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Robot manipulators are playing increasingly significant roles in scientific researches and engineering ap- 

plications in recent years. Using manipulators to save labors and increase accuracies are becoming com- 

mon practices in industry. Neural networks, which feature high-speed parallel distributed processing, and 

can be readily implemented by hardware, have been recognized as a powerful tool for real-time process- 

ing and successfully applied widely in various control systems. Particularly, using neural networks for 

the control of robot manipulators have attracted much attention and various related schemes and meth- 

ods have been proposed and investigated. In this paper, we make a review of research progress about 

controlling manipulators by means of neural networks. The problem foundation of manipulator control 

and the theoretical ideas on using neural network to solve this problem are first analyzed and then the 

latest progresses on this topic in recent years are described and reviewed in detail. Finally, toward prac- 

tical applications, some potential directions possibly deserving investigation in controlling manipulators 

by neural networks are pointed out and discussed. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

In recent decades, robotics has attracted more and more atten-

ion from researchers since they have been widely used in scien-

ific researches and engineering applications, such as space explo-

ation, under water survey, industrial and military industries, weld-

ng, painting and assembly, and medical applications, and so on

1,2] . Much effort has been contributed to robotics, and different

ypes of robot manipulators have thus been developed and investi-

ated, such as serial manipulators consist of redundant manipula-

ors [3] and mobile manipulators [4] , parallel manipulators [5] , and

able-driven manipulators [6] . A redundant manipulator is often

esigned as a series of links connected by motor-actuated joints
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hat extends from a fixed base to an end-effector while a mo-

ile manipulator is often designed as a robotic device composed

f a mobile platform and a redundant manipulator fixed to the

latform [7] . Different from these serial manipulators, a parallel

anipulator is a mechanical system that usually uses several se-

ial chains to support a single platform, or end-effector. Besides, a

able-driven manipulator is a special parallel manipulator, in which

he moving platform is driven by cables instead of rigid links [8] .

sing these manipulators to save labors and increase accuracies

re becoming common practices in various industrial fields. As a

onsequence, many approaches have been proposed, investigated

nd employed for the control of robot manipulators [9] . Among

hem, thanks to many advantages in parallel distributed structure,

onlinear mapping, ability to learn from examples, high generaliza-

ion performance, and capability to approximate an arbitrary func-

ion with sufficient number of neurons, the neural-network-based

pproach is a competitive way to control movements of robot ma-

ipulators [1] . Generally speaking, neural networks can be classi-

ed into different types according to different criterions. For ex-

mple, in terms of the structure of the network, they can be clas-

ified into two categories: feedforward neural networks and recur-

ent neural networks [10,11] . A feedforward neural network is an

rtificial neural network with no cycles or feedback signal inside
hile a recurrent neural network allows bi-directional information 
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Fig. 1. An example of redundant manipulators. 
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flow, which means the information inside flows from a successive

node to a previous one (or called feedback) or forms a closed cy-

cle within a single node. In this paper, we make a relatively com-

prehensive review of research progress on controlling these robot

manipulators by means of neural networks. The overall organiza-

tion of the paper is as follows. After the introduction, we present

preliminaries on the control of robot manipulators based on neu-

ral networks in Section 2 . Section 3 presents and reviews differ-

ent types of robot manipulators in detail with the corresponding

schematics being illustrated. In addition, Section 4 revisits applica-

tions of different neural networks to the control of robot manip-

ulators. Moreover, two possible future research directions on con-

trol of robot manipulators using neural networks are pointed out

in Section 5 . Finally, Section 6 concludes the paper with final re-

marks. 

2. Preliminaries 

The purpose of controlling manipulators is to achieve a specific

task like payload carrying, trajectory tracking and so forth [12] . In

order to accomplish those tasks, we have to send orders to the

manipulators to let them achieve the desired velocity, acceleration

or force at specific time [13] . The behavior of manipulators can

be deemed as a function since the output given by a manipulator

would be different with the change of inputs. Taking the redun-

dant manipulator illustrated in Fig. 1 as an example [14] , with in-

puts of manipulators being angles of joints often expressed as θ ( t )

at a specific time t , we have the following general expression [15] :

r(t) = f (θ (t)) , (1)

where r ( t ) indicates the end-effector’s position and f ( · ) represents

the differentiable nonlinear function. Actually, the output value

could also be velocity, acceleration, and force applied on end-

effectors, which just needs further calculation. The purpose is to

design a controller that could send appropriate inputs when the

desired output is given, sometimes with various kinds of con-

straints. In this paper, we mainly investigate controllers based on

neural networks, which have already shown to have powerful ca-

pability in solving nonlinear problems [16–21] . 

