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Power system stabilizers (PSSs) are the most well-known and effective tools to damp power system
oscillation caused by disturbances. To gain a good transient response, the design methodology of the PSS
is quite important. The present paper, discusses a new method for PSS design using the multi-objective
optimization approach named Strength Pareto approach. Maximizations of the damping factor and the
damping ratio of power system modes are taken as the goals or two objective functions, when designing
the PSS parameters. The program generates a set of optimal parameters called Pareto set corresponding
ulti-objective optimization
ower system stabilizer
trength Pareto algorithm

to each Pareto front, which is a set of optimal results for the objective functions. This provides an excellent
negotiation opportunity for the system manager, manufacturer of the PSS and customers to pick out the
desired PSS from a set of optimally designed PSSs. The proposed approach is implemented and examined
in the system comprising a single machine connected to an infinite bus via a transmission line. This is also
done for two familiar multi-machine systems named two-area four-machine system of Kundur and ten-
machine 39-bus New England system. Parameters of the Conventional Power System Stabilizer (CPSS)

y the
are optimally designed b

. Introduction

Ever increasing complexity of electric power systems has
ncreased research interests in developing more suitable method-
logies for power system stabilizers (PSSs). PSSs are the most
ffective devices for damping low frequency oscillations and
ncreasing the stability margin of the power systems [1]. In fact,

PSS provides the excitation system with a proper supplemen-
ary signal in-phase with the rotor speed deviation resulting stable
peration of the synchronous generator.

In the last two decades, various types of PSSs have been intro-
uced. Fuzzy Logic Based PSS (FLPSS) and adaptive controller-based
SS with some capabilities have been developed in recent years
2–6]. Conventional power system stabilizers (CPSS) are one of the
remiere PSSs composed by the use of some fixed lag–lead com-
ensators. CPSSs still are widely being used in the power systems
nd this may be because of some difficulties behind using the new
echniques.
To overcome the difficulties of PSS design, intelligent opti-
ization based techniques have been introduced [7–15]. These

echniques can be divided into two categories: time domain [7,8]
nd frequency domain methods. In the time domain design, gen-
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proposed approach. Finally, a comparison with famous GAs is given.
© 2009 Elsevier B.V. All rights reserved.

erally after applying a disturbance to the power system, some of
the main signals are optimized. However, disturbances at various
locations may excite dominant modes with quite different spec-
ifications, leading to different PSS tuning parameters. Also this
method may require heavy computational burden for big power
systems’ simulation. Abdel-Magid and Abido [9] and Zhang and
Coonick [14] have proposed frequency domain based techniques
that seem more complete than the others. Ref. [9] formulates the
robust PSS design as a multi-objective optimization problem and
employs GA to solve it. Improving damping factor and damping
ratio of the lightly damped or un-damped electromechanical modes
are two objectives. It has been shown that taking just one of the
objectives into account may yield to an unsatisfactory result for
another one. To overcome this, a weighted sum of the objectives
has been assumed as a goal function for the optimization problem.
In this method, weight assignment for damping factor and damp-
ing ratio is normally a complicated problem. Ref. [14] proposes a
technique based on the method of inequalities for the coordinated
synthesis of PSS parameters in multi-machine power systems to
enhance overall system small signal stability. This paper presents
a list of objectives and applies GA to optimize them.
In the present paper, the PSS design scenario is treated as a
multi-objective optimization task, where improving the damping
factor and damping ratio of the oscillatory modes of the system
are two individual objectives. The Strength Pareto, an evolutionary
multi-objective optimization approach, is employed to solve the

http://www.sciencedirect.com/science/journal/03787796
http://www.elsevier.com/locate/epsr
mailto:h.yassami@ieee.org
dx.doi.org/10.1016/j.epsr.2009.12.011
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mode is of interest for power system researchers. First multi-
Fig. 1. Single line diagram of SMIB system.

roblem. A set of values of one optimum designed PSS parameters
s called a Pareto optimal set. Each Pareto set can be chosen as a
avorite set of design parameters by the power system designers
ccording to their own particular technical issues and contem-
lations. This method except proper descriptions of the existing
onstraints does not require any further interfering like that of
eight assignment in the optimization problem.

This paper is constructed as follows: in Section 2, three famil-
ar power systems are given. The first system is a single-machine
onnected to an infinite bus which the parameters have been given
n the previous articles [16]. The second one is the Kundur’s two-
rea four-machine system [17] and the other is ten-machine 39-bus
ew England system [18]. A common PSS structure named CPSS

s employed in each power system. The Strength Pareto approach
nd related concepts are explained in Section 3. This method is

pplied for optimally tuning of the abovementioned PSSs struc-
ure of three different power systems. The capabilities of the new

ethod are shown in abovementioned systems by comparing the
imulation results with the results obtained by the GA technique.

