
84 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /18 / $ 3 3 . 0 0 © 2 018 I E E E

FEATURE: SOFTWARE TESTING

THE EFFICIENCY AND effective-
ness of software testing practices
vary among companies and software

teams. Some companies conduct effi-
cient, effective software development
and testing that produce high-quality

software. Unfortunately, however,
many companies’ testing practices
are far from mature and are usu-
ally conducted in an ad hoc fash-
ion.1–3 Such immature practices lead
to negative outcomes—for example,
testing that doesn’t detect all the de-
fects or that incurs cost and schedule
overruns.

To determine the efficiency, effec-
tiveness, and quality of testing prac-
tices, companies and software teams
often perform test maturity assess-
ment (TMA).4 As a follow-up, test
engineers and managers often per-
form test process improvement (TPI).
To conduct TMA and TPI system-
atically, researchers and practitioners
have proposed various approaches
and frameworks, such as the ap-
proaches described in the recent
book Improving the Test Process:
Implementing Improvement and
Change.4 This book forms the basis
for the International Software Test-
ing Qualifications Board (ISTQB)
expert- level certification on TPI.

In collaborations with practi-
tioner testers and in the context of
several TPI projects in which we’ve
been involved, we’ve come to real-
ize that testers or managers inter-
ested in conducting TMA and TPI
face several challenges. These chal-
lenges include

• raising the need for TMA and
TPI among team members and
in the company,

• proper planning of TMA and
TPI activities before actually
starting them,

• identifying the challenges before-
hand and being ready to address
them,

• systematically measuring the
benefits of TMA and TPI, and

• assessing the success of TMA
and TPI activities.

What We
Know about
Software Test
Maturity and
Test Process
Improvement
Vahid Garousi, Hacettepe University

Michael Felderer, University of Innsbruck

Tuna Hacaloğlu, Atilim University

// A review of the scientific literature and

practitioners’ gray literature identified 58

test maturity models and many sources

with varying degrees of empirical evidence.

Using this knowledge, researchers and

practitioners should be able to assess

and improve test process maturity. //

 JANUARY/FEBRUARY 2018 | IEEE SOFTWARE 85

To help software engineers meet
these challenges, to identify the
state of the art and the practice in
this area, and to find out what the
software engineering community
knows about TMA and TPI, we con-
ducted a multivocal literature review
(MLR). An MLR is a type of sys-
tematic literature review (SLR) that
includes data from multiple types
of sources—for example, scientific
literature and practitioners’ gray lit-
erature (such as blog posts, white
papers, and presentation videos).5,6
MLRs related to software engineer-
ing have recently started appearing;
one example is an MLR on technical
debt.7 They’re especially suitable for
investigating TMA and TPI, which
are equally driven by and relevant
to both industry and academia. Our
review identified many test maturity
models and many sources with vary-
ing degrees of empirical evidence.

Papers like this article have been
published on other topics—for ex-
ample, agile development8 and de-
veloper motivation9—and have pro-
vided concise overviews of a given
area. Some review papers on TMA
and TPI exist,10,11 but none of them
considered both the academic litera-
ture and practitioners’ gray litera-
ture. Also, none of them studied the
topic in as much depth as our review.

A General Process
for TMA and TPI
Figure 1 depicts the general process
for TMA and TPI as a UML activ-
ity diagram. This process was in-
spired by a simpler version in Test
Process Improvement: A Practical
Step-by-Step Guide to Structured
Testing;12 we extended that process
using our review’s findings.

Usually, a TMA-and-TPI initia-
tive starts with a needs analysis; that

is, a test engineer or testing team de-
termines whether such an initiative
is necessary. The next step is to pro-
mote awareness among other stake-
holders and management. Then, the
engineer or team determines the
areas of consideration, the TMA
model and TPI model to use, and the
suitable approach. After that, the ac-
tual TMA starts, which identifies the
TPI areas.

Next, the engineer or team plans
and conducts TPI and evaluates its
outcomes and benefits. If more TPI is
necessary, the process repeats; if not,
it finishes. As you can see, choosing
the right models and assessing the
drivers, challenges, and benefits play
a major role in this context.

