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Simulation for Cloud Computing 

Weiwei Lin*, Siyao Xu, Ligang He and Jin Li
 

Abstract—Resource scheduling and energy consumption are the two of most significant problems in cloud computing. Owing 

to the scale and complexity of various resources, it is often difficult to conduct the theoretical analysis of the performance and 

power consumption of scheduling and resource provisioning algorithms on Cloud testbeds. Thus, simulation frameworks are 

becoming important ways to complete evaluation. CloudSim is one of the most popular and powerful simulation platforms for 

cloud computing. However, it requires much improvement to enable CloudSim to perform multi-resource or energy-aware 

simulations. To overcome this problem, we have extended CloudSim with a multi-resource scheduling and power consumption 

model, which allows more accurate valuation of power consumption in dynamic multi-resource scheduling. Extensive 

experiments on six combinations of task assignment algorithms and resource allocation algorithms demonstrate the powerful 

functionality and superior convenience of the extended CloudSim, MultiRECloudSim. Different task assignment and resource 

scheduling policies will bring about very different energy cost. We could easily repeat the experiment to find out the efficiency 

and the power consumption of the algorithms under diverse arguments with MultiRECloudSim. 

Index Terms—cloud computing; multi-resource scheduling; power modeling; power simulation; CloudSim 

——————————————————————————————————————————————————— 

1 Introduction

Cloud computing [2,6,11,31] has rapidly attracted more and more attention in both academic and industry com-
munity. In cloud computing, server consolidation is an approach to the efficient usage of server resources in order to 
reduce the total number of servers that user requires [34]. The growth of server consolidation is owing to virtualization 
technology which enables multiple VMs to share the physical resources of a computer. The total resources of VMs 
shared the same server must not exceed that of the server while the number of servers is required to be as small as 
possible. Server virtualization provides technical ways to consolidate multiple servers bringing about increased utili-
zation and energy saving. As for resource scheduling for tasks, Resource provisioning consists of two provisioning 
plan for allocating resources in cloud. These are long term Reservation plan and short term On-demand plan [9]. On-
demand plan is a scheme where the users can obtain resources when they need. Reservation plan is a scheme where 
the resources could be reserved earlier. The on-demand plan could satisfy user’s need but it usually charges higher 
fees compared to Reservation plan. The drawbacks of Reservation plan is obvious as well. One is the under provision-
ing problem in which the resources could not fully meet the need due to dynamic varying workload. Some other prob-
lem is over provisioning, where the reserved resources is provisioned more than what actually needed. Thus, the re-
sources reserved will not be fully used and results in energy waste. It remains an important and difficult issue to take 
full advantage of various resources and reduce power consumption. Resource utilization and power consumption in 
cloud computing are tightly coupled. A host with low resource utilization typically still consumes much power in 
comparison with the power consumption when it is being fully utilized. For example, recent studies reported in [4,13] 
indicate that average resource utilization of the hosts in most datacenters can be as low as 20% and that an idle host 
still consumes as much as 60% of the power consumed by a fully utilized host. On the other hand, a lot of researches 
[3,15-17,32,35] focus on multi-resource allocation and they usually perform simulations on a cluster instead of simula-
tors. We think one of the reasons may be most of the cloud simulators do not support multiple resources. Furthermore, 
a few papers discuss about multi-resource allocation and power consumption at the same time, it is a non-trivial task 
to evaluate a candidate solution on real Cloud platforms. Firstly, demands and supply patterns, system scale and plat-
form infrastructure vary from one cloud to another. Moreover, background workloads in a cloud change dynamically. 
It is very difficult, if not impossible, to repeat the experiments with the exactly same settings to compare two candidate 
solutions. Secondly, many factors may influence the application performance and the power consumption of the sup-
porting data center, such as users’ QoS (Quality of Service) requirements, various dynamic workloads, complex 
scheduling strategies on multiple resources and different power consumption pattern of diverse hardware. Thirdly, 
the real experiments are time-consuming and sometimes impossible because it is typically required to perform a num-
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ber of test runs under a variety of experimental settings. Thus, performing simulation experiments through simulation 
tools become an alternative, viable experimentation methodology. The simulation experiments are controllable and the 
experimental results can be reproduced, which enables the researchers to compare candidate solutions in fair experi-
mental environments. 

There is one more important problem to be discussed. The implementation of power simulation of CloudSim as-
sumes that there is just one cloudlet which is working as an online service. It only models a simple scenario and can-
not meet a variety of complex need of energy simulation. To carry out power simulation, CloudSim uses dynamic 
workload model. This model works well under the above assumption, but it’s not applicable for the multiple-task sce-
nario because the dynamic workload model of CloudSim works if and only if we know the exact time when the task 
starts and ends. However, the multiple task scenario we discuss in this paper, tasks are scheduled by different alloca-
tion policies. We don’t know the exact time when they start or end during the scheduling process. We find out the lim-
itations of CloudSim after we read through the source code. Only after a task ends, we know its finished time. They 
are listed as follows. 

 
1. CloudSim to date only supports single-resource tasks [25, 26]. The current version of CloudSim appears to 

support various types of resources on the surface, including CPU, memory and bandwidth. In the process of 
task submission and scheduling, however, it does not consider memory and bandwidth as constraints. No mat-
ter how much memory or bandwidth the tasks demand (even if the demand is more than the physical capacity 
of the host), CloudSim does not consider it as an error. Moreover, in power consumption simulation, CloudSim 
only considers the power consumed by CPU, and it does not take into account the power by memory accessing 
or communication.  

2. CloudSim only supports the single-task running in power simulation. The following comment is added in the 
source code of the “CloudletSchedulerDynamicWorkload” component in CloudSim: “CloudletSchedulerDynam-
icWorkload implements a policy of scheduling performed by a virtual machine assuming that there is just one cloudlet 
which is working as an online service.” This comment explicitly tells its users that CloudSim does not support the 
case where multiple tasks are running simultaneously. Consequently, CloudSim is not able to perform power 
simulation of multiple task scheduling. Due to this exact limitation, researchers seldom use CloudSim to con-
duct research on power consumption. Instead, they usually do experiments on physical hosts [5,12,20,22]. 

3. There is a problem concerning about the implementation of dynamic workload in CloudSim. The dynamic 
workload is implemented in the following way. It obtains the utilization data by reading the workload file and 
calculates the resource utilization using the simulated time. Here comes the problem of the implementation. If 
a task starts at 10s and ends at 30s, then the data before 10s and after 30s in the workload file are not utilized. 
However, we generally do not know the exact time when the task starts and ends. Actually, we don’t want to 
know when every cloudlet start or end before the simulation because if we do, we have to match the running 
time of every cloudlet  with corresponding part of data in workload file. 
 

The motivation of this paper is to provide a fast and convenient approach to evaluate the multi-resource schedul-
ing and power-aware algorithms. It provides a multi-resource multiple task scheduling model and it is easy to design 
different task assignment policy for different scenarios, for instance, CPU intensive, ram intensive and comprehensive 
scheduling concerning multi-resource shows various patterns. In addition, MultiRECloudSim has the multi-resource 
power simulation mechanism and power model interface, which provides a far more accurate power consumption 
result about multiple resources compared with CloudSim.  Therefore, we extend CloudSim 3.03 by overcoming the 
limitations of CloudSim discussed above. The enhanced CloudSim is called MultiRECloudSim. The contribution of us 
is the five new features of MultiRECloudSim. They are summarized as follows. 