An intuitive working flow of controlling a manipulator with

neural network based controller is given in Fig. 2 . Generally speak-

ing, according to the extent of the knowledge on the manipulator

dynamics as well as external disturbance, neural network based

controllers for the motion generation and control of manipula-

tors can be classified into three categories: full knowledge, partial
Please cite this article as: L. Jin et al., Robot manipulator contr
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nowledge, and no knowledge on the model dynamics and exter-

al disturbance of manipulators. With known structure and param-

ters, recurrent neural networks can be developed to control ma-

ipulators such that a performance index under extra constraints

an be optimized [22–28] . A control scheme based on recurrent

eural networks is presented in [26] , which is able to maximize

he manipulability of a robot manipulator with known model dy-

amics effectively in an inverse-free manner. The involved recur-

ent neural network solves the problem recursively and does not

eed to be trained in advance. In addition, under certain condi-

ions, it has been proven that feedforward neural networks are

apable of approximating various nonlinear functions to any de-

ired degree of accuracy [29] . Thus, the adaptive neural network

s designed to compensate uncertainties due to modeling errors

r disturbances in the control of manipulators with partial knowl-

dge on model dynamics [29,30] . Besides, the model-free control

cheme aided with neural networks is able to address the learn-

ng and control of manipulators simultaneously in a unified frame-

ork, with the model dynamics of manipulator unknown [31] . 

In order to command manipulators to finish a specific task,

sers only need to input a desired output to the control system in

ractical cases [32] . Then the controller would automatically send

 processed signal including commands to manipulators to achieve

he final outputs. The crucial task here is to design a controller

ble to minimize the difference between the desired outputs and

he actual outputs, in order to simulate the dynamics of target ma-

ipulators. 

. Various robot manipulators 

In this section, we start a discussion from a perspective of the

ariety of mainstream manipulators that involved in controlling

roblem tackled by neural networks. 

.1. Redundant manipulators 

Redundant manipulators are those manipulators that have more

omain of freedom (DOF) than required by tasks, which enable

ome improvements on performance like avoiding collision, opti-

izing specific criteria like torques or velocity at joints. Differ-

nt form the non-redundant manipulator, as illustrated in Fig. 1 ,

 robot manipulator with extra redundancy could move in a wider

ange, have better dexterity and also work more efficient in coordi-

ate manipulation task [33] . The optimization of redundant manip-

lators is frequently treated as a quadratic programming problem.

o remedy the joint-angle drift phenomenon for control of two re-

undant manipulators, a scheme is proposed in [34] and solved

y a special case of dual network termed piecewise-linear projec-

ion equation based neural network. This work can be deemed as a

ollow-up work on the motion planning of redundant manipulators

ased on neural networks. More related works done on the control

f redundant manipulators include [15,35–41] . 

.2. Parallel manipulators 

A parallel manipulator as shown in Fig. 3 is a mechanism that

n end-effector, usually a platform, is supported by several serial

hains, which could be applied to the area of medication, industrial

anufacturing, deep sea exploration [42,43] and flight simulators

44] . One of the most famous example is Stewart platform, consist-

ng of six linear actuators and two platforms, one of which is the

ase to support actuators and the other would be the end-effector

upporting by those controllable actuators [45] . Compared with se-

ial manipulators, parallel manipulators have better stiffness and

re more convenient to reconfigure. In addition, parallel manipu-

ators may avoid the error which may be amplified by each joint
ol using neural networks: A survey, Neurocomputing (2018), 
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Fig. 2. Information flow of controlling a manipulator, where the dotted line from real output to user input denotes the feedback and constructs the input neural activities 

to recurrent neural networks. 

Fig. 3. An example of parallel manipulators. 
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Fig. 4. An example of cable-driven manipulators. 
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n a serial manipulator, thus give themselves a better accuracy in

ositioning tasks. However, due to the structural nature of parallel

anipulators, their workspaces are much more limited than those

f serial manipulators. In addition, there exists one worse problem:

ingularity. When the mechanical system gets closer to its singu-

ar region or right at its singular point, the rigidity and precision

ould downgrade severely, which would makes the manipulators

erform worse [46] . Forward kinematics problem of Stewart plat-

orm solved using BP-based feedforward neural network is men-

ioned in [47] , where the authors conduct a process of optimiza-

ion due the problem nature that it may have several solutions.

he neural network method involved in [43] is added with an error

ompensation mechanism, by applying which the time to obtain

he final solution could be just about 1 second, reducing the calcu-

ating time greatly in the same accuracy level. Authors in [45] for-

ulate the kinematic control problem of Stewart platforms into a

uadratic programming solved by a dynamic dual neural network.

hey also present theoretical analysis revealing the global conver-

ence of the employed dynamic neural network to the optimal so-
Please cite this article as: L. Jin et al., Robot manipulator contr
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ution in terms of the defined criteria as well as the corresponding

imulation results. 

