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On the Classification of MDS Codes
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Abstract

A g-ary code of length, size M, and minimum distancd is called an(n, M, d), code. An(n,¢*,n — k + 1), code is
called a maximum distance separable (MDS) code. In this wswke MDS codes over small alphabets are classified. It isrsho
that every(k +d — 1,¢*,d), code withk > 3, d > 3, q € {5,7} is equivalent to a linear code with the same parameters. This
implies that the(6, 5%, 3)5 code and theén, 7"~2,3); MDS codes forn € {6,7,8} are unique. The classification of one-error-
correcting8-ary MDS codes is also finished; there ark 8, 4, and4 equivalence classes 6#, ]n-2 3)s codes form = 6,7,8,9,
respectively. One of the equivalence classes of peffg@”, 3)s codes corresponds to the Hamming code and the other three are
nonlinear codes for which there exists no previously knownstruction.

I. INTRODUCTION

CODE of lengthn over analphabetA is a subset of4™. With alphabet sizey = |.4|, the code is called a-ary code.
The number of codewords is called thigeof the code. Théedamming distancéetween two words it4” is the number
of coordinates in which they differ. Thminimum distancef a code is the minimum Hamming distance between any two
distinct codewords. A code with minimum distandéés able to detect errors in up — 1 coordinates and correct errors in
up to | (d — 1)/2] coordinates. Ag-ary code of lengtm, size M, and minimum distance€ is called an(n, M, d), code.

A code with the alphabef,, the finite field of orderg, is linear if the codewords form a vector subspacelRjf. For
unrestricted(that is, either linear or nonlinear) codes, two codes alledaquivalentif one can be obtained from the other by
a permutation of coordinates followed by permutations afilsgls at each coordinate separately. We use the notatienC’ to
denote that code§' andC’ are equivalent. Equivalence maintains the Hamming distémetween codewords but not linearity.

A general bound for the size of dm, M, d), code is the Singleton bound![1], which states that

M < qn—d-l-l'
Codes withM = ¢"~*! are calledmaximum distance separable (MDS)
The Hamming bound, or the sphere-packing bound, states that
< s
Yico (7)@—1)
d—1

wheret = LTJ is the number of errors a code with minimum distadcean correct. Codes attaining this bound are called

perfect For one-error-correcting codes,— 3, and thus

M

qn
M < 1+n(g—1)

Even the existence of linear MDS codes with given paraméseis general an open question (seé [2, Chapter 11]), and
less is known about the unrestricted case. Thg/?, n — 1), codes correspond to sets of mutually orthogonal Latin sgjar
which have been widely studied![3]. For some results for othreestricted MDS codes, see€ [4]-H[7].

Perfect one-error-correcting MDS codes dre+ 1,471, 3), codes. For a prime powey, the only linear code up to
equivalence with these parameters is the Hamming code, evhasty check matrix contains the maximal numlet 1
of pairwise linearly independent columns. A natural questis whether codes with the same parameters exist that dare no
equivalent to linear codes.

The (3,21, 3)2 code is trivially unique, and the uniqueness of tHe3?, 3); code is not difficult to prove either. Alderson
[8] showed that the5, 43, 3)4 code is unique. The nonexistence of Graeco-Latin squaresdefr 6 implies the nonexistence
of (7,6%,3)s codes. The caseg= 5,7,8 are settled in the present work: t& 5%, 3); and (8, 7°,3), codes are unique and
there exists four equivalence classeg@f8”, 3)s codes.

In the general case, whenis a proper prime power ang> 9, there exists d¢+ 1,¢?" 1, 3), code that is not equivalent to
the Hamming code with the same parameters, as demonstraged éarly construction by Lindstrorn![9]. Heden [10] studie
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certain perfect codes whepis a prime and showed that they are equivalent to linear cadesre exist also constructions for
nonlinear perfect codes using more restrictive notionsqufivalence, such as [111].

Shortening the perfect codes gives one-error-corredting™ 2, 3), MDS codes for3 < n < ¢ + 1. Our work relies on
known classification results dfr, ¢"~2,3), MDS codes forn = 4,5. For n = 4, the codes are equivalent to Graeco-Latin
squares of ordeg, which have been classified fgr< 8 by McKay [12]; there arel, 1, 1, 0, 7, 2165 equivalence classes
of such codes for; = 3,4, ...,8, respectively. Fom = 5, the codes are equivalent to Graeco-Latin cubes which haee b
classified recently [13]; there afe 1, and 12484 equivalence classes of such codesdet 5, 7, 8, respectively.

