEE. https://ieeexplore.
ieee.org/document/7440713

27. Mansour, C., El Hajj Shehadeh, Y., Chasaki, D.: Design of an adaptive security
mechanism for modern routers. In: 2015 IEEE International Conference on
Consumer Electronics (ICCE), pp. 241–244 (2015). IEEE. https://ieeexplore.
ieee.org/document/7066397

28. Mansour, C., & Chasaki, D. (2016). Trust and reliability for next-generation
routers. In MILCOM 2016–2016 IEEE military communications conference (pp.
740–745). https://doi.org/10.1109/MILCOM.2016.7795417.

29. Chen, L., & Avizienis, A. (1978). N-version programming: a fault-tolerance
approach to reliability of software operation. In Digest of papers FTCS-8:
Eighth annual international conference on fault tolerant computing (pp. 3–9).

30. McLaughlin, K., O’Connor, N., & Sezer, S. (2006). Exploring cam design for
network processing using fpga technology. In Advanced Int’l Conference on
Telecommunications and Int’l Conference on Internet and Web Applications
and Services (AICT-ICIW’06) (pp. 84–84). https://doi.org/10.1109/AICT-ICIW.
2006.96.

31. Lockwood, J. W., McKeown, N., Watson, G., Gibb, G., Hartke, P., Naous, J.,
Raghuraman, R., & Luo, J. (2007). NetFPGA–an open platform for gigabit-rate
network switching and routing. In MSE ‘07: Proceedings of the 2007 IEEE
International Conference on Microelectronic Systems Education, San Diego, CA
(pp. 160–161).

32. Plasma Processor, https://opencores.org/projects/plasma
33. Pagiamtzis, K., & Sheikholeslami, A. (2006). Content-addressable memory

(cam) circuits and architectures: a tutorial and survey. IEEE Journal of Solid-
State Circuits, 41(3), 712–727.

https://ieeexplore.ieee.org/document/6655095
https://ieeexplore.ieee.org/document/6655095
https://dl.acm.org/citation.cfm?id=1278605
https://ieeexplore.ieee.org/document/1688849
https://ieeexplore.ieee.org/document/1688849
https://dl.acm.org/citation.cfm?id=1086337
https://dl.acm.org/citation.cfm?id=1086337
https://ieeexplore.ieee.org/document/1311929
https://ieeexplore.ieee.org/document/6602312
https://ieeexplore.ieee.org/document/6602312
https://ieeexplore.ieee.org/document/7440713
https://ieeexplore.ieee.org/document/7440713
https://ieeexplore.ieee.org/document/7066397
https://ieeexplore.ieee.org/document/7066397
https://doi.org/10.1109/MILCOM.2016.7795417
https://doi.org/10.1109/AICT-ICIW.2006.96
https://doi.org/10.1109/AICT-ICIW.2006.96
https://opencores.org/projects/plasma

	Abstract
	Introduction
	Literature review
	Related work

	Framework security model
	Monitor design
	Software diversity in network processor
	Monitoring graph generation
	Real-time monitoring
	Recovery mechanism
	Content-addressable memory (CAM)
	Compact monitoring graph architecture
	Monitor operation

	Evaluation
	Attack detection scenario
	Integrity checking mechanism scenario
	Resource utilization
	Experimental comparison with state of the art techniques

	Conclusion
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Authors’ information
	Competing interests
	Publisher’s Note
	References