.3. Cable-driven manipulators 

Cable-driven robot manipulators, as shown in Fig. 4 , are prac-

ically applied in various areas, such as carrying the payload that

s too fragile to have a simple contact with the ground [48] , con-

tructing an exoskeleton to help disabled people [49] , live broad-

asting and so forth. In [50] , the kinematics problem of cable

riven robot is solved by a multi-layer perceptron based neural

etwork trained with back propagation. Enhanced convergence and

elative small errors are verified from a simulation study. More-

ver, the inverse kinematics problem of a robot controlled by three

ables are discussed in [51] , where the authors utilize a feed-

orward neural network to express the relation between the ma-

ipulator tip position and the forces on those cables. Authors in

52] present a Jacobian-based method and a feedforward neural

etwork to solve the inverse kinematics problem of cable-driven
ol using neural networks: A survey, Neurocomputing (2018), 
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Fig. 5. An example of mobile manipulators. 
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soft manipulators with a comparative analysis being conducted in

terms of accuracy and computational time. 

3.4. Mobile manipulators 

Mobile manipulators, as illustrated in Fig. 5 , are those robotic

arms integrated on a movable base, with which manipulators may

have much more expanded workspaces thus perform better in po-

sitioning [7,53,54] . In [55] , the author indicates that mobile ma-

nipulators are generally formed by a m -wheeled holonomic/non-

holonomic mobile platform and an n -DOF modular manipulator

mounting on the platform. Examples of practical application of

mobile manipulators could be found in explosives tasks, hazardous

place exploring and space operating tasks [56,57] . A robust trajec-

tory tracking task of omnidirectional wheeled mobile manipulator

is implemented and tested in [58] , where a method of neural net-

work bases sliding model control is proposed to accomplish the

task. Utilized neural network is to find the unstructured dynam-

ics inside the controlling mechanism, whose learning efficiency is

enhanced by a partitioned structure of neural network. 

4. Neural network methods for manipulator control 

In the above section, we focus on the variety of mainstream

manipulators that involved in controlling problem tackled by neu-

ral networks. In this section, we would start a discussion from

a new perspective, the variety of prevalent neural network algo-

rithms that applied to manipulators controlling problem. Artifi-

cial neural network is a learning algorithm that is inspired by the

working mechanism inside humans’ brains and designed to simu-

late the learning procedure of neurons. In an artificial neural net-

work, basically there are three layers: input layer, hidden layer and

output layer. The purpose of applying neural network is to train a

set of parameters (weights), which could reflect the mappings from

user inputs to the inputs sent to manipulators. 

There are two main types of training algorithms of neural

networks in the manipulator controlling problem, namely on-

line training and off-line training respectively. These two meth-

ods could be adopted progressively in a specific task, depending

on the performance. Training an off-line neural network is simpler,

by which the parameters of the designed neural network would

not be adjusted when applied onto corresponding manipulators

[59] . There is a training procedure before the formal application,

which is illustrated in Fig. 6 . As the figure shows, during the train-

ing step, users receive feedbacks from manipulators and compare
Please cite this article as: L. Jin et al., Robot manipulator contr
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hose to desired outputs, represented by u . A number of users’ in-

uts would be input into the system to train the neural network.

hen the gap between desired inputs and real inputs is mini-

ized, the final neural network parameters would be kept and ap-

lied into practical applications. However, those training data col-

ected from real manipulators or simulation software may not lead

he obtained results to be the real dynamics of robot manipula-

ors, as constraints like payloads or frictions may have impacts on

hose data derived from ideal cases, leading training data inaccu-

ate. Thus, a successive on-line training is needed for achieving the

eal dynamics. In on-line training, neural networks adopted in the

ontroller could adjust its parameters according to the differences

etween expected outputs and actual outputs, with the manipu-

ators operating simultaneously. Having this feature, training pro-

ess of manipulators could deal with unexpected factors like grav-

ty and friction that influence performance of manipulators [60] .

s recurrent neural networks have feedback mechanisms, most of

hem adopted in real-time controlling problems do not need an

ff-line training [61] . 

It can be seen from Fig. 7 that, for the on-line training of a neu-

al network, there is a sensor responsible for measuring the real

utput and it would pass the result subtracted by user’s input to

he neural network. This design enables the on-line feature of this

raining method. Then the neural network has a mechanism which

ould modify its parameters until it fits training samples. Although

ff-line training may not achieve the dynamics that we need in

ractical operations, it can indeed improve the performance when

n-line training is conducted. 

In the next part, several prevalent neural network methods

dopted in manipulators controlling problem would be reviewed

nd corresponding representative researches would be highlighted.