 
1. Multi-Resource Cloudlet. Cloud application have diverse resource demands. For instance, machine learning 

tasks are CPU-intensive while sort tasks are memory-intensive. Tasks are constrained on multiple resources, 
e.g., reduce tasks that are both memory and network-intensive. The extended cloudlet supports CPU, memory, 
IO and bandwidth. A VM is able to allocate the resources to cloudlets within its resource capacity and then runs 
the cloudlets, which makes it possible to design a variety of more realistic resource allocation policies and task 
scheduling algorithms. We design and implemented a class called SimCloudlet for this purpose. The mecha-
nism of multiple resources is supported by a series of related classes, including SimPowerHost, SimPowerVm, 
CloudletAssignmentPolicy, SimCloudletSchedulerDynamicWorkload, etc. The SimCloudlets are assigned to 
SimPowerVms placed on the SimPowerHosts. In running process, SimCloudlets are updated and scheduled by 
SimCloudletSchedulerDynamicWorkload. With these extensions, we could easily implement algorithms like 
Dominant Resource Fairness (DRF) algorithm [3] and compare it with other algorithms. 

2. Cloudlet Assignment Policy. Application workloads in the cloud are dynamic and change over time, which 
means workloads become imbalanced among VMs as well as diverse resources.  It’s necessary to balance the 
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multiple resources of VMs to raise the resource utilization and reduce power consumption. The task assignment 
policy is a key algorithm that relates to throughput, resource utilization and power consumption. We imple-
ment a new class called CloudletAssignmentPolicy to complete this task independently, so as to loosen the 
coupling with the DatacenterBroker. By doing so, the task of defining various cloudlet assignment policies be-
comes very simple, especially in the case of multiple resource scheduling. The Main Resource Task Balance Al-
gorithm we proposed is a multiple resource scheduling policy implemented by the subclass of CloudletAs-
signmentPolicy.  

3. Multi-Resource Cloudlet Scheduling and Resource Allocation Scheme. After a task is assigned to VM, it en-
ters to the task waiting queue waiting for scheduling. The task scheduler of VM will schedule the task accord-
ing to the task’s priority, the demand for multiple types of resources, the arrival time, etc. In CloudSim, the 
class CloudletScheduler is used to schedule the cloudlets submitted to VMs and we extend its subclass Cloud-
letSchedulerDynamicWorkload to support the scheduling of multiple multi-resource cloudlets. Specifically, we 
implement a cloudlet resource allocator for each type of resource (CPU, memory, IO and bandwidth). The role 
of the resource allocator is to allocate and manage resource independently. Moreover, this extension makes it 
easy to define different resource allocation policies. In MultiRECloudSim, we implement two types of modes: 
reservation scheme and non-reservation scheme. Reservation scheme refers to the case where the maximum 
amount of CPU resource is reserved for a cloudlet when it starts and therefore there is certainly no shortage of 
CPU resource for this cloudlet. It’s the same as long term Reservation plan mentioned above. The CPU demand 
of a cloudlet under this mode is satisfied all the time. However, the disadvantage of this scheme is that the CPU 
resource will be wasted on idle time. In contrast, the non-reservation scheme refers to the case where the reser-
vation is not supported. Currently, CPU supports these two schemes while the other three resources only sup-
port reservation scheme. We implemented two algorithms: First-come-first-served and Max-Min fairness for 
non-reservation scheme. 

4. Multi-Resource Power Consumption Simulation. The increasing costs of power delivery and cooling and the 
trend toward higher-density server cloud systems, have created a growing demand for better power manage-
ment for cloud computing. Scholars have done a lot of work on power models with respect to different re-
sources. [1,5,17]. These models may be evaluated with MultiRECloudSim. The power model in MultiRE-
CloudSim is a function of power consumption over resource utilization. Power models vary from resource to 
resource. With the power models, we can perform the power simulations reflecting the real situations. 

5. Progress-based Multi-Resource Cloudlet. Progress-based Cloudlet aims to overcome the disadvantage of 
CloudSim that the utilization data in the workload file are not fully utilized in dynamic workload simulation. It 
is a further extension to SimCloudlet. The principle of the progress-based cloudlet is that the utilization data are 
read by the progress percentage of the cloudlet instead of by simulated time. This feature enables the utilization 
data in a workload file to be all utilized for various workloads, regardless of the running time of the cloudlet. 
Similarly, the progress-based multi-resource mechanism are supported by a series of progress-based related 
classes.  

The paper is organized as follows.  Section 2 discusses the related cloud simulators and some improved simulators 
based on CloudSim. The third section focuses on the models we design and in section 4, we introduce the implementa-
tion of MultiRECloudSim. An evaluation including static workload and dynamic workload is provided in Section 5 
and the paper is concluded in Section 6. 

2 Related Work 

Although cloud computing has been advancing rapidly in recent years, there are only a few existing simulation 
frameworks for Cloud computing nowadays due to the complexity of the nature. Main cloud computing simulators 
are CloudSim [8], GreenCloud [21] and MDCSim [23]. Green-Cloud is an extension to the NS2 network simulator for 
the evaluation of power-aware data centers in cloud environments. It is a packet-level simulator, focusing mainly on 
cloud communication power consumption, providing a fine-grained data center power consumption model. MDCSim 
is a commercial discrete event simulator which can help model diverse components of a data center such as servers, 
communication links and switches with specific hardware characteristics from different vendors. CloudSim is most 
advanced and comprehensive among the three simulation frameworks. CloudSim is a generalized and extensible sim-
ulation framework that enables seamless modeling and simulation of scalable cloud computing infrastructures and 
various application services. CloudSim (i) supports modeling and simulation of large scale cloud computing systems, 
including data centers, physical hosts and virtual machines, (ii) supports modeling service brokers, cloudlet sched-
ulers, vm schedulers, vm allocation policies and resource provision policies, (iii) supports network simulation among 
the simulated system nodes and (iv) supports power simulation with one application on each vm. 

Due to its powerful modeling and simulation capabilities, many studies are based on CloudSim. Network 
CloudSim [7] extended CloudSim with a scalable network flow model and a parallel application model. The network 
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flow model utilizes bandwidth sharing and latency to enable scalable and fast simulations, while the parallel applica-
tion model enables the simulation of parallel and distributed applications. With Network CloudSim, scheduling and 
resource provisioning policies can be evaluated more accurately, helping optimize the performance of a datacenter. 
DynamicCloudSim [18] extends CloudSim by modeling instability in cloud environments, including inhomogeneity, 
dynamic changes of performance at runtime and failures during task execution. Experiments in simulation and on real 
cloud infrastructure are both conducted to simulate the influence of instability on scientific workflow scheduling. Re-
sults indicate that the model adequately reflects the major aspects of cloud performance instability. Tom et al. [10] 
added a new package called DVFStoCloudSim for conducting energy-aware simulation with Dynamic Voltage and 
Frequency Scaling. WorkflowSim [38] is a toolkit for simulating scientific workflows in distributed environments, 
which also extends from CloudSim. The authors indicate that ignoring system failures and overheads in simulating 
scientific workflows may bring significant inaccuracy during the predicted workflow runtime. Xiang Li et al. [24] de-
signed a CloudSim-based simulator called DartCSim+, which supports the power-aware network simulation and net-
work-aware live migration. Moreover, to address transmission failure caused by migration or network failure and cap-
ture more realistic network behaviors a resubmit mechanism for packets transmission is implemented. [39] presents a 
cloud computing adoption framework (CCAF) security suitable for business clouds. CCAF multilayered security is 
based on three major security technologies: firewall, identity management, and encryption. 

Even though so many simulators are extended from CloudSim, none of them consider multi-resource tasks and 
power consumption in multi-resource scheduling. Efficient multi-resource allocation policies increase resource utiliza-
tion and therefore save cost. Power-aware allocation policies reduce the power consumption, preventing a blind pur-
suit of efficiency. On the other hand, our previous work [25-30,36] proposed the models for distributed resource and 
task scheduling, more specifically to improve the resource utilization and the performance of cloud datacenter. How-
ever, these methods cannot be directly applied to multi-resource task scheduling and power simulation. In order to 
address this problem, we develop MultiRECloudSim in this work.  