The Review Procedure
Our MLR followed the standard pro-
cess for SLRs in software engineering.
We aimed to address these questions:

Analyze
needs

Drivers
(needs)

Obtain
awareness

Identify
TPI areas

Plan TPIConduct TPI

Perform TPI
evaluation

Bene�ts

[Need for
more TPI]

[No further need
for TPI]

Execute TMA

Determine target, area of
consideration, model to be

used, and approach

Challenges
(impediments)

Preparation

Data collection

Analysis

Reporting

FIGURE 1. A general process for test maturity assessment (TMA) and test process improvement (TPI). This process was inspired by

a simpler version in Test Process Improvement: A Practical Step-by-Step Guide to Structured Testing.12

86 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: SOFTWARE TESTING

• What test maturity models have
researchers and practitioners
proposed?

• What are the drivers for TMA
and TPI?

• What are the challenges of TMA
and TPI?

• What are the benefits of TMA
and TPI?

We performed the searches in the
Google and Google Scholar data-
bases. Our search strings were

• software test maturity,
• software test capability,
• software test process improve-

ment, and
• software test process

enhancement.

To synthesize the opinions
and empirical evidence in the pri-
mary sources regarding the driv-
ers, challenges, and benefits, we
used qualitative coding (also called
grounded theory). A more detailed
description of our MLR process

and qualitative coding is at goo.gl
/pNCKpn. In that document, we
also discuss how we identified and
addressed the potential threats to
our review’s validity.

Researcher and
Practitioner Involvement
After we voted and applied inclusion
or exclusion criteria, we were left
with 181 sources, of which 130 were
formally published and 51 were gray
literature. The final pool of sources
and a mapping repository are at goo
.gl/lG4LqF. Throughout the rest of
this article, we indicate those sources
using “S” and a number—for exam-
ple, S49.

Figure 2 plots the number of stud-
ies published by academic research-
ers only, by practitioners only, or as
collaborations between the two. As
you can see, attention to this topic
from both researchers and practitio-
ners has steadily risen since the early
1990s. The pool of sources for 2015
is partial (only five sources) because
we selected them in June 2015.

The Test Maturity Models
Of the 181 sources, 58 presented
new test maturity models and 117
used existing models. The remaining
six presented other types of research
contributions; for example, S49 pro-
posed test metrics for test strategy
evaluation. We were surprised to see
so many test maturity models. We
don’t have enough space here to list
them all. Table 1 presents nine rep-
resentative examples; three are ge-
neric, three are for specific software
development types, and three are for
specific purposes.

In our review, the most popular
models were Test Maturity Model
Integration (TMMi) [S127] and its
earlier version, the Testing Maturity
Model (TMM) [S44], and TPI [S74]
and its successor, TPI Next [S80].
Fifty-seven sources used TMMi and
TMM for assessments or base mod-
els, whereas 18 used TPI and TPI
Next. Twenty-eight sources used
other models—for example, Test-
SPICE [S93] and the Test Manage-
ment Approach (TMap) [S157].

0

5

10

15

20

25

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

No
. o

f s
ou

rc
es

Collaboration

Industry

Academic

Year

FIGURE 2. Growth of the TMA and TPI field and types of authors. Attention to this topic from both researchers and practitioners has

steadily risen since the early 1990s. The pool of sources for 2015 is partial because we selected them in June 2015.

 JANUARY/FEBRUARY 2018 | IEEE SOFTWARE 87

Table 1. Nine test maturity models.

Category Model* Staged or continuous?

Generic Test Maturity Model Integration (TMMi)
[S127]

Staged:
Level 1. Initial
Level 2. Managed
Level 3. Defined
Level 4. Measured
Level 5. Optimization

Test process improvement (TPI) [S74] Continuous. Includes 20 Key Performance Areas (KPAs), each with levels A
through D:
1. Test strategy
2. Lifecycle model
3. Moment of involvement
4. Estimating and planning
…
18. Test process management
19. Evaluation
20. Low-level testing

TestSPICE [S93] Continuous. Comprises a set of KPAs based on ISO/IEC 15504, the Software
Process Improvement and Capability Determination (SPICE) standard.