.1. Feedforward neural network 

A feedforward neural network is an artificial neural network

ith no cycles or feedback signal inside [62] . This type of neural

etworks has been widely used to solve dynamics and kinematics

roblem of controlling robot manipulators. 

.1.1. Feedforward neural network based on back propagation 

A back propagation (BP) based feedforward neural network of-

en uses sigmoid function as its activation function [63] . The main

dea of back propagation is to adjust parameters such as the

eights of connections between neurons inside the network to

inimize the loss function related to the difference between the

esired output and the actual output. When the loss function is

ptimized by the method of gradient descent, those parameters in-

ide neural network would be fine-tuned [64] . Although back prop-

gation may give a final solution for specific dynamics or kinemat-

cs problem, the solution may not be globally optimized due to the

ature of gradient descent, which means the calculated solution

s possible a local minimum [65] . As Fig. 8 shows, the algorithm

ould probably get stuck into the local minimum as the start point

f the learning procedure is decided randomly. Also, the conver-

ent speed to the final solution of this method could be relatively

low, resulting from the low learning rate if a relative accurate so-

ution is required [66] . This trade-off between convergence of re-

ults and learning rate speed is also an attribute of the gradient

escent. 

In [58] , the back propagation technique with a modification

erm is utilized to train a nonlinear-in-parameters neural-network-

ased observer. Robustness and stability of the observer are shown

ia simulations based on a flexible-joint manipulator. A subsequent

ork relating to set-point control of planar manipulators in [67] is

one, in which a learning algorithm resembling back propagation

s employed to obtain the weights of a radial basis function based
ol using neural networks: A survey, Neurocomputing (2018), 
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Fig. 6. Off-line training of a neural network. 

Fig. 7. On-line training of a neural network. 
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etwork. The controlling method is verified by an experiment on a

-DOF manipulator. 

.1.2. Feedforward neural network with radial basis function 

Different to a BP based neural network that may have multi-

le hidden layers, a radial basis function (RBF) based neural net-

ork has only one hidden layer in its basic structure, which means

hat there are three layers in total [68,69] . The activation function

dopted in hidden layers is a radial basis function, which is a kind

f monotone function whose argument l is usually the Euclidean

istance to a specific fixed point. With parameter c > 0, the fol-
Please cite this article as: L. Jin et al., Robot manipulator contr
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owing functions could be used to construct an RBF based neural

etwork: 

• Multi-quadric functions: 

ϕ(l) = 

√ 

(l 2 + c 2 ) ; (2) 

• Inverse multi-quadric functions: 

ϕ(l) = 

1 √ 

(l 2 + c 2 ) 
; (3) 

• Gaussian function: 

ϕ(l) = exp 

(
− l 2 

2 c 2 

)
. (4) 

The main idea of RBF based neural network is to map linearly

nseparable samples to higher dimensions through nonlinear trans-

ormations so that they could be separated by linear functions. The

omponent of output layer is a linear combination of values pro-

uced by the hidden layer. As radial basis function is influenced

y Euclidean distance to specific points (the center), the change

f corresponding weight would have a more significant impact on

hose points closer to the center, which is called local attribute.

his is one of the reasons why the converging speed of RBF net-

ork is faster than that of typical BP-network when trained by a

upervised learning method like gradient descent. Besides trained

y gradient descent, parameters in RBF-network could be acquired

n other methods: centers of different RBF function could be ac-

uired by clustering methods like k-means classification; weights
ol using neural networks: A survey, Neurocomputing (2018), 

https://doi.org/10.1016/j.neucom.2018.01.002


6 L. Jin et al. / Neurocomputing 0 0 0 (2018) 1–12 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; January 20, 2018;9:45 ] 

Fig. 9. Difference between feedforward neural network and recurrent neural network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. A 3-neuron Hopfield neural network. 
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between the hidden layer and the output layer could be obtained

by calculating the pseudoinverse (or inverse when the number of

samples equals to the number of neurons in hidden layer) of a ma-

trix. 

The RBF based neural network is proved to be available in solv-

ing dynamic and kinematic problems of robot manipulators [70] .

In [71] , an RBF based neural network with a robust control strat-

egy is applied to compensate for the nonlinear dynamics of the

robot manipulator in contouring control. This work is extended to

the swing-up control of a two-joint manipulator, in which an RBF

neural network is adopted to cancel out the negative effect of fric-

tion [72] . Improvements of this RBF network based paradigm are

observed in experimental results. In addition, an RBF based neural

network with dynamic region design is proposed to control robot

manipulators [73] , where the stability is verified by Lyapunov-like

analysis and an energy-saving feature is observed. In [74] , the au-

thors applied RBF network based terminal sliding-mode control to

robotic manipulator controlling incorporated with actuator dynam-

ics. A robust control mechanism is added in this method, which is

validated from experiment results and Lyapunov theory. 