3 Design of MultiRECloudSim 

With MultiRECloudSim, we investigate the effective policies on assigning multi-resource cloudlets to VMs, allocat-
ing multiple resources to VMs and cloudlets, scheduling multi-resource cloudlets to save energy, etc. Next, we present 
the models in MultiRECloudSim in detail.  

3.1 Multi-Resource Cloudlet 

SimCloudlet, an extension to Cloudlet, supports CPU, memory, input-output (io) and bandwidth resources. The at-
tributes of the class SimCloudlet, mips, ram, io and bw represent the demand for CPU, memory, IO, bandwidth of the 
task respectively. Among them, mips can be a fixed or varying value while other three can only be of fixed values. In 
other words, SimCloudlet supports static and dynamic CPU workload, but only supports static workload for memory, 
IO, bandwidth. The reason for this is because the model takes the following assumptions: 

1. To simplify the model, we set ram, io, bw to be of fixed values, which means that we assume the demands of 
tasks for these three resources are fixed and that once the task starts, it will occupy these resources until its 
completion.  

2. As for the IO resource, we abstractly treat IO as a type of resource that can be allocated. The allocation is repre-
sented by the average speed of read and write operations. Its unit is MB/s.  

3. For memory, IO and bandwidth, we assume that when the demands of a task for these three resources are satis-
fied, the task can be executed. It is not the case for the CPU demand. The amount of CPU (measured by mips) 
allocated to a task only influence the speed of execution. If the demands for memory, IO or bandwidth are not 
satisfied, the task will be put in the waiting queue.  

In addition, we also modify the original source of dynamic demand for mips. 
The current requested mips of a vm is originally calculated as the total requested utilization of mips over all run-

ning tasks times the mips allocated to the vm. In our revision, the current requested mips of a vm is calculated as the 
sum of the requested mips utilization of a task times the standard mips of the task. The standard mips refers to the 
initial mips assigned to a task, i.e., the mips when the requested utilization is 100%. The change we made can help us 
change the mips workload in a more flexible way. Moreover, it is easier to simulate and more realistic. 

3.2 Cloudlet Assignment Policy 

By inheriting the abstract class CloudletAssignmentPolicy, we could define our own cloudlet assignment policies. 
The original Cloudlet allocation policy in CloudSim is called sequential allocation algorithm and its implementation 
class is CloudletAssignmentPolicySimple. We propose another policy, which we call Main Resource Task Balance 
(MRTB) assignment policy. 

Before explaining the new policy, we first introduce two definitions: normal resource load of a task and normal re-
source load of a vm. 
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The Normal Resource Load of a Task (NRLT) is a metric that measures how much workload of a task for the re-
source. It is calculated by the product of the amount of resource and the occupied time. The resources considered here 
include cpu, memory, io and bandwidth. NRLT is calculated by (1), where x denotes the cloudlet，𝑐  denotes the j-th 
resource, 𝐿𝑜𝑎𝑑(𝑥, 𝑐 ) denotes the normal load of cloudlet x for resource 𝑐 , 𝑡𝑖𝑚𝑒(𝑥) denotes the estimated execution 
time of cloudlet x, 𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 𝑐 ) denotes the normalization of the average demand of cloudlet x for resource 𝑐 . 

𝐿𝑜𝑎𝑑(𝑥, 𝑐 ) = 𝑡𝑖𝑚𝑒(𝑥)𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 𝑐 )                                                                                                                  (1) 

 𝑡𝑖𝑚𝑒(𝑥) is the length of cloudlet x divided by the average mips allocated to cloudlet x, shown as in equation (2), 
where length(x) denotes the length of cloudlet x, 𝑐   (𝑥) denotes the average demand for CPU. But we may not know 
the average demand in dynamic workload circumstance. In this case, we can use the max demand as the estimation. 
Normalization is used to make the data dimensionless, so that the demand for different resources can be compared to 
each other. The normalization is performed by dividing the demand by a reference value for the concerning resource, 
shown as in equation (3), where 𝑐 (x) denotes the average demand for resource 𝑐 , 𝑐 

  denotes the reference value of 

resource 𝑐 , which we also call the normal value of resource 𝑐 . The reference value is selected by the users empirically. 

For example, the reference value of CPU may take the initial value of the resource allocated to vm.  

𝑡𝑖𝑚𝑒(𝑥) =
      ( )

    ( )
                                              (2) 

𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 𝑐 ) =
  ( )

  
                  (3) 

The Normal Resource Load of a VM(NRLV) is a metric that measures how much workload of a vm for resources. It 
is the sum of normal resource load of all running tasks and the tasks to be executed in the vm, as shown in  as equation 

(4), where 𝐿𝑜𝑎𝑑(vm , 𝑐 ) denotes the NRLV of vm  for resource 𝑐 , 𝐿𝑜𝑎𝑑(𝑥, 𝑐 ) denotes the NRLT of cloudlet x for re-

source 𝑐 , the set E(i) includes all running tasks and the tasks to be run in the vm. 

𝐿𝑜𝑎𝑑(vm , 𝑐 ) = ∑ 𝐿𝑜𝑎𝑑(𝑥, 𝑐 )   ( )                 (4) 

The main workings of Main Resource Task Balance (MRTB) algorithm is as follows. Given a reference value to each 
resource, the maximum NRLT of a task is calculated over all resources. The resource corresponding to the maximum 
NRLT is regarded as the main resource of the task. Then the task is assigned to the vm whose NRLV best fit the de-
mand of the main resource of the task. The NRLV of the assigned task is added to the total NRLV of the vm. Only 
when a task is completed will the task's NRLT is subtracted from the total NRLV of the vm.  

The algorithm outline is as follows: 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 The Main Resource Task Balance algorithm 

3.3  Multi-Resource Cloudlet Scheduling and Resource Allocation Scheme 

Task scheduling in vm is mainly implemented by class SimCloudletSchedulerDynamicWorkload, the major func-
tions of which are cloudlet submission, cloudlet queue, resource allocation and resource allocator.  

1. Cloudlet submission. When a cloudlet is assigned to vm, whether the cloudlet can start running depends on 
whether there are sufficient resources in the vm. In the non-reservation scheme, as long as memory, io and 
bandwidth are sufficient, cloudlet start running. In the reservation scheme, all four types of resources have to 
be sufficient for the cloudlet to start.  

2. Cloudlet queue. If the resources are insufficient, then the cloudlet will enter the cloudlet waiting queue.  
3. Resource allocation. During the execution of cloudlet, all resources are allocated in each round. A host allocates 

the resources to the VMs in the host and a vm in turn allocates resources to the Cloudlets in the vm.  
4. Resource allocator. In order to facilitate the resource management for cloudlets, we designed the task resource 

allocator class, called Allocator. Allocator is used to allocate, manage and recycle resources for a task managed 
by SimCloudletSchedulerDynamicWorkload. The Allocator is described in more detail below. 

According to the resource type, the Allocator is divided into four types of allocator: CloudletCpuAlloca-
tor,CloudletRamAllocator, CloudletIoAllocator, CloudletBwAllocator. These four classes are abstract classes. The basic 

1 Input: CloudletList, VmList, 𝑐1
 , 𝑐2

 , ⋯ , 𝑐𝑚
  

2 Output：Assignment of CloudletList 

3 Init 𝐿𝑜𝑎𝑑(vm𝑖, 𝑐𝑗) = 0, 𝑖 = 1,⋯ ,𝑛, 𝑗 = 1,⋯ ,𝑚; 

4 For each cloudlet x in CloudletList 

5 Calculate 𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 𝑐1),⋯ ,𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 𝑐𝑗) , find the mini-

mum 𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 𝑐𝑘); 

6 Find the VM𝑡𝑎𝑟 with the minimum 𝐿𝑜𝑎𝑑(VM𝑡𝑎𝑟, 𝑐𝑘); 

7 Assign cloudlet x to VM𝑡𝑎𝑟 , 

 𝐿𝑜𝑎𝑑(VM𝑡𝑎𝑟, 𝑐𝑗) = 𝐿𝑜𝑎𝑑(VM𝑡𝑎𝑟, 𝑐𝑗) + 𝐿𝑜𝑎𝑑(𝑥, 𝑐𝑗), 𝑗 =

1,2,⋯ ,𝑚; 

8 Return Assignment of CloudletList. 
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resource allocation is implemented by their simple classes. Essentially, the implementation logic of Allocator is the 
same as that of the Provisioner class of CloudSim. In addition, CloudletCpuAllocatorSimple also implements the inter-
face of appending mips. In CloudSim, every interval, the demands for resources will be recalculated because of the 
dynamic workload for resources. Appending mips is to append extra mips to vm for starting new cloudlets. Because it 
is not necessary to fully meet CPU demand, we can design a variety of mips allocation algorithms. In this paper, we 
implement three mips allocation algorithms: First-come-first-served, Max-Min fairness [30] and CPU Reservation algo-
rithms [37]. They are implemented by the classes, CloudletCpuAllocatorSimple, CloudletCpuAllocatorMaxMinFair-
ness and CloudletCpuAllocatorReservation, respectively.  