Targeted
for specific
development types
or domains

Agile Quality Assurance Model (AQAM) [S3] Staged:
Level 1. Initial
Level 2. Performed
Level 3. Managed
Level 4. Optimized

Agile Testing Maturity Model (ATMM) [S35] Staged:
Level 0. Waterfall
Level 1. Forming
Level 2. Agile Bonding
Level 3. Performing
Level 4. Scaling

TPI for Embedded Software and Industrial
Characteristics (TPI-EI) [S24]

Continuous. An adaptation of TPI for embedded software.

Targeted for
specific test
activities

Unit Test Maturity Model (UTMM) [S156] Staged:
Level 0. Ignorance
Level 1. Few Simple Tests
Level 2. Mocks and Stubs
Level 3. Design for Testability
Level 4. Test-Driven Development
Level 5. Code Coverage
Level 6. Unit Tests in the Build
Level 7. Code Coverage Feedback Loop
Level 8. Automated Builds and Tasks

Automated Software Testing Maturity Model
(ASTMM) [S5]

Staged:
Level 1. Accidental Automation
Level 2. Beginning Automation
Level 3. Intentional Automation
Level 4. Advanced Automation

Personal Test Maturity Matrix (PTMM) [S151] Continuous. Comprises a set of KPAs such as test execution, automated test
support, and reviewing.

* An “S” with a number in brackets indicates one of the sources in our review pool, which is available at goo.gl/lG4LqF.

88 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: SOFTWARE TESTING

We observed the development of
models such as TPI for Embedded
Software and Industrial Character-
istics (TPI-EI) [S24], the Unit Test
Maturity Model (UTMM) [S156],
or the Personal Test Maturity Ma-
trix (PTMM) [S151], which is used
to gauge test engineers’ (knowledge
or skill) maturity and capability de-
velopment. After reviewing several
models’ technical details, we deter-
mined that many aspects in various
models clearly overlap.

Like the Capability Maturity
Model Integration (CMMI) pro-
gram,13 the testing maturity mod-
els, broadly speaking, fall into two
types: staged or continuous (see the
last column of Table 1). In staged
models, such as TMMi, the Agile
Quality Assurance Model (AQAM)
[S3], and the Automated Software
Testing Maturity Model (ASTMM)
[S5], testing maturity is assigned a
level on the basis of a set of specific
goals and practices. In continuous
models, such as TPI, TestSPICE, and
PTMM, a set of individual Key Pro-
cess Areas (KPAs) are assessed ac-
cording to a set of defined criteria.

What’s evident from the set of 58
models is that no one model fits all
test improvement needs. One possi-
ble reason for the creation of a sub-
set of the models originating from
academia is that the original mod-
els weren’t based on industrial needs
but sometimes on hypothetically ar-
gued motivations. Also, it seems that
some researchers often didn’t fully
review the state of the art or the
practice to minimize overlap and to
take into account best practices from
research and industry.

Figure 3 shows a chronological
evolution graph of TMA and TPI
models and their relationships—
that is, how models have been
based on earlier models. This figure

was inspired by a similar evolu-
tion model prepared for UML.14
As you can see, new (original or ex-
tended) TMA and TPI models have
been proposed regularly since 1985.
Many of the new models are based
on older models; for example, the
Metrics Based Testing Maturity
Model (MB-TMM) [S48], proposed
in 2001, is based on TMM.

With such a large collection of
models and the overlap among them,
choosing the most suitable model
or models to apply isn’t easy.15,16
Further complicating things, many
practitioners and researchers have
reported challenges when using
even established models such as
TMMi15—for example, not being
able to objectively assess each matu-
rity area or item using the existing
model guidelines.

Drivers
After careful data extraction, log-
ging of drivers phrased in differ-
ent forms and terminologies, and
qualitative coding of the drivers as
reported in the sources, we synthe-
sized and classified drivers into the
following categories.