This work consists of two parts. In the first part, we show thatry (k+d—1,¢*, d), code, wherés,d > 3 andq = 5,7, is
equivalent to a linear code. For one-error-correcting spttés implies that thé6, 5%, 3); code and thén, 7"~2, 3), codes for
n = 6,7,8 are unique. This part is easier to carry out using the terlogyoof Latin squares. In the second part, we present
an algorithm for exhaustive generation @f, ¢"~2, 3), codes starting fronfn — 1,¢"~3,3), codes. Running this algorithm
for ¢ = 8 yielded 14, 8, 4, and4 equivalence classes ¢fi, 8”2 3)s codes forn = 6,7, 8,9, respectively.

[l. PRELIMINARIES
For ease of notation, we dendte] = {1,2,...,m} when referring to sets of indices.

A. Latin Hypercubes and MDS Codes

A Latin squareof orderq is agq x ¢ array of symbols from an alphabet of size ¢ such that each symbol appears exactly
once in each row and each column. Two Latin squares are aaftedgonalif each pair of symbols occurs exactly once when
the squares are superimposed. A pair of orthogonal Latiaregus called &raeco-Latin square

A Latin hypercubeof dimensionk is ag x g x --- x ¢ (k times) array of symbols from an alphahdtof size ¢ where
eachg x g subarray, obtained by fixing arly— 2 coordinates, is a Latin square. Two Latin hypercubes of s@imension are
called orthogonal if when the hypercubes are superimpasesty ¢ x ¢ subarray is a Graeco-Latin square. A pair of Latin
hypercubes is called @raeco-Latin hypercube

We denote the positions in a Latin hypercube of dimendidsy elements in4*, so Latin hypercubes can be viewed as
functions from.A* to A. For ease of notation, we assume thiat= IF, wheng is a prime power unless otherwise mentioned.

There is a one-to-one correspondence between Latin hypesaf order; and dimensiork and (k + 1, ¢, 2), codes: let
¢ = (c1,¢9,...,cx+1) be a codeword if;4q1 occurs at positior(cy, ca, ..., cx) in the Latin hypercube. Similarly, there is a
one-to-one correspondence between Graeco-Latin hypesaftorderg and dimensiork and (k + 2, ¢*, 3), MDS codes: let
c¢=(c1,ca,...,crt2) be a codeword if g1, ck2) OCCurs at positior{cy, cs, . . ., ¢x) in the Graeco-Latin hypercube.

We define linearity of Latin hypercubes and tuples of Latipérgubes as follows. A Latin hyperculfeof order g and
dimensionk is linear if there are permutations), o1, . .., «; of Fy, such that

ao(f(x1,29,.. . 28)) = ar1(x1) + ag(x2) + - - + ap(zk). Q)

This is equivalent to the condition that the correspondigSvtode be equivalent to a linear code. Atuple of (not necessarily
mutually orthogonal) Latin hypercubég,, f>, ..., f-) is linear if there are permutations,, as, . . ., o, 51, B2, . . ., Br Of Fy
and coefficients; ; € F, for i € [r], j € [k] such that

Bi(fi(x1, 22, ..., 2x)) = as100(21) + aj202(x2) + - - + a; ok (X)),

for eachi € [r]. We may assume that ; = 1 for all i. For Graeco-Latin hypercubes, this is equivalent to theditamm that
the corresponding MDS code be equivalent to a linear code.

B. Properties of MDS Codes

Codes can be transformed into shorter and longer codes batapes called shortening and extending. Because these
operations are used extensively in the description of tgerahm, we introduce precise notation for them here.

Definition 11.1. For an (n, M, d), MDS codeC, let
s(C,i,v) ={(c1,¢2,...,Ci—1,Cit1,...,¢n) : c € C ande; = v}.
This operation is calleghortening
Definition 11.2. For an (n, M, d), MDS codeC, let
e(C,i,v) = {(c1,¢2,.-.,Ci—1,V,Ciy ..., cn) : c € Ch.