The resource reservation scheme and the non-reservation scheme are two schemes that are only related to CPU re-
source and do not including other types of resources because other resources must be completely satisfied. In the res-
ervation scheme, the cpu allocator allocates the maximum mips the cloudlet demands to the cloudlet. This scheme can 
guarantee to meet the QoS of the tasks, but may cause resource waste. In the non-reservation scheme, mips are allocat-
ed to cloudlets using one of the three algorithms, which cannot ensure the satisfaction of the tasks' QoS.  

3.4  Multi-resource Power Simulation 

We extend PowerDatacenter to support power simulation for these four resources: CPU, memory, io and band-
width. The main methodology for power simulation is to calculate power consumption every slot time, sum of which 
is the total power consumption. Based on the resource utilization measured at the beginning and end of a slot as well 
as the model reflecting the relation between power and resource utilization (the utilization-power model), we apply 
the linear fit method to estimate the power consumption. The utilization-power models of different resources we used 
in the experiment are as follows:  

1. CPU power model. We use PowerModelSpecPowerIbmX3550XeonX5675() of CloudSim, which represents the 
IBM server x3550 (2 x [Xeon X5675 3067 MHz, 6 cores], 16GB) [19] . We can use the benchmark tests presented 
in [19] to implement CPU power models for the hosts different from IBM server x3550. 

2. Memory power model. We design the following simple memory power model (implemented in the class called 
PowerModelRamSimple), where P denotes power (the unit is Watt), u denotes memory utilization, Pmax denotes 
the power when memory utilization is 100% and r denotes the total host memory. The unit of r is MB and (6) 
means 1024MB memory brings about 1 watt energy consumption. 
P=u*Pmax                   (5) 
Pmax=r/1024                  (6)  

3. IO power model. We design a simple IO power model (implemented in a class called PowerModelIoSimple) as 
follows, where P is power, u is IO utilization, Pmax is the power when IO utilization is 100%, io denotes the total 
host IO resource, 0.0314573 is the training parameter, which is obtained through linear fitting based on the data 
measured by ourselves on the server Dell PowerEdge T110 with a 1TB Seagate enterprise disk ST31000340NS. 
We measure the energy with Joulemeter [16], using atto benchmark [33]. 
P=u*Pmax                   (7) 
Pmax=0.0314573*io/1024                  (8) 

Since there is little research to establish the relation between power and bandwidth utilization, there is no com-
monly accepted power model for bandwidth. Therefore, the power model for bandwidth is not provided in this work. 
If more works on bandwidth are put forward, it is easy to implement such models with MultiRECloudSim. The power 
consumption experiments in this paper do not cover the bandwidth resource.  

3.5  Progress-based Multi-Resource Cloudlet 

Progress-based multi-resource cloudlet is an extension to multi-resource cloudlet, implemented by the class Sim-
ProgressCloudlet. To explain the motivation of developing the progress-based multi-resource cloudlet, we need to 
understand the current limitation of CloudSim in the way of obtaining resource utilization. There is an interface class 
called UtilizationModel in CloudSim, the key method of which is getUtilization(double time), where the parameter time 
is the simulated time. Its subclass UtilizationModelPlanetLabInMemory is a class that implements reading utilization 
data from the workload file to generate varying, dynamic workload. Its attribute schedulingInterval denotes the time 
interval of two utilization data. One can lengthen or shorten the time span of the data by varying the value of sched-
ulingInterval. However, there exist significant limitations of time-base utilization model as follows: 

1. The data is not fully utilized. If the time of the utilization data spans 1 hour, but the cloudlet only executes for 6 
minutes, then 90% of the utilization data is not utilized. Even though we can reduce the value of schedulingIn-
terval, we have no idea about how long the cloudlet will last. Besides, the cloudlet cannot pause because it will 
cause part of utilization data in the middle of the workload file not to be used. 

2. The span of workload running is uncertain. We have to know when the cloudlet starts, when it ends in order to 
know which part of the utilization data should be used, which, however,  is nearly impossible in a complex 
scheduling scenario of multiple cloudlets. The cloudlet pause will also break the workload span. What is de-
sired is that all utilization data of a workload file is fully used for a cloudlet. Then we know the characteristic of 
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the dynamic workload. 
The progress-based utilization model can address the issues mentioned above. We now present an example to ex-

plain the calculation method. Suppose there are 11 utilization data points, the resource utilization increases from 0% at 
the first point to 100% at the last point with increment of 10%, i.e., the first point corresponds to 0% of utilization, the 
second to 10%, ..., and the last to 100%. To order to achieve progress-based cloudlet, what we need primarily to over-
write the method getUtilization(double time) to getUtilization(double progress). If the progress of the task is 50%, then the 
method getUtilization(double progress) returns the value of the 6th point. If the progress of the task is 66%, then the utili-

zation is calculated as 𝑢 +
     

1 
(66 − 60), where 𝑢 , 𝑢  denote the values of the 7th and the 8th points, respectively. 

That is to say, if the task progress does not fall on an exact utilization point, the linear fitting is used to estimate the 
utilization.  

   Using the progress-based utilization model, SimProgressCloudlet can fully utilize the utilization data, no matter 
how long the cloudlet is, when the cloudlet starts or ends, whether it pauses or not. The attribute cloudletFinishedSoFar 
of the class SimProgressCloudlet records the length that cloudlet has completed. The method getProgress() returns the 
progress of the cloudlet. The progress-based utilization model, called UtilizationProgressModelByFile, uses the meth-
od getUtilization(double progress) to obtain the requested utilization of the cloudlet based on the cloudlet progress. To 
perform progress-based simulation, additional progress-based classes are required, such as SimProgressCloudlet, Uti-
lizationProgressModelByFile, SimProgressCloudletSchedulerDynamicWorkload, SimProgressCloudletSched-
ulerDynamicWorkloadReservation. 

Fig. 2 Inheritance relation diagram of MultiRECloudSim 
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4 Implementation of MultiRECloudSim 

There are lots of classes in MultiRECloudSim, we could mainly divide them into three categories. First are the fun-
damental elements, including SimDatacenter, SimDatacenterBroker, SimPowerHost, SimPowerVm, SimCloudlet, Uti-
lizationModel and their subclasses. Second are the policy classes that decide all kinds of allocation scheduling algo-
rithms, such as CloudletAssignmentPolicy, SimCloudletSchedulerDynamicWorkload. The last are the resource man-
ager classes that allocate and record resources, for example, SimRamProvisioner, CloudletIoAllocator. Multi-resource 
scheduling involves most of the classes. When a SimCloudlet representing a multi-resource cloudlet is submitted to 
SimDatacenter by SimDatacenterBroker, a specific vm will be assigned to run it, then the SimCloudletScheduler of the 
vm will accept the SimCloudlet and schedule it in a cloudlet queue. When the four kinds of resources for the 
SimCloudlet are adequate, the SimCloudlet starts to run. During the running process, resources are repeating alloca-
tion and recovery every interval. Every interval, SimDatacenter will calculate the energy consumption of each host. 
Finally, all SimCloudlets finish, we’ll get the running states of SimCloudlets and the power consumption of SimPow-
erHosts. Next, we introduce the simulation flow of MultiRECloudSim in detail, i.e., how the simulation runs and how 
the classes interact with each other. 