Process and operational drivers
(mentioned by 46 sources) included

• a lack of focus in test activities
and people-dependent perfor-
mance [S23];

• low test efficiency [S56];
• testing practices not meeting

expectations or commitments
[S58];

• internal stakeholder dissatisfac-
tion with existing testing prac-
tices [S58];

• missing exit criteria for testing
[S70];

• the need to improve the produc-
tivity of testing [S73]; and

• the need to determine a baseline

for test capabilities, develop a
credible testing roadmap, and
raise the profile of testing [S159].

Software quality drivers (25 sources)
included

• a high number of faults due to
low testing quality (effectiveness)
[S4];

• a direct relationship between
test process quality and the de-
veloped product’s final quality
[S29]; and

• a lack of planning and resources
for testing, which impacted soft-
ware quality [S40].

Cost-related drivers (23 sources)
included

• the argument that most cur-
rent testing processes were often
technique-centered rather than
organized to maximize business
value [S78],

• excessive testing costs [S177],
and

• testing that wasn’t cost-effective
[S181].

Schedule-related drivers (12 sources)
included

• production delays due to ineffec-
tive testing [S4],

• the need to accelerate time to
market by effective testing [S25],
and

• a test team that spent a lot of
time on manual testing [S28].

Finally, 15 sources cited various
other drivers.

Many sources reported that
a main step in starting (and suc-
cessfully performing) TMA and
TPI was to get (and keep) stake-
holders’ commitment. To establish

 JANUARY/FEBRUARY 2018 | IEEE SOFTWARE 89

commitment, cost–benefit analy-
sis (quantitative and qualitative) of
TMA and TPI activities is impor-
tant. In this context, costs are re-
lated to the effort spent on the ac-
tivities, and the benefits are related
to satisfying the drivers. Only if
the expected benefits outweigh the
costs will TMA and TPI get the
green light to be conducted.

Challenges
Any improvement activity presents
challenges. We classified the chal-
lenges into the following categories.

Seventeen sources mentioned a
lack of (required) resources. For ex-
ample, S23 reported that the lack of
a process improvement infrastruc-
ture was a major barrier to TPI at
Union Switch and Signal, a supplier

of railway signaling equipment in
the US.

Twelve sources mentioned resis-
tance to change. For example, S155
recommended tailoring TMA activi-
ties to meet an organization’s cul-
tural norms, to avoid resistance. S89
focused on the personal psychology
of testers and reported that mini-
mizing the fear factor in applying

1990

1985

1995

2005

2000

2010

1985
1986
1987
1988

1989

1990
1991
1992
1993
1994

1995
1996
1997
1998
1999

2000
2001
2002
2003
2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

STEP

TMM

CMM

1993 1994

Testability
scorecard

19961998

1997

Software testing
tuning model

1999TMM-AM

1999

BS 7925-2 MB-TMM

2001
MB-V2 M2

2002

TPI
automotive

2004

MTPF

Faults-slip-through

2006

Test organization
maturity

2006

New test process
assessment model

2006
2006

Consolidated
evaluation framework

2007

SQR

2007

Process
quality matrix

2008MND-TMM

2008

Emb-TPI

2009

TPI-EI

2009

Light-TPEF

2009

ATMM OTM3
2011

2011

OSSTMM

2011

2011

2012

2012

ISO 29119

2012

20122012

2012

2014

2014

2014
3.0

2014

2014

CMMI

2002

2012

A stochastic
model

2004

2006

CenPRA
process
model

Bitwise model

Generic
strategy

map
2004

BTSC

1988

2000

2005

2012

2010
2010 2010

2010

2013

2013

PTMM

2014

2010

1988

2010

TPI

LISI

2002

Beizer's progressive
phases of a tester’s

mental model

1990

Software
process maturity

model
1989

2010

Automated
software testing
maturity model

Optimal SQMTPI add-on for automated
test generation

Test Maturity
Index

AQAM

TMMi

IMPROVE

TEC-MMCompetence model
for testing teams

TestSPICE

Unit Test
Maturity Model ISO/IEC/IEEE

29119-2–Test
processes

VeriTest Test Maturity
Assessment

FTMM Risk-based
testing

integration

TestSPICE TAIM

STEP (Software Test
Enhancement Paradigm)

MPT.Br

IEC 61508

MPTA-BR

CMM-DEV

TMap

Gelperin & Hetzel’s
evolutionary
testing model

1988

TIM
assessment

model

TPI

FIGURE 3. The evolution of TMA and TPI models and their relationships. New (original or extended) models have been proposed

regularly since 1985.