This operation is calledxtending



In other wordss(C, i,v) is the(n — 1, M’,d"), code that is obtained by removing thtt coordinate fronC' and retaining
the codewords that haveat that coordinate, ane(C, i, v) is the(n+1, M, d), code which is obtained by adding a coordinate
at ¢ with the symbolv to each codeword of’.

The following basic theorems are important in the consiomadf MDS codes based on shorter codes presented in SEBion |

Theorem I1.3. A shortened MDS code is an MDS code.

Theorem I1.4. An (n,q*,n — k + 1), MDS code is a union of extended MDS codes: for each coordinat¢here are
(n—1,¢*1,n—k+ 1), MDS codex;, for eachv € F, such that

C= U e(Cl,i,v).

velF,

Proof: Simply chooseC! = s(C, i, v). [ |

C. Code Equivalence

The operations maintaining equivalence of codes of lengdind alphabe# form a groupG that acts ond™. Each element
g € G can be expressed in terms of a permutatioaf [n] and permutations; for i € [n] of A as

g=(m01,002,...,00),

such that for eack = (c1,¢2,...,¢,) € A™ and for each € [n],

(9C)r(iy = oriy(ci),

where(gc); denotes theth symbol ofgec.

Two codes,C' and(C’, are thus equivalent when there existg @ G such thatC = gC’. The set of all elements ¥ that
mapC to C' is denoted bylso(C, C"). An element oflso(C, C) is called an automorphism &f. The group of automorphisms
of C is denoted byAut(C). For equivalent code€' andC’, we can write

Iso(C,C") = Aut(C')g, (2

whereg is any element ofso(C, C").
Each word that has value at coordinate is mapped byy to a word that has value,;(v) at coordinater(i). We also
define an action of7 on [n] x A by
9(27 U) = (W(Z), Or(i) (U))

When the length of the codes is not obvious from the contegrtdenote byG = G,, the group acting on4™. Because
the study of equivalence of shortened codes of two codess@agrucial role in the algorithm, we need the following two
definitions to ease notation.

Definition 11.5. For everyg € G,, and everyi € [n], definee(g,:) € G,11 to be the element that appligsto the subcodes
obtained by removing and keeps the coordinateintact, that is,

e(9C,i,v) = e(g,1)e(C,i,v),
for everyv € A4, andC C A™.

Definition I.6. For everyg € G,, and everyi € [n] such thaty maps coordinateé to itself and does not permute the symbols
in coordinatei, defines(g,i) € G,,—1 such that it applieg ignoring the coordinate to codes of length — 1, that is,

S(gCa i, U) = S(g7i)S(C, I, ’U),

for eachv € A andC C A",

D. Computational Tools

To solve the problem of code equivalence computationallyreduce it to the graph isomorphism problem. For eaaly
codeC of lengthn, we define a labeled coloured graph as follows. The graphagwit copies of the complete graph with
vertices, colored with the first colour. For each codewoné, graph contains a vertex colored with the second colomFao
vertex corresponding to codewotdthere is an edge to thah vertex in theith complete graph if and only i has a value
v at coordinate.

Now two codes(C' andC’, are equivalent if and only if their corresponding graplsand H’, respectively, are isomorphic.
The permutation of coordinates corresponds to permutatidhe complete graphs, and the permutations of symbolséh ea
coordinate corresponds to permutation of vertices in eachptete graph. Moreover, in a graph isomorphism mapgintp



H’, the permutation of the vertices of the first colour uniquddyermines the permutation of the vertices of the secormlicol
so there is a direct correspondence betwke(C, C’) and the set of graph isomorphisms frdihto H'.

The softwarenauty[14] can be used to find canonical labelings of graphs, whieh tan be used to find a graph isomorphism
between isomorphic graphs. In additiorguty returns the automorphism of a graph. Along with (2), thi:w finding the
setIso(C, C") for two codesC andC’. We usenautyin the sparse mode with the random Schreier method enabled.

Ill. THEORETICAL RESULTS

In this section, we show that antuple of Latin hypercubes of prime order and dimensigrwherer > 2 andk > 3, is
linear if each pair of Latin hypercubes of dimensidbtained by fixingk — 3 coordinates from two hypercubes of the tuple
is linear. We start by showing that every Latin hypercube ifnp order and dimensioh, wherek > 4, is linear if every
Latin hypercube obtained from it by fixing one coordinateiear.