Fig. 2. TAFM

Fig. 3. New England
s Research 80 (2010) 838–846 839

Simulation results are illustrated in Section 4. The Pareto fronts pro-
vide valuable information about the relationship between the two
objectives’ indexes. In the end, Section 5 concludes the paper.

2. Power systems and modeling

2.1. Single-machine infinite-bus system

The first aim of any PSS installation is the local mode [19], so the
single-machine infinite-bus (SMIB) model of a power system for
evaluating the proposed designing method is considered. In SMIB
model, a typical 500 MVA, 13.8 kV, 50 Hz synchronous generator is
connected to an infinite bus through a 500 MVA, 13.8/400 kV trans-
former and 400 kV, 350 km transmission line [16]. The system is
shown in Fig. 1 and the mathematical model of each element is
given individually in Ref. [16].

2.2. Two-area four-machine system

PSS design for a multi-machine system with a strong inter-area
machine system studied in this paper is the Kundur’s Two-Area
Four-Machine (TAFM) system consisting of two fully symmetri-
cal areas linked together by two 220 km, 230 kV transmission lines
[17]. This power system typically is used to study the low frequency

system.

test system.
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The SPEA which takes benefits from many features of some other
approaches is used in this paper. Fig. 5 shows a flowchart of the
approach which includes the following major steps [24]:
Fig. 4. Power system stabilizer.

lectromechanical oscillations of a large interconnected system.
he system is shown in Fig. 2 and its data are available for anyone
n Matlab software’s demo.

.3. Ten-machine 39-bus New England system

New England power system with 10 machines and 39 buses as
hown in Fig. 3 is the last PSS design methodology test system con-
idered in this paper. All generators except G10 are equipped with
PSS. This system is modeled using Power System Toolbox 3 (PST).
he system data can be found in [18].

.4. Power system stabilizer

Fig. 4 illustrates model of the CPSS. The CPSS consists of two
hase-lead compensation blocks, a signal washout block, and a gain
lock. Value of the parameter Tw of washout block is commonly
hosen ten [17] while six other constant coefficients of the model
i.e., T1, T2, T3, T4, VSmax and KPSS) have to be designed optimally.
he upper and lower limits of the limiter are assumed to be the
ame.

. Multi-objective optimization

.1. Main concepts

One way of handling a multi-objective or vector objective prob-
em is to combine the goals of the optimization problem and to
onstruct a scalar function and then to use a common scalar opti-
ization approach to solve the problem. The major dilemma of this
ethodology is unavailability of any straightforward method for

ombining the objectives or goals of the problem while they vary
onstantly.

Generally, a multi-objective optimization problem can be rep-
esented as:

in/max : y = f (x) = f1(x), . . . , fi(x), . . . , fk(x). (1)

ubjected to:

= (x1, x2, . . . , xn) ∈ X & y = (y1, y2, . . . , yk) ∈ Y

here x is the decision vector, X is the parameter space, y is the
bjective vector and Y is the objective space.

Game theory concept is applicable for a multi-objective opti-
ization problem in its own original status needless to any
odifications or combinations of the objectives, but of course it

equires an evolutionary method to reach globally optimum results
20–24]. Some advanced evolutionary methods are as [24]:

Niched Pareto Genetic Algorithm (NPGA).

Hajela’s and Lin’s Genetic Algorithm (HLGA).
Vector Evaluated Genetic Algorithm (VEGA).
Non-dominated Sorting Genetic Algorithm (NSGA).
Strength Pareto Evolutionary Algorithms (SPEA).
s Research 80 (2010) 838–846

One of the most successful multi-objective optimization
approaches is the SPEA [24] which is based on Pareto optimality
concept.

Definition. Concept of Pareto optimality can be described math-
ematically as below:

The vector a in the search space dominates vector b if:

∀i ∈
{

1, 2, . . . , k
}

: fi(a) ≥ fi(b)

∃j ∈
{

1, 2, . . . , k
}

: fj(a) > f j(b)
(2)

if at least one vector dominates b, then b is considered dominated
vector, otherwise it is called non-dominated. Each non-dominated
solution is regarded optimal in the sense of Pareto or called Pareto
optimal. Obviously, any Pareto optimal solution is comparatively
the most optimal one in terms of at least one of the objective
functions. The set of all non-dominated solutions is called Pareto
Optimal Set (POS) and the set of the corresponding values of the
objective functions is called Pareto Optimal Front (POF) or simply
Pareto front.