90 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: SOFTWARE TESTING

TPI put testers through fewer emo-
tional swings.

Nine sources mentioned that
improvement felt like an addi-
tional effort. For example, S123
reported this situation in activities
dedicated to diagnosing the current
testing practices in relation to TPI
activities.

Seven sources mentioned a lack
of competencies. For example, S123
considered the lack of available hu-
man and economic resources an im-
portant challenge for small and me-
dium organizations to conduct TMA
and TPI. To deal with the lack of
competencies, S113 recommended
training testers to conduct TPI.

Seven sources mentioned an un-
clear scope and focus. For example,
S62 reported that a major challenge
was to prioritize the areas to im-
prove. Without such decision sup-
port, organizations often didn’t im-
plement improvements because they
had difficulty prioritizing them.

Five sources mentioned that there
was no owner for the improvement.

In four sources, the study subjects
saw no clear benefits from such im-
provement activities. For example,
in S102, a team of Brazilian practi-
tioners and researchers reported that
small companies aiming to imple-
ment TPI models sometimes aborted
this undertaking. This might have
been because the models didn’t show
benefits or the company wasn’t ready
for the maturity improvement. S123
stated that estimating TPI activities’
expected return on investment was
often difficult. Moreover, such esti-
mations usually had low reliability.

Finally, 23 sources mentioned
various other challenges.

Benefits
The successful implementation of
TMA and TPI depends heavily on

the expected or actual benefits. We
classified the following categories of
benefits.

Operational benefits (mentioned
by 48 sources) included

• shorter development time [S121];
• lower development costs [S121];
• better planning of testing costs

[S71];
• alignment of internal testing

processes with external value
objectives [S78];

• better adherence to release dates
[S79];

• reduced failure administration
[S59];

• minimized test cycle time [S96];
• improved risk identification and

management [S146];
• development of adequate train-

ing for test personnel [S43]; and
• process control based on met-

rics, resulting in more accurate
estimations and predictions
[S170].

Technical benefits (37 sources)
included

• fewer field defects, resulting in
better software quality [S79];

• fewer high-severity defects
[S180];

• increased traceability to support
release decisions [S88];

• improved test automation
[S117]; and

• improved test-case design by
adopting new techniques [S133].

Business benefits (27 sources)
included

• increased profit [S78],
• increased customer satisfaction

[S78],
• a positive return on investment

[S55 and S92],

• reduced cost of test tasks [S66],
• reduced defect costs [S112],
• better internal and external

reputation [S146],
• increased business opportunities

[S146], and
• reduced support costs [S180].

An Industrial Case Study
We studied a Turkish software firm
(one of Vahid Garousi’s industry
partners) that was interested in in-
creasing its test practices’ maturity.
Our MLR helped us plan and con-
duct the TMA and TPI project more
rigorously and systematically. We
performed a TMMi assessment, us-
ing Test Maturity Model Integration
(TMMi), Release 1.017 and TMMi
Assessment Method Application Re-
quirements (TAMAR), Release 1.0.18

TMMi has five maturity levels
(see Table 1). Each level has several
process areas (PAs). Each PA has sev-
eral specific goals (SGs) and specific
practices (SPs). For example, level
2 (Managed) has five PAs—for in-
stance, PA 2.1 (test policy and strat-
egy). This PA has three SGs: SG 1
(establish a test policy), SG 2 (estab-
lish a test strategy), and SG 3 (estab-
lish test performance indicators). SG
1, in turn, has three SPs: SP 1.1 (de-
fine test goals), SP 1.2 (define a test
policy), and SP 1.3 (distribute the
test policy to stakeholders). There
are 50 SGs and 188 SPs.