Definition 1Il.1. A rectangleof directions: and j (i # j) is a quadruple(a = (a1, as2,...,ar),b = (b1,ba,...,bg),c =
(c1,¢2,...,¢k),d = (d1,ds,...,dy)) of elements o]F’; such thata; = b;, ¢; = d;, b; = ¢j, andd; = a; anda; =b; = ¢; = d;
forall I € [k]\ {3,7}.

Lemma IIl.2. For every linear Latin hypercubg¢ of prime orderq there is a unique functioRect : Fg — F, such that for
every rectanglda, b, ¢, d),
f(a) = Rect;(f(b), f(c), f(d)).
Proof: Using the notation in[{1), we find that
f(a) = ag ' (ao(£(b)) — ao(f(c) + an(f(d))).
[ |

Lemma II1.3. A linear Latin hypercubef of order ¢ can be uniquely reconstructed from the functi®ect; and the values
f(x1,29,...,2) where at most one af; is nonzero.

Proof: Whenz hasm > 2 nonzero elements, the valygx) can be uniquely determined from the functiBect; and
the valuesf(z') wherez’ hasm — 1 nonzero elements using

flxa, o @i,y gy, X))
=Recty(f(z1,..,0,. gy oy @), f(@1, 0,0, 0., 0, o 2k), f(@1, oy miy .., 0,00 2g)).
The lemma follows by induction om. [ ]

Lemma Ill.4. Let f be a hypercube of dimensidn wherek > 4, such that each{kx — 1)-dimensional Latin hypercube
obtained fromyf by fixing one argument is linear. Thehis linear.

Proof: For j € [k], let r; be the linear hypercube of dimensién- 1 obtained fromf by letting thejth argument be.
Without loss of generality, we may assume that

rn(T1,Z2,. .., Tp—1) =1+ T2+ -+ Th—1,

and that
f(ovov"'aov'rk) = Tk.

Now
Recty, (a,b,¢) =a—b+c.

For j € [k — 1], let s; be the linear hypercube of dimensién- 2 obtained by letting thgth and thekth argument off be
0. Becauses; occurs as a subarray in both andr;, we get

Rect,, = Rects; = Rect,, .

Because
rj(O,O,...,O,xi,O,...70) = X,

wherei € [k — 1] andz; occurs in theith position, Lemma&TILB implies that
ri(x1, @2, ... Tp—1) =1+ T2+ -+ T,

for eachj € [k], or equivalently,
f(fEl,(EQ,...7l'k):(E1+(E2+"'+l’k, (3)

whenz; = 0 for at least one value af.



For eacha € Iy, let ¢, be the Latin hypercube obtained frofnby letting the last argument bhe Now
t2(0,0,...,0,2,0,...,0) = z; + a,
wherez; occurs in theith position. The functioRect;, is determined by[{3), and again by Lemmalll.3, we get that
to(1, 22, ..., 2p—1) =21+ T2+ -+ TK—1 +a,

for all a, or equivalently
flzi,ze, ... xK) =21 + T2 + -+ - + T

Thus, f is linear. ]
We need one more lemma before proving the main theorem.

Lemma lIl.5. Letq be a prime, letc € Fy, let ay, az, a3 € F, \ {0}, and let+y, ~2, and~; be permutations off,. If

(1) +y2(22) + 73(23) = €
whenever
a1r1 + asxe + azrs =0,
then~; is an affine transformation df,, for all .
Proof: For all » € IF,, we find that
Mz +1) =m(z) = [c = p(-ay 'arx) — y3(—az'ar)] = [¢ = ya(—ay tarz) = 3(0)] = 73(0) — y3(—ay 'ar).
Becausel generates the additive group Bf, we get

() = [13(0) = y3(—az ' a1)]z +1(0),
for eachz € F,. Thus,, is an affine transformation. By symmetry, so aeeand-ys. ]

Theorem 111.6. Let (f1, f,..., fr) be anr-tuple of Latin hypercubes of prime ordgrand dimensiork, with » > 2 and
k > 4, such that each pair of Latin cubes obtained from any pairhein by fixing the samie — 3 arguments is linear. Then
(f1, f2,.-., fr) is a linear r-tuple of Latin hypercubes.