1. SimDatacenterBroker assigns every SimPowerVm (extended Vm) to certain SimPowerHost. The outcome of 
creating SimPowerVm (success or failure) depends on whether the resources of SimPowerHost are sufficient. 

2. DatacenterBroker assigns each SimCloudlet to the created VMs according to CloudletAssignmentPolicy. 
3. When SimCloudlet is submitted to SimPowerVm, it will be scheduled by SimCloudletSchedulerDynamicWork-

load, which checks whether cloudlet can start according to the resources of Cloudlet CloudletCpuAllocator, 
CloudletRamAllocator, CloudletIoAllocator and CloudletBwAllocator. If the resources are sufficient, then the 
cloudlet starts. Otherwise it enters the waiting queue. 

Fig. 3 Affiliation relation diagram of MultiRECloudSim 

Fig. 4 Workflow of multi-resource scheduling 
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4. Cycle State. MultiRECloudSim updates cloudlets, reallocates resources to VMs, calculates power consumption 
every fixed time interval:  

i) SimCloudletSchedulerDynamicWorkload updates the cloudlets and checks whether there are appending 
resources for waiting cloudlets. If there are, it allows the waiting cloudlet to start. If any cloudlet finishes, 
it checks whether the remaining resources are sufficient for any waiting cloudlets. 

ii) SimPowerHosts reallocates all resources according to the demand of SimPowerVms. Reallocation con-
sists of two sections: allocating resources to the executing cloudlets and appending resources to the wait-
ing cloudlets. If there are some resources left after allocating resources to the executing cloudlets, it will 
check whether the remaining resources are sufficient for any waiting cloudlets. If they are, it appends the 
resources to the waiting cloudlets. The process repeats until the remaining resources of the host are not 
adequate for any waiting cloudlet. 

iii) SimPowerDatacenter calculates the power consumption according to the resource utilization of SimPow-
erHosts and the resource-power models. 

5. If all cloudlets of a host finish, the host shuts down. All objects shut down after all cloudlets finish. 
These classes mentioned above are implemented in MultiRECloudSim. Fig. 2 is the diagram reflecting the class 

inheritance relation in MultiRECloudSim. White color classes indicate the original classes of CloudSim while the color 
of light gray and dark gray indicates the newly added class in MultiRECloudSim. In addition, dark gray color indi-
cates the class is related to SimProgressCloudlet. 

Symbol  in Fig. 2 represents the inherent relation, whose start point is the parent class and end point is the child 
class. Symbol   in Fig. 3 represents the affiliation relation. The class on its end point includes the class on its start 
point. The including relation also indicates superior-subordinate connections between classes. For example, as Sim-
PowerDatacenter possesses many SimPowerHosts, SimPowerDatacenter is the superior of SimPowerHost. SimPow-
erHost is also the superior of SimPowerVm for the same reason. There are two types of relationship between the inclu-
sion classes: one-to-one and one-to-many, represented by the number next to the symbol . 

Symbol    in Fig. 4 shows the flow of SimCloudlet during multi resource scheduling. SimCloudlets are submit-
ted to SimDatacenterBroker and assigned to vm according to the CloudletAssignmentPolicy, and then the scheduling 
and update are conducted by SimCloudletSchedulerDynamicWorkload. SimCloudlet, SimPowerHost, SimPowerVm, 
SimCloudletSchedulerDynamicWorkload all demand multi resources. SimPowerHost manages multi resources by a 
set of classes Provisioner while SimPowerVm or SimCloudletSchedulerDynamicWorkload is administered by a series 
of classes Allocator. 

The classes in MultiRECloudSim are described in detail as follows. 
SimCloudlet: This class models the cloudlet demands for multiple types of resources, including CPU, memory, IO 

and bandwidth. Currently, CPU supports static and dynamic demands. While memory, IO and bandwidth support 
static demand. Cloudlets can be small tasks that require fast execution and response, or long-running applications that 
offer non-stop services. We plan to investigate different scheduling algorithms and conduct power simulations under 
various scenarios.  

SimCloudletSchedulerDynamicWorkload: This class is an extension to the class CloudletSchedulerDynamicWork-
load, implementing multi-resource allocation and multi-resource cloudlet scheduling. Essentially, it is a time-shared 
cloudlet scheduling policy. It allocates a certain amount of MIPS to each cloudlet in each slot time to update the cloud-
let. It supports the cloudlet waiting queue and uses the cloudlet resource allocators to manage and allocate resources, 
including CPU allocator, memory allocator, IO allocator and bandwidth allocator.  

SimCloudletSchedulerDynamicWorkloadReservation: This class is a further extension to the class SimCloud-
letScheduler-DynamicWorkload that supports the CPU reservation scheme. 

UtilizationModelByFile: This class varies the mips demand of SimCloudlet according to the utilization data read 
from the workload file, which is used to model the dynamic workload.  

SimCloudletStateHistoryEntry: This is an auxiliary class that is responsible for recording the situation of resource 
allocation for cloudlets and the state of cloudlets at different time to facilitate statistical analysis of cloudlet execution.  

SimPowerVm: Except the newly added IO resource, there is no other difference with PowerVm.  
SimPowerHost: This class models the hosts that require CPU, memory, IO, bandwidth resources and implements 

allocating and appending resources to VMs in every slot time. The SimPowerHost also records the utilization of all 
resources at different times and calculates the host power consumption according to resource utilization.  

SimPowerHostReservation: It is SimPowerHost that supports the resource reservation scheme. It implements ap-
pending resources of reservation scheme.  

SimPowerDatacenter: It models the power-aware datacenter that is responsible for calculating the multi-resource 
power consumption of all hosts every slot time.  

SimDatacenterBroker: It models the datacenter broker with a new member variable CloudletAssignmentPolicy 
for determining which vm the cloudlet should be assigned to.  

CloudletAssignmentPolicy: The abstract class of cloudlet assignment policy and the subclasses are only required 
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to fulfill one method, i.e., how to assign cloudlets to VMs.  
CloudletAssignmentPolicySimple: It is the sequential cloudlet assignment policy that is the original policy of 

CloudSim. 
CloudletAssignmentPolicyBalance: It’s the main resource balance cloudlet assignment policy. 
SimRamProvisionerSimple: It’s an extension to RamProvisionerSimple with new methods of checking whether 

memory is sufficient and of appending memory to vm.  
SimBwProvisionerSimple: It is similar to SimRamProvisionerSimple. 
SimIoProvisioner: It’s the abstract class of IO provisioner. The logic of implementation is the same as that of 

RamProvisioner, BwProvisioner. 
SimIoProvisionerSimple：It is similar to SimRamProvisionerSimple. 
CloudletCpuAllocator: It is the abstract class responsible for the allocating and managing of the tasks’ CPU re-

sources. The implementation comes from the idea of the Provisioner class. The basic property is the total mips and the 
remaining mips. Core functions include checking whether the remaining CPU resource meets the demand of the tasks 
and assigning the CPU resource to a single task or multiple tasks. It can implement different CPU allocation algo-
rithms such as priority-based allocation or fairness allocation. The Provisioner class is responsible for helping Sim-
PowerHost allocate resources while the Allocator class is to allocate resources for SimPowerVm. 

CloudletCpuAllocatorSimple: It is the implementation of CloudletCpuAllocator, which implements all basic 
methods. The method that reflects the feature of the algorithm is how to allocate CPU resources to multi-tasks. The 
allocation algorithm tries to satisfy the tasks at the head of the queue and the rest of the tasks lack CPU resources or 
even do not have resources. 