4.2. Recurrent neural network 

Different from the feedforward neural network mentioned pre-

viously, it can be observed from Fig. 9 that a recurrent neural net-

work could have bi-directional information flow, which means the

information inside could flow from a successive node to a pre-

vious one (or called feedback) or form a closed cycle within a

single node [75–79] . The recurrent neural work has been shown

successful in the control of robot manipulators. For example, in

[80] , contact force and position between a manipulator and a sur-

face are controlled by making use of recurrent neural network,

which is responsible for simulating the dynamics of manipula-

tors. A simulation on tracking force and position of manipulators

is done to show the effectiveness of this method. Moreover, a

predictive controller based on a recurrent neural network is de-

signed to reduce the computational time for digital control [81] .

The proposed controller is capable for quick changes taking place

in inputs, whose effectiveness has been shown through simulations

on both kinematics and dynamics of robotic models. Aimed at

solving time-varying problems, a special recurrent neural network

termed Zhang neural network is investigated in [82] , which solves

the redundancy resolution problem by computing the time-varying

pseudoinverse of the Jacobian matrix of the robot manipulator.

Theoretical analysis and simulation results therein illustrate the ef-

fectiveness of such a recurrent neural network [83–88] . By trans-

forming nonsmooth optimization problems in multi-robot systems
Please cite this article as: L. Jin et al., Robot manipulator contr
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nto a convex optimization problem, a recurrent neural network

pproach is proposed in [76] to solve these nonsmooth optimiza-

ion problems efficiently. Authors in [89] develop two kinds of re-

urrent neural networks to solve the resultant redundancy resolu-

ion problem, which can achieve the joint-angle and joint-velocity

rift problems in cyclic motion of redundant robot manipulators.

n addition, by computing the pseudoinverse of the time-varying

acobian matrix directly, various continues and discrete models are

erived in [90] for the motion generation of a manipulator. 

.2.1. Hopfield network 

The structure of a Hopfield network is like a fully connected

raph, in which every neuron has a symmetric connection with all

ther neurons but no cycle with itself. A Hopfield network with 3

eurons is shown in Fig. 10 . There are only two states in a neuron

e.g. 0 or 1) with the i th neuron x i being updated asynchronously

r synchronously in the following manner: 

 i = φ

(∑ 

j 

w i j s j − ϑ 

)
(i � = j) (5)

here s j represents those neurons other than s i , w ij represents the

eight between s i and s j , φ( · ) is the activate function and ϑ is a

hreshold. Although we may train the weights of Hopfield network

or specific patterns by making use of Hebbian learning [10] , it may

ead to the local minimum, which forms an obvious drawback of

opfield network. 

It is stated in [91] that Hopfield network could be made use

f to solve an arbitrary set of linear equations or constrained

east squares optimization problems. In discussions about Hopfield

etwork on practical cases, application on robotics is taken into

ccount. In [35] , an algorithm to achieve obstacle avoidance for
ol using neural networks: A survey, Neurocomputing (2018), 
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L  
edundant manipulators is investigated, where Hopfield network

lays a role on solving kinematics control. Several experiments on

 four-link planar robot arm verify the effectiveness of the pre-

ented algorithm. Additionally, a work about using Hopfield net-

ork to estimate parameters in dynamic systems is described in

92] , in which Hopfield network is shown to have lower errors and

ess oscillations than a gradient estimator. The result may be an

ption to be extended to the domain of robot control. It is worth

ointing out here that by comparing the weight-updating formula

f BP-based neural network with the state-transition equation of

opfield network for the generalized matrix inversion, authors in

63] show that such two derived learning-expressions turn out to

e the same (in mathematics), although the BP and Hopfield-type

eural networks are evidently different from each other, a great

eal in terms of network architecture, physical meaning, and train-

ng patterns. In addition, they extend such an investigation to solve

arious mathematical problems in [93] . 

.2.2. Spiking neural network 

Being the third generation neural network, spiking neural net-

ork (SNN) is more related to a real neuron system compared

ith those networks discussed above. The input and output data

re always interpreted as “spikes”, which could possibly be a delta

unction. One feature of spiking neural networks needs to be high-

ighted is that it can deal with spikes varied by time. Due to its

apability of dealing with spikes in specific sequences or under ac-

urate timing, spiking neural network is quite powerful on solving

ime-dependent patterns [94] . In addition, as stated in [95] , SNN

odels have unique advantages and are good candidates for robot

ontrollers. 