Proof: By induction and Lemm@aTIll4f; is a linear Latin hypercube for ea¢hWithout loss of generality, we may assume
that

filzr, o, mk) = vir(21) + vi2(@2) + -+ Yik(or),

for eachi € [r], where~; ; are permutations df, and~; ; is the identity for eacly € [k].
Consider some € [r] and distinctjy, j2, j3 € [k]. Letting all arguments except, j2, j3 of f1 and f; be 0, we obtain a
linear pair(g, h) of Latin hypercubes of dimensiohfor which

Bo(g(z1,z2,23)) = Po(r1 + x2 + x3) = an(x1) + aa(z2) + az(z3),
Br(h(z1, 22, 23)) = B1(Vi gy (1) + Vijo (T2) + Vi js (23)) = araq (21) + asas(x2) + azas(z3),

for someay, as, a3 € Fy, and permutationgy, 81, a1, oz, ag of Fy.

BecauseBy(g(z1, z2,x3)) = Bo(0) wheneverr; + x5 + x3 = 0, we see by LemmBATl5 that,, as, andas are affine
transformations. Similarlyi(z1, z2, z3) is a function ofby z1 + baxs + bsxs for someby, by, by € F,, and thusy, ; is an affine
transformation for eache {1,2,3}.

Therefore,v; ; is an affine transformation for afl € [r] andj € [k]. Thus, (f1, f2,..., fr) IS @ linearr-tuple of Latin
hypercubes. ]

Using the known computational results for Graeco-Latinesubf orderss and 7, TheoreniIIL.6 implies the following.

Theorem I11.7. Every code with parametefg +d —1,7%,d); or (k+d—1,5%,d)s, wherek, d > 3, is equivalent to a linear
code.

Proof: For every(n, ¢*, d), codeC with n = k+d — 1, there is ad — 1)-tuple of mutually orthogonal Latin hypercubes

(f1, f2,--., fa—1) Of orderq and dimensiom such thatC' is the set ofn-tuples(z1, z2, ..., z,) that satisfy
fl(xl,:cg, ceey Ik) = Tk+1,
fg(xl,.rg, ceey Ik) = Tk+2,

fd—l(xl7x27 .. 'axk) = xk-‘rd—l'



Because every Graeco-Latin cube of orfenr 7 is linear,(f1,. .., fx) is a linear(d — 1)-tuple of Latin hypercubes fay = 5,7
by Theoren II[.6. Therefore}' is equivalent to a linear code. [ |

Corollary 111.8 (MDS conjecture fog = 5,7). For g € {5,7}, k > 2 andd = n—k+1 > 2, there exists atin, ¢*, n—k+1),
MDS code if and only ifi < ¢ + 1.

Proof: The case: = 2 follows from the well known theorem that the size of a set oftmally orthogonal Latin squares
of orderq is at mostg — 1. We have shown that the existence of any MDS codekfer 3, d > 3 implies the existence of a
linear code with the same parameters, and the MDS conjeisturae for linear codes over prime fields [15]. ]

Lemma I11.9. Letq be a prime power and € {qg — 1,q,q + 1}. All linear (n,q"~2,3), codes are equivalent.

Proof: Let o be a primitive element oF,. After multiplying each column by a scalar, the parity cheuktrix of an
(n,q"~2,3), code can be written as
0 1 1 .- 1
<1 ay az - an—l) ’

where alla; are distinct. Because at most two elements fiByrare missing fromS = {a1,as,...,a,—1} Whenn > ¢ —1,
there is an affine transformatian— bz + ¢ with b # 0 that mapsS to {0,1,a!,a?, ..., a"=2}. Multiplying the second row
by b, adding the first row multiplied by to the first row, multiplying the first column by~! and permuting the columns
yields
o1 1 1 --- 1
(1 01 o --- oz"Q)'

Because elementary row operations on the parity checkxadrnot change the code and multiplying a column and permutin
columns maintain equivalence, every lingar¢"~2,3), code is equivalent to the code with the parity check matriscdbed

above. [ |
Corollary 11.10. The(6,5%,3)5 code and thegn,7"~2,3); codes forn = 6,7,8 are unique.
Proof: By Theoren{III.T these codes are linear, and by Lerimal llly thre equivalent. [ |

IV. COMPUTATIONAL CLASSIFICATION

A. Algorithm
The algorithm to be presented generates representatisenfuivalence classes 6f+1,¢" ', 3), codes using an ordered
set of representatives of equivalence classe§&0f" 2, 3), codes, denoted by™ = {C},C%, ..., C%}. For simplicity, we

assume that everg]" contains the all-zero codeword.
Definition IV.1. Let ¢ be a function that maps eadh, ¢"~2, 3), codeC to an integer in[N] such thatC' = C‘;}(C).