CloudletCpuAllocatorMaxMinFairness: It is the implementation of the max-min fairness CPU resource allocation 
algorithm. 

CloudletCpuAllocatorReservation: It is the CPU reservation resource allocation algorithm. It will allocate enough 
resources to the task before the task starts running. The knowledge of max CPU demand of the task is required. 

CloudletRamAllocator, CloudletIoAllocator, CloudletBwAllocator: They are the allocator abstract classes of 
memory, IO and bandwidth, which are responsible for the allocation, management and recycle of resources, the differ-
ence of which from CloudletCpuAllocator is that it does not have method to allocate the resources to multi-tasks. 

CloudletRamAllocatorSimple, CloudletIoAllocatorSimple, CloudletBwAllocatorSimple: The implementation 
classes of task resources allocator. They implement all the basic methods. 

The classes that related to the progress-based cloudlet are as follows. 
SimProgressCloudlet: It is the progress-based cloudlet. It reads the utilization data according to the progress of 

the tasks, not according to the time. 
UtilizationProgressModelByFile: It is the utilization model based on progress. The currently requested resource 

utilization is calculated based on the progress of the tasks and the data from the workload file. 
SimProgressCloudletSchedulerDynamicWorkload: Compared with SimCloudletSchedulerDynamicWorkload, it 

adds the update of SimProgressCloudlet progress as well as the support to SimProgressCloudlet. 
SimProgressCloudletSchedulerDynamicWorkloadReservation: Compared with SimProgressCloudlet-

SchedulerDynamicWorkload, it adds the support to CPU resource reservation algorithm. 
Helper: Helper is a general util class. We can use the methods of this class to create SimPowerDatacenter, Sim-

PowerHost, SimPowerVm and SimCloudlet. Or we can print the cloudlet running result and write the result to file 
with Helper. 

In addition, Some examples can be found in the appendix. 

5 Experiments and Evaluation 

According to whether the demand of CPU resource changes dynamically, there are two types of workload: static 
workload and dynamic workload. We conduct experiments to evaluate MultiRECloudSim with both types of work-
load. In static load, the tasks’ CPU demand is fixed throughout the execution, while in dynamic workload the CPU 
demand varies as the task execution progresses (progress-based cloud task). The change model (strategy) is deter-
mined by the utilization data in workload file. 

The result is evaluated with respect to the three aspects: time, power cost and host SLA violation rate. Host SLA 
violation rate is the CloudSim’s original metric. The SLA violation indicates that the demand for CPU resource of the 
running task exceeds the allocated CPU resource in a certain slot time. The host SLA violation rate is calculated by 
dividing the host SLA violated time by the host total executing time. 

There are two parts of the comparing algorithm, first part is the task assigning algorithm CloudletAssignmentPoli-
cy, the second is CPU resource allocation algorithm CloudletCpuAllocator. Task assigning algorithm includes sequen-
tial assignment algorithm (Simple) and main resource task balance algorithm (MRTB). The CPU resource allocating 
algorithm includes first-come-first-served algorithm (FCFS), max-min fairness algorithm (MMF) and resource reserva-
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tion algorithm (RR). We also call sequential assignment algorithm Simple assignment algorithm, and call first-come-
first-served allocation algorithm Simple allocation algorithm. There are 6 cases when combining the two parts: Sim-
pleSimple (SS), SimpleMaxMinFairness (SM), Simple-Reservation (SR), Balance-Simple (BS), BalanceMaxMinFairness 
(BM) and BalanceReservation (BR). 

The parameters of experiment are in Table 1. Interval indicates the time slice in loop stage, which affects the accu-
racy and running time of experiment result. Generally, the smaller the interval, the more precise the result and the 
longer the running time. Host machine is 50 IBM server x3550, the detailed configuration is in host configuration table. 
The amount of tasks in experiments is 2000, 4000, 6000 and 8000. 

The configuration of IBM server x3550 is shown in table 3. As the lack of IO information, we use our test data to fit 
the power model and assume that the same kind of hard disk have the same power model in different servers. 

We define 3 kinds of cloudlets: CPU intensive, RAM intensive, IO intensive. CPU intensive tasks need 1500MHz 
MIPS, 256MB memory and 5MB/s IO resources. RAM intensive tasks need 600MHz, 1024MB RAM and 5MB/s IO 
resources. IO intensive task will need 600MHz MIPS, 256MB RAM and 40MB/s IO resources. The proportion of the 3 
kind of task is 1:1:1, each task has 12 different types of length which represent the different size of tasks. To dynamic 
load, we choose 2 files from the load files in CloudSim. The utilization data of one covers between 20% and 40%, and 
that of the other covers between 60% and 80%. 

 
Table 1 

Experiment parameters. 

Parameters Value 

Simulation interval 1s 

Number of hosts 50 

Number of tasks 2000，4000，6000，8000 

 
Table 2 

Host machine parameters. 

Host parameters Value 

The number of host cores 6 

Mips of each core 3067MHz 

Ram 16 GB 

IO 500MB/s 

CPU power model PowerModelSpecPower-

IbmX3550XeonX5675() 

Memory power model PowerModelRamSimple 

IO power model PowerModelIoSimple 

 
Table 3 

Initial parameters of virtual machine. 

Initial parameters of virtual machine Value 

Virtual machine number of each host 6 

Virtual machine MIPS 3067 MHz 

Virtual machine RAM 2GB 

Virtual machine IO 83 MB/s 

 

Table 4 

The parameters of cloudlet. 

 Length CPU 

(MHz) 

RAM 

(MB) 

IO 

(MB/s) 

CPU Intensive 7 500,  8 181, 

9000, 10000, 

11 250, 12 

857, 15 000, 

18 000, 22 

500, 30000, 

45000, 90000 

1500 256 5 

RAM Intensive 600 1024 5 

IO Intensive 600 256 40 
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5.1Static Workload 

Table 5 

 The comparison between static tasks’ makespan. 

 SS SM SR BS BM BR 

2000 234 206 240 109 105 124 

4000 420 412 420 177 164 186 

6000 600 589 600 254 223 243 

8000 818 797 840 316 289 309 

 
Table 6  

The comparison between static tasks’ power consumption. 

 SS SM SR BS BM BR 

2000 256 246 253 214 208 218 

4000 504 501 492 417 395 402 

6000 751 761 721 613 591 580 

8000 1015 1030 975 811 784 761 

 
Table 7 

The comparison between static tasks’ host SLA violation. 

 SS SM SR BS BM BR 

2000 72% 97% 0.0% 39% 41% 0.0% 

4000 85% 98% 0.0% 62% 70% 0.0% 

6000 89% 99% 0.0% 70% 74% 0.0% 

8000 92% 99% 0.0% 77% 78% 0.0% 

 
As shown in Fig. 5,6,7, MRTB algorithm averagely reduce 57.7% time cost, 19.1% power consumption, 30.4% SLA 

violation in comparison with the sequential assignment algorithm. Compared with FCFS algorithm, max-min fairness 
algorithm reduces 6.3% time cost, 2.1% power consumption, however increases 11.7% SLA violation in average. To 
ensure the quality of service, resource reservation CPU allocation algorithm inevitably leads to longer running time. 
Compared with FCFS CPU allocation algorithm, the data doesn’t have much difference with the increase of time cost 
by 2.2%and reduction of power consumption 3.2% in average. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5 Comparison of static task’s makespan  Fig. 6 Comparison of static task’s power consumption 
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Fig. 7 Comparison of static task’s host SLA violation      Fig. 8 Comparison of dynamic task’s makespan 
 

 
Fig. 9 Comparison of dynamic task’s power consumption Fig. 10 Comparison of dynamic task’s host SLA violation 

5.2 Dynamic Workload 

Table 8 

Comparison of dynamical task’s makespan. 