In the area of controlling manipulators, some practical applica-

ions are done with spiking neural network. For instance, an SNN

odel is trained to control a 4-DOF manipulator in [96] , where

piking timing-dependent plasticity is applied to enhance corre-

ated synapses while weakening those synapses relatively unre-

ated. The effectiveness of the SNN is verified by experiments on

he arm of an iCub humanoid robot. An open source interface li-

rary between the SNN and iCub humanoid robot is developed in

97] , known as iSpike, which could be applied to develop intelli-

ent robots based on an SNN. Although there are only a few abun-

ant works about controlling manipulators with the help of the

NN, it still has great potential on solving problems in such do-

ain due to its powerful instinct. In addition, a target tracking con-

roller is proposed in [98] for autonomous robots, which encodes

he preprocessed environmental and target information into spike

rains integrated by a three-layer SNN in unknown environment.

he outputs of such an SNN are generated based on the competi-

ion between the forward/backward neuron pair corresponding to

ach motor. 

.2.3. Central pattern generators 

Central pattern generators (CPG), of which a model is shown

n Fig. 11 , are neural networks that produce rhythmic patterns not

eeding sensory feedbacks. In terms of the neural network, sensory

eedbacks indicate those inputs outside the systems. As a result,

hythmic movements such as stepping or arm moving regularly

ithin a desired trajectory could be generated and maintained re-

ardless of the changes of surroundings. An overview about cen-

ral pattern generators applied in locomotion control of robots is

escribed in [99] . 

A controlling scheme based on CPG is proposed in [100] to

ontrol the locomotion of an amphibious snake robot, which is

nspired from the spinal cord of lamprey. CPG helps realize that

he direction and speed of locomotion could be adjusted simply in

oth land and water at the same time configurations could be sent

o robot’s actuated joints smoothly and continuously. Similarly, a
Please cite this article as: L. Jin et al., Robot manipulator contr
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istributed CPG is applied to control a serpentine robot in [101] .

his project not only closely simulates the neural control mecha-

ism but also realizes modularizing into a specific level. In [102] , a

hree-layered bio-inspired architecture is designed to achieve mo-

ion generation for humanoid robot iCub, in which CPG is applied

s the trajectories generator. Parameters in CPG could be optimized

s mentioned in [103] , where full body joint trajectory generation

s realized for stable bipedal walking. Quantum-inspired evolution-

ry algorithm is introduced to achieve the optimization. The con-

rolling architecture is verified by simulations on a small humanoid

obot. 

.2.4. Echo state network 

The main idea of echo state network (ESN) is to exploit a ran-

omly generated reservoir to replace the hidden layer in a typi-

al neural network. To implement an ESN, a reservoir with random

onnections should be generated first [104] . The number of neu-

ons inside the reservoir should depend on the scale of the prob-

em to be solved. After configuring the reservoir, different states

f reservoir at varied time should be record as the input changes.

ith the knowledge of captured states and desired output, we

ould determine the weights from reservoir to output by solving

 linear regression problem, which are the only value necessary to

e trained. A typical structure of echo state network is shown in

ig. 12 with only one neuron in input and output layer, respec-

ively. As can be seen in the figure, weights form reservoir to out-

ut neuron are marked by dotted line, which are the only param-

ters determined form learning process. Weights from the output

ayer to the reservoir are allowed as a feedback. Although the pro-

ess to calculate weights in an ESN is relatively easy, complexity

f the reservoir appears to be much complicated as the scale of

roblem increases. 

An improved performance on approximating uncertainties in a

ynamic system is realized by applying an adaptive fuzzy wavelet

cho state network. The control scheme is designed with a feed-

ack controller and adaptive laws for predicting the uncertainties,

hose boundedness and convergence are proved by Lyapunov sta-

ility and performance are ensured by experiments on a robot ma-

ipulator performing precise positional control [105] . A later work

106] about funnel dynamic surface control of prescribed perfor-

ance of a nonlinear system also exploits fuzzy echo state net-

ork to enhance the effectiveness of prediction. Experiments on

n MIMO nonlinear system and a manipulator have shown the va-

idity of the control scheme. 

.3. Dual network 

Technically, dual network is one kind of recurrent neural net-

orks. As much works related to robotics controlling have done

ith the help of dual neural network, we would like to treat this

art as an important component and discuss in more detail. The

ain difference between dual network and other neural networks

s that it adopts the notion of dual space [107] . The main idea of

pplying dual space is to convert an optimization problem from

rimal space to its dual space. In primal space, the convex opti-

ization problem could be represented as follows: 

minimize g(x ) , 
subject to c i (x ) ≤ 0 , with i = 1 , 2 , . . . , m, 

d j (x ) = 0 , with j = 1 , 2 , . . . , p, 

(6) 

here g ( x ) is the criteria needing optimized and c ( x ) and d ( x ) are

nequality and equality constraints respectively. By changing space,

quality and inequality constraints could be converted into a form

nly represented by corresponding dual variables via constructing

 Lagrangian function [108,109] : 

 (x, λ0 , ..., λm 

) = λ0 g(x ) + λ1 c 1 (x ) + ... + λm 

c m 

(x ) , (7)
ol using neural networks: A survey, Neurocomputing (2018), 
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Fig. 11. A model of central pattern generators. 