To rate each SP, we used the
following scale, suggested by the
TAMAR document:

• fully implemented (FI),
• largely implemented (LI),
• partially implemented (PI),
• not implemented (NI), and
• not applicable (N/A),

This scale is similar to the five lev-
els of the Standard CMMI Appraisal

 JANUARY/FEBRUARY 2018 | IEEE SOFTWARE 91

Method for Process Improvement
(SCAMPI):

• fully implemented (FI),
• largely implemented (LI),
• partially implemented (PI),
• not implemented (NI), and
• not yet (NY).

After conducting the TMMi as-
sessment, to systematically evaluate
test maturity and compile the areas
for improvement, we reviewed and
collected the SPs that ranked lower
than FI. Here are several suggestions
that were made in relation to those
SPs to the test managers in the soft-
ware firm under study:

• Separation of debugging from
testing could be clearer in test
policy documents.

• It would be a good idea to docu-
ment generic product risks in
potential-risks documents and
to conduct systematic risk-based
testing.

• Test policy and test performance
indicators and metrics could be
updated.

Thanks to the MLR, we knew
the potential drivers, challenges, and
benefits before the project started
and could observe or tackle several
of them throughout our activities.
Many of the team members in the
company felt that the MLR helped
them to be prepared for the project.
As a result, the company has planned
and is conducting TPI activities.

T he review results we pre-
sented here should help both
researchers and practitio-

ners assess and improve the matu-
rity of test processes. The issue of
choosing the right maturity models

has been explored in other areas (for
example, business process maturity
assessment19) but needs further in-
vestigation for the set of test matu-
rity models. Practitioners new to this
area who intend to conduct TMA
and TPI should know the differences
and similarities of the models and
their success or failure. The need ex-
ists for domain analysis of the mod-
els and in-depth examination of the
extent to which they are similar and
tend to become unified.

Also, another important issue is
assessing the models’ “fit for pur-
pose.” That is, to what extent do
they really help test teams assess
and improve their test processes?
This issue has also been investi-
gated in the domain of business pro-
cess maturity assessment.20

Although there has been consid-
erable interest and progress in TMA
and TPI, the need exists for more
empirical studies providing evi-
dence for TMA and TPI in specific
contexts—for example, by taking
into account the domains of the sys-
tems under test. We also need more
evidence- based approaches.

References
1. V. Garousi et al., “A Survey of Soft-

ware Engineering Practices in

Turkey,” J. Systems and Software,

vol. 108, 2015, pp. 148–177.

2. V. Garousi and J. Zhi, “A Survey

of Software Testing Practices in

Canada,” J. Systems and Software,

vol. 86, no. 5, 2013, pp. 1354–1376.

3. M. Grindal, J. Offutt, and J. Mellin,

“On the Testing Maturity of Soft-

ware Producing Organizations,”

Proc. Testing: Academia & Industry

Conf.—Practice and Research Tech-

niques, 2006, pp. 171–180.

4. G. Bath and E.V. Veenendaal, Im-

proving the Test Process: Implement-

ing Improvement and Change—

a Study Guide for the ISTQB Expert

Level Module, Rocky Nook Comput-

ing, 2013.

5. R.T. Ogawa and B. Malen, “Towards

Rigor in Reviews of Multivocal Lit-

eratures: Applying the Exploratory

Case Study Method,” Rev. Educa-

tional Research, vol. 61, no. 3, 1991,

pp. 265–286.

6. V. Garousi, M. Felderer, and M.V.

Mäntylä, “The Need for Multivocal

Literature Reviews in Software Engi-

neering: Complementing Systematic

Literature Reviews with Gray Litera-

ture,” Proc. 2016 Int’l Conf. Evalu-

ation and Assessment in Software

Eng. (EASE 16), 2016, pp. 171–176.

7. E. Tom, A. Aurum, and R. Vidgen,

“An Exploration of Technical Debt,”

J. Systems and Software, vol. 86, no.

6, 2013, pp. 1498–1516.