 SS SM SR BS BM BR 

2000 254 237 896 242 241 254 

4000 474 436 1568 369 371 376 

6000 680 625 2240 464 460 478 

8000 901 866 3136 575 569 595 

 
Table 9 

Comparison of dynamical task’s power consumption. 

 SS SM SR BS BM BR 

2000 309 304 759 385 384 387 

4000 591 559 1518 588 585 577 

6000 880 864 2273 847 841 832 

8000 1169 1167 3033 1102 1093 1069 

 
Table 10 

Comparison of dynamical task’s host SLA violation. 
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 SS SM SR BS BM BR 

2000 35% 43% 0.0% 7% 8% 0.0% 

4000 49% 85% 0.0% 14% 17% 0.0% 

6000 63% 83% 0.0% 22% 24% 0.0% 

8000 71% 85% 0.0% 29% 33% 0.0% 

From the Fig. 8,9,10 sequential assignment algorithm combined with resource reservation CPU allocation algo-
rithm costs a lot more time and energy than other two algorithms. Except for combination SR and BR, MRTB algo-
rithm averagely reduces 21.1% time cost and SLA violation, at the same time, it increases 4.6% power consumption. 
Compared with FCFS algorithm, max-min fairness CPU allocation algorithm reduces 3.6% time cost and 1.5% power 
consumption, increases 25.8% SLA violation. Resource reservation CPU allocation algorithm increase 257% time cost, 
155% power consumption along with sequential assignment algorithm, but increases 3.4% time cost and 1.5% power 
consumption along with MRTB algorithm. 

In dynamic load experiment, the distribution of utilization data in load file has significant effect on algorithm. 
Extremely, if it is under high load only for a short time but under low load for a long time, then host resources will be 
wasted a lot. In our work,the utililzaiton data of the selected load file’s cover in a small interval, so that it won’t cause 
much waste of resource. 

Conclusion and Analysis of Experiment: 
1. MRTB algorithm is able to schedule tasks with different intensive types effectively. It raises the host resource 

utilization, reduces the waiting time of tasks, increases the throughput as well as service quality. 
2. Compared with FCFS CPU allocation algorithm, max-min fariness CPU allocation algorithm can reduce task’s 

time cost and power consumption, however increases SLA violation. That’s because each task can be allocated 
a little CPU resource and the demand mips can’t be satisfied. 

3. Resource reservation CPU allocation algorithm is able to 100% satisfy SLA, with cost of longer running time. In 
dynamic load situation, the combination of resource reservation CPU allocation and sequential assignment 
algorithm costs far longer time because of the imbalance of resource allocation. With MRTB algorithm, both 
static and dynamic situation, resource reservation CPU allocation algorithm cost more time but the power 
consumption is lower compared with FCFS algorithm. The reason for lower power consumption may be that 
the resource reservation CPU allocation algorithm reserves the host’s resource causing lower utilization. Also 
the effect of resource reservation CPU allocation algorithm is closely related to the distribution of utilization 
data from load file in dynamic load situation. 

4. After calculation, CPU power consumption is the main cost in the 3 types of resources. In experiment, CPU, 
RAM, IO’s power consumption proportion is 17:1:1. 

5. In experiment, power simulation can perform the situation that when host is under low load, it still costs much 
energy. Calculated by the power model, even the utilization of CPU is 5%, it costs 35% of the full load power 
consumption. 

6 Discussion 

MultiRECloudSim presented in this paper is extended to CloudSim. It provides us a convenient way to evaluate the 
multi-resource scheduling power-aware algorithms and test the experiment parameters. We concentrate on the source 
code of CloudSim and find out some incomplete designs of CloudSim, especially on multiple resources and power 
simulation. We overcome the drawbacks and make our contributions as follows. 

1. Multi-Resource Cloudlet and Progress-based Multi-Resource Cloudlet. CloudSim to date only supports 
single resource: CPU. This is a large limitation, obviously, so we propose a multi-resource cloudlet model. The 
CPU resource of cloudlet may change dynamically while memory, IO and bandwidth are regarded as stable. 
It is a simplified model that could be further extended. The other three resources could be implemented like 
CPU, the workload of whom change dynamically. It is an improvement direction we consider. The progress-
based multi-resource cloudlet is the further extension to the multi-resource cloudlet. To explain the motiva-
tion of the progress-based multi-resource cloudlet, we need to talk about the limitation of the implementation 
of dynamic workload in CloudSim. The dynamic workload of cloudlet is implemented by reading the utiliza-
tion data from a workload file. A variable interval represents the time interval between the utilization data. For 
example, if interval equals 60 (second) and there are 10 utilization data, then the period of workload is (10 - 1) * 
60 = 540 (second). However, if a task starts at 10s and ends at 30s, then the data before 10s and after 30s in the 
workload file cannot be utilized. Moreover, we generally do not know the exact time when the task starts and 
ends. Actually, we don’t want to know when every cloudlet start or end before the simulation because if we 
do, we have to match the running time of every cloudlet  with corresponding part of data in workload file. A 
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pleasant way is that a cloudlet can utilize all the utilization data in a workload file no matter when the cloud-
let starts or ends, no matter how long the cloudlet runs. The solution is the progress-based multi-resource 
cloudlet. When reading the utilization data, it is based on the running progress of the cloudlet instead of the 
time. That is to say, when the process of the cloudlet is 0%, it will utilize the first utilization data and when the 
process is 100%, it will utilize the last utilization data. The workload pattern will be in keeping with the data 
in the workload file. We don’t need to worry about when the cloudlet start or ends. 

2. Multi-Resource Cloudlet Scheduling and Resource Allocation Scheme. To fulfill multi-resource scheduling, 
besides multi-resource cloudlet, we also extend PowerDatacenter, DatacenterBroker, PowerHost, PowerVm, 
Cloudlet, CloudletSchedulerDynamicWorkload, etc., classes of CloudSim. In MultiRECloudSim, multi-
resource cloudlet scheduling is consist of two parts: cloudlet assignment and resource allocation scheme. 
Cloudlet assignment refers to assigning cloudlets to VMs. It is a key part of multi-resource scheduling. We 
proposed the Main Resource Task Balance algorithm (MRTA), which can balance different resource workload 
thereby raising the utilization of resource and reduce power consumption. The main idea of Main Resource 
Task Balance Algorithm is the resource workload. First, we calculate the Normal Resource Load of a Task 
(NRLT) for the four resources. NRLT is a metric we design for comparing the demand for different types of 
resources because the unit of different resources are not the same. The resource with the largest NRLT is re-
garded as the main resource of the task. Then we will assign the task to the VM whose Vm Normal Resource 
Load (NRLV) of the main resource of the task. Vm Normal Resource Load (NRLV) is a similar metric as 
NRLT. It is only the sum of the NRLT of the tasks assigned to the VM, which aims to measure the workload of 
resources for a VM. Both the static and dynamic workload experiments have demonstrated the effectiveness 
of the MRTA algorithm. On the other hand, how to allocate the resources of VM to its cloudlets is another sig-
nificant problem. In MultiRECloudSim, we implement the non-reservation scheme and reservation scheme of 
CPU allocation. For the non-reservation scheme, we have First-come-first-served and Max-Min fairness [30] 
algorithms. For the reservation scheme, we have CPU reservation algorithm. CPU reservation algorithm refers 
to the case where the maximum amount of CPU resource is reserved for a cloudlet when it starts and there-
fore there is certainly no shortage of CPU resource for this cloudlet. With this multi-resource scheduling 
mechanism, a lot of multi-resource scheduling algorithms can be easily researched.  