Fig. 12. A model of echo state network. 
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where λi for i ∈ { 0 , 1 , . . . , m } denotes the Karush–Kuhn–Tucker

(KKT) multipliers. Then a neural network could be applied to ob-

tain the optimal solution in an iterative way, as the analytical

answers are always hard to give. Various controlling problems

could be formulated as quadratic programming (QP) optimization

problems which could be solved by applying dual network. This

method is common in controlling problems of redundant manipu-

lators that some specific criterion needed to be optimized. An ad-

vantage of utilizing dual network to solve QP problem is that an

accurate optimized solution could be given even if there exist con-

straints with inequalities. 

A considerable amount of works on controlling robot manipu-

lators with dual network have been done in recent twenty years.

For example, in [36] , infinity-norm acceleration minimization is re-

alized by an LVI-based primary dual network on redundant manip-

ulators. With the dual network proposed, matrix-matrix multipli-

cation could be avoided thus computational load is saved. Practi-

cal simulations done on PUMA 560 robot have validated the algo-

rithm. Authors in [37] treat inverse kinematics problem in robotics

as a time-varying quadratic optimization problem and utilized a

dual neural network that is globally exponentially stable to per-

form kinematics control for redundant robot manipulators. A sub-

sequent work about bi-criteria kinematics control for redundant

manipulators is done in [38] , in which the bi-criteria indicates in-

finity and Euclidean norms respectively. The bi-criteria adopted in

this paper could eliminate the discontinuity of minimum infinity-

norm solutions. In addition, a dual network proven to be globally

convergent under new criteria is proposed and applied to the con-

trol of the PA10 robot manipulators. This work is further extended

in [15] , in which physical constraints including joint limits, joint

velocity limits and an attribute called drift-free are taken into con-

sideration for the optimization problem solved by a dual neural
Please cite this article as: L. Jin et al., Robot manipulator contr
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etwork. The proposed network is shown to be convergent and

erified by experiments done on PA10 manipulators. A QP-based

olver with simpler piecewise linear dynamics and faster calcula-

ion by neglecting matrix inverting is proposed in [39] , which is

xamined on PUMA 560 robot arms and works smoothly. In [33] ,

he optimized criteria chosen include kinetic energy of the system

nd two-norm of generalized forces added on objects with the lim-

ts of torques at joints and applied forces are considered. The pro-

osed dual network is validated in multi-robot coordinate manip-

lation task. 

.4. Modern control theories and advanced techniques 

The model uncertainties and external disturbances of manipu-

ators may cause performance degradation as well as safety prob-

ems. The proportional-integral-derivative controllers are a conven-

ional way for handling external disturbances in the control of ma-

ipulators. However, the adjustment of the control parameters to

he optimum values for the desired control response is rather com-

licated [110] . Recent progresses have shown advantages of using

eural networks based on modern control theories and advanced

echniques, e.g., sliding mode, T–S fuzzy mode, adaptive dynamic

rogramming, and reinforcement learning to handle these in-

ractable problems in the control of manipulators [111–117] . How-

ver, pure sliding mode has several limitations such as chattering

nd sensitive problems [118] . In addition, pure fuzzy mode some-

imes cannot guarantee stability and acceptable performance [118] .

hanks to many advantages in parallel distributed structure, non-

inear mapping, ability to learn from examples, high generalization

erformance, and capability to approximate an arbitrary function

ith sufficient number of neurons, the neural-network-based ap-

roach is a competitive way to control movements of robot manip-

lator. Therefore, hybrid techniques combining together with neu-

al networks are often adopted to control manipulators. A scheme

s presented in [118] in order to design high performance nonlinear

ontroller in the presence of uncertainties, which combines slid-

ng control, adaptive dynamic programming, fuzzy control as well

s PID control. A concise discussion is presented in [117] , which

nds that the core of reinforcement learning is identical to that of

daptive optimal control (or adaptive dynamic programming). An

daptive control scheme is provided in [115] for robot manipula-

or systems with unknown functions and dead-zone input by us-

ng a reinforcement learning scheme, of which the parameters of

he dead zone are assumed to be unknown but bounded. A sur-

ey on the applications of reinforcement learning in robots is pre-

ented in [119] , in which the authors discuss the equivalency of
ol using neural networks: A survey, Neurocomputing (2018), 
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einforcement learning and adaptive dynamic programming. The