8. T. Dybå and T. Dingsøyr, “What Do

We Know about Agile Software De-

velopment?,” IEEE Software, vol. 26,

no. 5, 2009, pp. 6–9.

9. T. Hall et al., “What Do We Know

about Developer Motivation?,” IEEE

Software, vol. 25, no. 4, 2008, pp.

92–94.

10. W. Afzal et al., “Software Test Pro-

cess Improvement Approaches: A

Systematic Literature Review and an

Industrial Case Study,” J. Systems

and Software, Jan. 2016, pp. 1–33.

11. C. Garcia, A. Dávila, and M. Pessoa,

“Test Process Models: Systematic

Literature Review,” Software Process

Improvement and Capability Deter-

mination, A. Mitasiunas et al., eds.,

Springer, 2014, pp. 84–93.

12. T. Koomen and M. Pol, Test Pro-

cess Improvement: A Practical

Step-by-Step Guide to Structured

Testing, Addison-Wesley, 1999.

13. S.L. Cepeda, “CMMI—Staged or

Continuous?,” 2005; www.sei.cmu

.edu/library/assets/cepeda-cmmi.pdf.

14. G. Zockoll, A. Scheithauer, and M.D.

Dekker, “History of Object-Oriented

92 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: SOFTWARE TESTING

Methods and Notation,” 2012;

en.wikipedia.org/wiki/Unified

_Modeling_Language#/media

/File:OO_Modeling_languages

_history.jpg.

15. K. Rungi and R. Matulevičius, “Em-

pirical Analysis of the Test Matu-

rity Model Integration (TMMi),”

Information and Software Technolo-

gies, T. Skersys, R. Butleris, and R.

Butkiene, eds., Springer, 2013, pp.

376–391.

16. M. Felderer and R. Ramler, “In-

tegrating Risk-Based Testing in

Industrial Test Processes,” Software

Quality J., vol. 22, no. 3, 2014, pp.

543–575.

17. Test Maturity Model Integration

(TMMi), Release 1.0, TMMi Foun-

dation, 2012; www.tmmi.org

/wp-content/uploads/2016/09/TMMi

.Framework.pdf.

18. TMMi Assessment Method Applica-

tion Requirements (TAMAR), Re-

lease 1.0, TMMi Foundation, 2014;

www.tmmi.org/wp-content/uploads

/2016/09/TMMi.TAMAR_.pdf.

19. A. Van Looy et al., “Choosing the

Right Business Process Maturity

Model,” Information & Manage-

ment, vol. 50, no. 7, 2013, pp.

466–488.

20. A. Van Looy, “Looking for a Fit for

Purpose: Business Process Maturity

Models from a User’s Perspective,”

Proc. IFIP Working Conf. Enterprise

Information Systems of the Future,

2013, pp. 182–189.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

VAHID GAROUSI is an associate professor of software

engineering at Wageningen University. He previously was at

Hacettepe University. His research interests include software

test engineering, software quality, em pirical software engineer-

ing, and improving industry–academia collaboration in software

engineering. Garousi received a PhD in software engineering

from Carleton University. He was a Distinguished Visitor in the

IEEE Computer Society’s Distinguished Visitors Program from

2012 to 2015. Contact him at vahid .garousi@wur.nl.

MICHAEL FELDERER is an associate professor in the

University of Innsbruck’s Department of Computer Science and

a guest researcher in the Blekinge Institute of Technology’s

Department of Software Engineering. His research interests

include software and security testing, software processes,

requirements engineering, empirical software engineering, and

improving industry–academia collaboration. Felderer received

a habilitation in computer science from the University of Inns-

bruck. Contact him at michael.felderer@uibk.ac.at.

TUNA HACALOĞLU is a PhD student in the Department

of Information Systems at Middle East Technical Univer-

sity’s Informatics Institute. She’s also an instructor in Atilim

University’s Department of Information Systems Engineering.

Her research interests include information systems, software

engineering, software engineering education, and software

testing. Hacaloğlu received a master’s in information systems

from Middle East Technical University. Contact her at tuna

.hacaloglu@metu.edu.tr.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