3. Multi-Resource Power Consumption Simulation. On the basis of the multi-resource cloudlet scheduling 
mechanism, we continue to enable power-aware simulation. The principle is that according to the resource 
utilization and the power-utilization model, we can calculate the power consumption of a host. We can easily 
implement other CPU power model using the benchmark tests presented in [19]. In this paper, we also im-
plement a simple memory power model and an IO power model. In CloudSim, it provides us the linear power 
model, the square power model and so on. We can design different power model for different types of re-
sources and evaluate them with resource scheduling algorithms in MultiRECloudSim. Reducing power con-
sumption is a critical issue in cloud computing. It will be a great help to possess the feature of multi-resource 
power-aware simulation. 

Both multi-resource scheduling and power consumption are significant issue in cloud computing. With the new 
capabilities, MultiRECloudSim will show comprehensive functionality and superior convenience on multi-resource 
scheduling and power-aware simulation.  

7 Conclusions 

Owing to the support for flexible, scalable, efficient, and repeatable evaluation of resource scheduling and alloca-
tion policies for different applications, using simulation tools such as CloudSim is becoming more and more popular. 
Fast evaluation of scheduling and resource allocation algorithms within data centers becomes available. Therefore, we 
present a novel CloudSim-based simulation framework which supports the modeling of multi-resource scheduling 
and power consumption to make up the shortcomings of CloudSim in these aspects. Cloud simulation experiment 
with MultiRECloudSim has obvious priorities. (1) We can change configuration of host and power models of resources 
easily, and test the effect of algorithm under different parameters. (2) We simply simulate tasks that demand multi 
kinds of resources and define different resource allocation algorithms with fine-grained evaluation. (3) We could 
seamlessly switch static load and dynamical load experiment, which makes it able to simulate more actual scenes. (4) 
We support the power simulation of multi-resources. It is more accurate compared with single resource CPU power 
simulation. Additionally, in our work, we compare multiple combinations of task assignment algorithms and CPU 
allocation algorithms with each other from the aspects of time, power consumption and SLA violation. The result 
helps us to know more about the efficiency, power consumption and service quality’s performance of the scheduling 
algorithms. Our proposed Main Resource Task Balance assignment algorithm raise the data center’s resource utiliza-
tion effectively and improve the throughput as well as service quality. 

Although model can simulate most kinds of multi resource, it’s still not perfect. Our further work includes sup-



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

 

porting the dynamical load to memory, IO, and bandwidth. Besides, because there are lots of factors affecting the 
power consumption of vm, host and data center in realistic environment, the accuracy of our model is not so high. 
How to simulate more accurate power consumption is a problem we need to further study. Data storage is another 
important problem for cloud computing [40] [41], and no simulation framework supports this kind of simulation. The 
data storage distribution is uneven, how to place the data blocks efficiently remains to be solved. It is a direction for 
our improvement work. 
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Appendix 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

public static List<SimPowerVm> createVMs(int userId, int vms) {// create VMs 

  List<SimPowerVm> list = new ArrayList<SimPowerVm>(); 

  long size = 10000; // image size (MB) 

  int ram = 2048; 

  int mips = 3067; 

  long bw = 10000; 

  long io = 500; 

  int pesNumber = 1; // number of cpus 

  String vmm = "Xen"; // VMM name 

  SimPowerVm vm = null; 

  CloudletCpuAllocator cpuAllocator = new CloudletCpuAllocatorSimple(mips); 

  for (int i = 0; i < vms; i++) { 

   vm = new SimPowerVm(i, userId, mips, pesNumber, ram, io, bw, size, 1, vmm, new  

SimProgressCloudletSchedulerDynamicWorkload(mips, pesNumber, cpuAllocator, new CloudletRamAllocatorSimple 

(ram), new CloudletIoAllocatorSimple(io), new CloudletBwAllocatorSimple(bw)), 5);  

   list.add(vm); 

  } 

  return list; 

 } 

private static SimDatacenterBroker createBroker() { 

  SimDatacenterBroker broker = null; 

  try { 

   broker = new SimDatacenterBroker("Broker", new CloudletAssignmentPolicySimple()); 

  } catch (Exception e) { 

   e.printStackTrace(); 

   return null; 

  } 

  return broker; 

} 
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private static SimPowerDatacenter createDatacenter(String name, double interval, int hostNumber) { 

  List<SimPowerHost> hostList = new ArrayList<SimPowerHost>(); 

  int mips = 3067; 

  int ram = 16 * 1024; 

  long storage = 1000000; // host storage 

  long bw = 10000; 

  long io = 500; 

  double staticPowerPercent = 0.01; 

  PowerModel powerModelCpu = new PowerModelSpecPowerIbmX3550XeonX5675(); 

  PowerModel powerModelRam = new PowerModelRamSimple(ram); 

  PowerModel powerModelIo = new PowerModelIoSimple(io); 

  PowerModel powerModelBw = new PowerModelCubic(100, staticPowerPercent); 

  for (int i = 0; i < hostNumber; i++) { //  

   List<Pe> peList = new ArrayList<Pe>(); 

   peList.add(new Pe(0, new PeProvisionerSimple(mips))); 

   hostList.add(new SimPowerHost(i, new SimRamProvisionerSimple(ram), new SimBwProvi-

sionerSimple(bw), new SimIoProvisionerSimple(io), storage, peList, new VmSchedulerTimeShared(peList), 

powerModelCpu, powerModelRam, powerModelIo, powerModelBw)); 

  } 

  String arch = "x86"; // system architecture 

  String os = "Linux"; // operating system 

  String vmm = "Xen"; 

  double time_zone = 10.0; // time zone this resource located 

  double cost = 3.0; // the cost of using processing in this resource 

  double costPerMem = 0.05; // the cost of using memory in this resource 

  double costPerStorage = 0.001; // the cost of using storage in this resource 

  double costPerBw = 0.02; // the cost of using bw in this resource 

  LinkedList<Storage> storageList = new LinkedList<Storage>(); 

  DatacenterCharacteristics characteristics = new DatacenterCharacteristics(arch, os, vmm, 

hostList, time_zone, cost, costPerMem, costPerStorage, costPerBw); 

  SimPowerDatacenter datacenter = null; 

  try { 

   datacenter = new SimPowerDatacenter(name, characteristics, new VmAllocationPoli-

cySimple(hostList), storageList, interval); 

  } catch (Exception e) { 

   e.printStackTrace(); 

  } 

  return datacenter; 

 } 

 

public static List<SimProgressCloudlet> createCloudlets(int userId, int cloudlets, boolean loadDynamic) 

   throws URISyntaxException, NumberFormatException, IOException { // create cloudlets 

  List<SimProgressCloudlet> cloudletList = new ArrayList<SimProgressCloudlet>(); 

  String inputFolder = Example1.class.getClassLoader().getResource("utilization"). 

toURI().getPath(); 

  File[] files = new File(inputFolder).listFiles(); 

  String workloadPath = null; 

  SimProgressCloudlet cloudlet = null; 

  long length = 10000; 

  long fileSize = 0; 

  long outputSize = 0; 

  int pesNumber = 1; 

  int mips = 1000; 

  int ram = 256; 

  long io = 5; 

  long bw = 0; 

  double interval = 100; 

  UtilizationModel utilizationModelCpu = new UtilizationModelFull(); 

  UtilizationModel utilizationModelRam = new UtilizationModelFull(); 

  UtilizationModel utilizationModelIo = new UtilizationModelFull(); 

  UtilizationModel utilizationModelBw = new UtilizationModelFull(); 

  for (int i = 0; i < cloudlets; i++) { 

   if (loadDynamic) { 

    workloadPath = files[i % 2].getPath(); 

    if (workloadPath != null) 

     utilizationModelCpu = new UtilizationProgressModelByFile (workload-

Path, interval, false); 

   } 

   cloudlet = new SimProgressCloudlet(i, length, pesNumber, fileSize, outputSize, 

mips, ram, io, bw, utilizationModelCpu, utilizationModelRam, utilizationModelIo, utilizationModelBw); 

   cloudlet.setUserId(userId); 

   cloudletList.add(cloudlet); 

  } 

  return cloudletList; 

 } 