racking control problem for an uncertain n -link manipulator is

nvestigated in [29] , of which the manipulator is formulated as a

ulti-input and multi-output (MIMO) system. Then, adaptive neu-

al network is designed to handle system uncertainties and dis-

urbances. Then, such a technique is further employed to handle

utput constraint [120] , backlash-like hysteresis [121] and the sys-

em uncertainties of biped robots [122] . In the case of performing

omplicated tasks via coordinated dual manipulators, accurate co-

rdination of motions is required to achieve effective cooperation

etween the two manipulators. In addition, apart from the external

orces, the forces applied on the object grasped must be consid-

red. Yang et al. design an adaptive neural control with the aid of

BF neural network in [123] for controlling the Baxter robot in the

resence of unknown dynamics and the manipulated object. Then,

hey further employ RBF neural network to the control of Baxter

obot at both kinematic and dynamic levels [124] as well as the

esign of controller for a teleoperation system [125] . Besides, the

xtreme learning machine (ELM) is also used to construct control

cheme for uncertain robot manipulators to perform haptic iden-

ification in [126] , where ELM is used to compensate for the un-

nown nonlinearity in the manipulator dynamics. It is worth men-

ioning that, for the situation that state variables of robot manip-

lators required by the controller are not measurable, RBF neural

etwork based observer can be designed to handle the unmeasur-

ble problem [127,128] . 

. Discussion on future directions 

This section presents the related discussion on possible future

esearch directions of the combinations of neural networks and

ontrolling manipulators. 

.1. Winner-take-all for manipulator control 

In past years, consensus has attracted intensive research atten-

ions and finds its applications in [129–132] , which is mostly lim-

ted to the modeling of dynamic cooperation. However, research

n many fields confirms the same importance of competition as

hat of cooperation in the emergence of complex behaviors [133] .

inner-take-all (WTA) is an operation that outputs the largest

alue from the input signals, which is used to capture the com-

etitive nature in the interaction of multi-agent systems. Mathe-

atically, The WTA problem can be formulated as a function: 

 i = η(νi ) = 

{
1 , if νi is the largest element of ν, 

0 , otherwise , 
(8) 

hich can be further extended to the following so called k-WTA

roblem [134,135] : 

 i = η(νi ) = 

{
1 , if νi ∈ { the k largest elements of νi } , 
0 , otherwise . 

(9) 

he learning phase in the WTA network can also be interpreted by

he recursive weight updating formulation, where only the weights

ssociated with the winning neuron are updated and all the other

eights remain unchanged [136] . Such a feature of WTA network

an be further used for the cooperation and competition of multi

obots. For example, equipped with the WTA network and based

n the distances between each robot, multi robots can assemble

ehicles on an assembly line in sequence. 

.2. Long short term memory for manipulator control 

Recurrent neural networks can use their feedback connections

o store representations of recent inputs in form of activations,
Please cite this article as: L. Jin et al., Robot manipulator contr
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hich is termed short term memory [137,138] . Recurrent neural

etworks based short term memory has been successfully used in

ime series prediction problems, such as machine translation, nat-

ral language process and music composition [139] . In all these

asks, the outputs of the networks are time series. When the min-

mal time lags between inputs and the output signals are long,

he short-term memory consumes too much time or even do not

ork well at all. To remedy the weakness of short term memory,

uthors in [137] propose the so-called long short term memory

LSTM) based on gradient method. Different from traditional re-

urrent neural networks, an LSTM network is well-suited to learn

rom experience to classify, process and predict time series when

here are very long time lags of unknown size between important

vents [140] . The LSTM has successful applications in font recog-

ition on single Chinese characters [141] , unsegmented connected

andwriting recognition [142] . In view of the advantages of the

STM network, it can be expected that the control of manipula-

ors based on long short term memory networks to remedy the

xisting weaknesses. For example, equipped with the LSTM net-

ork, the motion generations of manipulators can be processed in

 prediction manner. 

. Conclusions 

In summary, great achievements for the control of manipula-

ors by means of neural networks have been gained in the last two

ecades. However, there are still many new problems to be solved.

ll these future developments will accompany the development of

he advanced manufacture and material for various kinds of robot

anipulators as well as the mathematical theory for constructing

nd developing neural networks. Keeping in mind, different kinds

f neural networks have their own feasible ranges, and one can-

ot expect that only a few existing results on neural networks can

ackle all the control problems existing in different manipulators

ith different tasks. Every class of neural networks, for example,

eedforward neural networks, recurrent neural networks, dual neu-

al networks as well as their modifications, has their own advan-

ages, which has considered different tradeoffs between computa-

ional complexity and efficiency for the control of robot manipula-

ors. Finally, two possible future research directions on control of

obot manipulators using neural networks are pointed out, which

ay open a door to the research on this topic. 
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