3.2. Strength Pareto Evolutionary Algorithm (SPEA)
Fig. 5. Strength Pareto flowchart.
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Fig. 6. Objectives’ performance in [9].

Table 1
CPSS boundaries.
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Fig. 7. Objectives’ performance in [14].

Table 3
GA weights.

GA w1 w2

T
S

Parameter T1 T2 T3 T4 VSmax KPSS

Lower limit 0.01 0.01 0.01 0.01 0.05 10
Upper limit 1 1 10 10 0.5 100

.2.1. SPEA algorithm

1) Generate an initial population P and create the empty external
non-dominated set P′.

2) Paste non-dominated members of P into P′.
3) Remove all solutions within P′ covered by any other members

of P′.
4) If the number of externally stored non-dominated solutions

exceeds a given maximum N′, prune P′ by means of clustering.
5) Calculate the fitness of all individuals in P and P′.
6) Use binary tournament selection with replacement and select

individuals from P and P′ until the mating pool is filled.
7) Apply crossover and mutation operators as usual.
8) If the maximum number of generations is reached, then stop,

else go to Step 2.

Fitness evaluation is also performed in two steps. First, the indi-
iduals in the external non-dominated set P′ are ranked. Then, the
ndividuals in the population P are evaluated. For more details, refer
o [24].

.3. Applying SPEA algorithm in power systems

As it said, [9,14] are two main references of CPSS design with
A. Ref. [9] minimizes

=
np∑

j=1

∑

�i,j≥�0

[�0 − �i,j]
2 + a

np∑

j=1

∑

�i,j≤�0

[�0 − �i,j]
2,

here np is the number of operating points considered in the design
rocess, and �i,j is the real part of the ith eigenvalue of the jth oper-
ting point. Moreover, �i,j is the damping ratio of the ith eigenvalue
f the jth operating point. Fig. 6 shows this method’s performance.

Ref. [14] tries to satisfy the three below inequalities:

For electro-mechanical oscillation modes:

1) �k ≥ �madr. Where k = (1,2,. . .n-gen − 1) and �madr is the mini-
mum acceptable damping ratio.

able 2
PEA parameters.

Parameter Generation number Population size Length of the chromosome

Value 50 N = 80 & N′ = 20 5 for each variable
GA1 10 1
GA2 1 1
GA3 1 10

(2) (1 − �min)ωk ≤ ωk + Im(��k) ≤ (1 + �max)ωk. Where ωk is the
frequency of kth mode and � is defined according to system
specifications.

For all other modes, including the original natural modes and
the new modes:

(3) �i ≥ �mmdr. While �mmdr is minimum marginal damping ratio.

Fig. 7 explains the second technique’s performance. More details
could be found in [14].

In the present paper, to use advantages of the abovementioned
Refs., the following objectives are considered:

Maximize: y1 = (Min(abs(�k))), �k is the real part of the kth
electro-mechanical mode.

Maximize: y2 = (Min(�k)), �k is the damping ratio of the kth
electro-mechanical mode.

Subjected to:

(1) �i < 0, for all eigenvalues. This condition guarantees system
small signal stability.

(2) For the electro-mechanical modes: a ≤ ωk ≤ b. While a and b
are the empirically considered limits of frequency, presented
in related figures.

(3) For all other modes: �i ≥ �mmdr. Whereas �mmdr is considered
experimentally 0.2, 0.2 and 0.1 for SMIB, TAFM and New Eng-
land, respectively.

No pre-specified value is considered �min or �min. The PSS
parameters construct the decision vector. For CPSS x = (T1, T2, T3, T4,
VSmax, KPSS). These parameters are experimentally limited. These

limitations reduce the computational times significantly. Table 1
shows the low and up boundaries of the parameters.

Major parameters of the population based algorithm SPEA are
given in Table 2. As seen from the table, population size is 80 and
external population size is 20 suggesting the ratio of 4:1. This ratio

Selection Recombination Mutation

Roulette wheel Single-point crossover Discrete with probability of 0.035
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Fig. 10. SPEA against GA in SMIB.

Fig. 8. Convergence characteristics of SPEA in SMIB.

s normally a common value employed to maintain an adequate
election procedure for elite solutions [23].

To have a comparison with SPEA, GA is employed, with the
arameters similar to Table 2. This comparison helps us to have a
etter judgment. The goal is minimization of the following fitness
unction:

= (w1y1 + w2y2)−1
here y1 and y2 are objective functions described already. There
ifferent values for weights, w1 and w2 are assume to have com-
rehensive investigation. Table 3 lists them. The optimization
onstraints are like SPEA.

Fig. 9. Convergence characteristics of GA in SMIB.
Fig. 11. Dominant modes of SMIB system comprising optimum PSSs.

4. Simulation results

4.1. SMIB

Initially the design approach is employed to design a PSS for
SMIB system. The convergence rates of the SPEA and GA are shown
in Figs. 8 and 9, respectively. The optimum design of SPEA, shown
with blue color, is extracted and shown in Fig. 10. The optimal
results of GA are illustrated too. As seen from Fig. 8, SPEA pro-
poses just one design as an optimum. So it seems that the objectives
have not very clear conflict here. As we know, the damping factor is
product of damping ratio and frequency. So, for one special mode,
the objectives are inter-dependent. This is true for SMIB with just
one electro-mechanical mode. But in the case of bigger systems,
one electro-mechanical mode may have minimum damping ratio

and another may have minimum damping factor. The next system’s
simulations may show this fact.

Fig. 10 compares SPEA with the results obtained from GA. It
seems that using different weight in GA’s fitness function results
in different and sometimes non-optimum answers. So, to gain the

Table 4
Optimal PSSs’ parameters in SMIB system.

Parameters SPEA GA1 GA2 GA3

T1 0.36 0.36 0.84 0.8
T2 0.04 0.23 0.3 0.5
T3 0.33 2.9 2.3 1.3
T4 5.81 8.1 8.3 6.4
VSmax 0.06 0.34 0.28 0.34
KPSS 70.9 18.7 12.9 33.2
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Fig. 12. Convergence characteristics of SPEA in TAFM.

Fig. 13. Convergence characteristics of GA in TAFM.

Fig. 14. SPEA against GA in TAFM.

Fig. 15. Dominant modes of TAFM system comprising optimum PSSs.

Table 5
Optimal PSSs’ parameters of TAFM system.

Parameters SPEA 1 SPEA 2 GA1 GA2 GA3

T1 0.26 0.26 0.52 0.5 0.36
T2 0.01 0.01 0.04 0.04 0.04
T3 4.5 4.2 0.65 0.65 1.6

T4 9.7 10 5.8 5.5 7.1
VSmax 0.44 0.33 0.31 0.34 0.3
KPSS 42 45 100 94 68

optimal results we may need experiment, whereas SPEA could give
all of possible optimums in a single run. Fig. 11 shows dominant
oscillatory poles’ map of the system. It is clear that the open-loop
system is unstable. Constraints which have been satisfied are illus-
trated in this figure too. The numerical values of PSSs’ parameters
are shown in Table 4.

4.2. Kundor system (TAFM)

In the next step, the design technique is applied to TAFM sys-
tem. Two PSSs with similar settings are installed at G1 and G4
while G2 and G3 are left without PSS. Anyway, G1 and G2 are the
best locations for installation of the PSSs [25], providing a suitable
discrimination between a very good and a moderately good PSS
settings [19].
The convergence rates of the SPEA and GA are shown in
Figs. 12 and 13. The final result of SPEA, Pareto front, is extracted and
shown in Fig. 14. The optimal results of GA are illustrated as well.
As seen, the Pareto front comprises 8 different designs. It seems

Fig. 16. Convergence characteristics of SPEA in New England system.
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Fig. 17. Convergence characteristics of GA in New England system.

Fig. 18. SPEA against GA in New England system.

Fig. 19. Dominant modes of New England system comprising SPEA PSSs.
Fig. 20. Dominant modes of New England system comprising GA PSSs.

that the range of y1 and y2 variations is not very wide, indicating
low conflict for objectives in TAFM system. However, this does not
mean to use single objective optimization [9].

None of Pareto front designs dominate GAs and vice versa. Con-
sequently, GA results are Pareto front member. Like SMIB system,
minimization of the fitness function with different weight assigned
to objectives, gives diverse answers. To have a better understand-
ing, dominant oscillatory poles’ maps of the system, comprising
some optimum PSSs are shown in Fig. 15. This is done for two PSSs
with different location in Pareto front as well as GA based PSSs.
This figure shows that the electro-mechanical modes are close
together, but there is a higher difference in the other oscillatory
mode of some PSSs. Also, instability of the open-loop system is
obvious. Table 5 presents the designed PSSs’ characteristics.

Fig. 21. SMIB results: (a) rotor speed deviation; (b) line power.
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Table 6
Optimal PSS parameters for New England system.

Generator SPEA 1 SPEA 2 GA1 GA2 GA3

T1 T3 KPSS T1 T3 KPSS T1 T3 KPSS T1 T3 KPSS T1 T3 KPSS

G1 0.09 1.5 13 0.09 1.4 22.9 0.05 1.2 22.9 0.08 0.47 57.6 0.09 0.98 25.3
G2 0.1 0.24 35.3 0.09 0.6 45.2 0.08 1.03 20.4 0.07 1.12 27.8 0.071 1.1 27.8
G3 0.09 0.9 22.9 0.09 0.33 60.1 0.09 1.36 22.9 0.09 0.14 75 0.08 0.24 50.2
G4 0.03 1.4 8 0.015 1.36 8 0.047 0.37 40.3 0.06 0.33 30.3 0.06 0.38 42.7
G5 0.07 0.66 70 0.07 0.66 72.5 0.08 1.17 50.2 0.08 1.17 80 0.09 1.22 47.7
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G6 0.09 1.4 62.6 0.085 1.4 60.1 0.0
G7 0.06 0.9 7.9 0.04 0.9 7.9 0.0
G8 0.09 0.6 20.4 0.09 0.6 20.4 0.0
G9 0.01 0.46 47.7 0.01 0.46 50.1 0.0

.3. New England system

Normally it is of great importance to test the PSS design method
n a large system. Therefore, the proposed PSS design technique
s employed to design PSSs for New England system, showing the
apability of the design approach. For reducing the computational
ime, VSmax is assumed 0.2 and the values of T2 and T4 of all PSSs
f the machines are kept constant at reasonable values of 0.1 and
.05 respectively, thus the values of T1, T3 and KPSS would be the
nly parameters designed optimally. The SPEA specifications and
arameters’ limits are as given in Tables 1 and 2.

The convergence characteristic of SPEA is presented in Fig. 16,
ntroducing acceptable improvement through generation incre-
ent. Moreover, the GA’s fitness progress is shown in Fig. 17. Also,
he Pareto optimal front is illustrated in Fig. 18, indicating domina-
ion of almost all of them against GA results. Note that using higher
enerations for GA may improve its final answer, but here the goal is

ig. 22. TAFM results: (a) rotor speed deviation of G1; (b) transmitting power from
rea 1 to area 2.
1.17 67.6 0.09 1.5 47.7 0.08 0.8 55.2
0.42 27.8 0.1 0.47 10.5 0.03 0.42 10.5
0.75 25.3 0.08 0.75 67.6 0.082 0.7 25.3
0.56 35.3 0.04 0.8 22.9 0.04 0.5 22.9

to compare the algorithms in similar conditions. It can be seen from
Fig. 18 that the Pareto front’s range is wider, so, indicating more dis-
agreement than aforementioned systems. Also after y1 = 0.25, there
is a high decrease in y2. This means if we want to y1 have a value
more than 0.25, y2 may not to be very favorable. Figs. 19 and 20
represent the system’s dominant oscillatory poles’ map with can-
didate SPEA and GA based PSSs while their parameters’ numerical
values are given in Table 6.

4.4. Time domain simulations

To investigate the performance of the PSSs under fault condi-
tions, some large disturbances have been applied to the systems.

Table 7 provides descriptions of three different faults applied to
test the robustness of the controllers. There are many fault condi-
tions, but because of the paper size limitation some major faults are
considered here [9,19]. Variations of active power of a selected line

Fig. 23. New England system results: (a) rotor speed deviation of G9; (b) power of
line 26–29.
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Table 7
Large disturbances tests.

System Description
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[24] E. Zitzler, L. Thiele, Multi-objective evolutionary algorithms: a comparative case
SMIB 6-cycle three phase ground fault at po
TAFM 9-cycle three phase ground fault at bu
New England 6-cycle three phase ground fault at bu

nd rotor speed deviation of a generator located close to the fault
osition are plotted against time for various PSSs and the faulty
perating condition as shown in Figs. 21–23. All of these figures
resent large signal stability of the test systems with optimum PSSs.
lso it seems that, in SPEA PSSs has a better performance in most of

he cases. However, more tests are needed to show the differences
f the Pareto fronts’ members clearly in future works.

. Conclusion

In the present paper, a novel method of CPSS design named
trength Pareto Evolutionary Algorithm (SPEA) is introduced. The
MIB, TAFM and New England are three well-known power systems
sed to exercise the PSS design methodology. Maximizing the min-

mum damping ratio and minimum damping factor of dominant
scillatory modes of the aforementioned systems are employed as
wo objectives while the PSS parameters are optimization variables.

oreover in the present paper, we have reached some optimum
nswers which seem to dominate GA results. The designer is free
o select any of the results. However, the present paper could not
oom on the differences of Pareto fronts’ members very much, but
ecommends it for future works. Also the researchers may work on
ossible better objective functions.
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