To reduce the search tree and the number of equivalent cedesaged, we construct onfy. + 1, ¢" 1, 3), codes and their
subsets of a certain form. More precisely, we call a subsef IF};“ semi-canonicalf it satisfies the following properties:

1) C has minimum distanca,

2) 5(C,1,0) = Cp for somek,

3) For alli € [n + 1] andv € F, for which s(C,i,v) hasq"~? codewordsg(s(C, i,v)) > k.
Every (n +1,¢"1,3), codeC is equivalent to a code that satisfies these properties.

The central part of the algorithm is a procedure which, giganindexk, a coordinate € [n], andv € F,, finds, up to a
permutation of the valueB, \ {0} in the first coordinate, all possibler, ¢"~2,3), codesC for which

e(CP,1,0)Ue(Ci+1,v)
is semi-canonical. A necessary condition is that
s(C,1,0) = s(C},i,v). 4
The following theorem yields a way to exhaustively condtithe codesC satisfying the above condition.

Definition I1V.2. For eachi € [n] andv € F, let h;, € G,, be the element that applies the cyclic permutatjpa - - - i) to
the coordinates and then swaps the valueand 0 in the first coordinate.

Theorem IV.3. Let C' be an(n, ¢"~2,3), code and letD be an(n — 1,¢"~%,3), code. LetC be a code equivalent t6' for
which s(C,1,0) = D. NowC can be expressed as

C=g'e(g,1)hiC,



whereg’ € G, permutes the values,\ {0} in the first coordinate and keeps other coordinates intact;) is a coordinate-value
pair, and g € Iso(s(h;,,C,1,0), D).

Proof: Let g € G, such thatC' = ¢”C. Let (i,v) = g”"~(1,0). Becausey”h; , (1,0) = (1,0), we can expresg’h; ,
as
g"hi s = g'e(g,1,0),

whereg’ permutes the nonzero values in the first coordinate and ketbps coordinates intact ang= s(g"h;_ 1) € Gy
We obtain
D =s(C,1,0) = s(¢"C,1,0) = s(¢'e(g,1,0)h; ,C, 1,0) = gs(hiC,1,0),

and thusg € Tso(s(h;,,C, 1,0), D). |

The codegC satisfying [#) are now generated with the following algmmit We loop over all = k, k+1,..., |S*"| and all
coordinate-value pairg, w) for whichs(C7, j,w) 22 s(Cy*,,v). In each step, we loop over allc Tso(s(h; ., Ci*, 1,0), 5(C?, 1,0))
and consider the code R

C =e(g, DhjwCT', ®)

and report it if R
e(Cr,1,0)Ue(C,i+1,v)

has minimum distanca.

We generate thén + 1,¢" 1, 3), codes in two phases. In the first phase, we consider codeaicimgt the codewords that
have a0 in the first or the second coordinate. These codes are pattsatisets ofn + 1,¢" 1, 3), codes. More precisely,
we construct, for each separately, the semi-canonical codes that are of the form

e(CP,1,0) Ue(C,2,0),

whereC' has the property that for all € I, there is aw € F, such thatC' contains the codeword00..0vw. These codes
form the seeds for the next phase. The permutation of theamonalues in the first coordinate 6f can be chosen to satisfy
the last requirement, so the seeds can be constructed bydbedoire described above. We perform isomorph rejectiothen
obtained seeds, since equivalent seeds would be augmenéeplitzalent codes.

In the second phase, we start from a seed

C =e(CP,1,0)Ue(C’,2,0)

and find all semi-canonicdh + 1,¢"~!, 3), codes that hav€’ as a subset. These codes can be written in the form

U e(Cl,3,v),

velF,

where eactC! is an (n,¢" 2, 3), code with the following properties:
. B(C)) >k,
o ¢(C7,1,0) Ue(C”,3,v) has minimum distancs,
e e(C’,2,0)Ue(CV,3,v) has minimum distancg.
The first two properties allow us to find all possible choicesthe codeC! using the procedure described above. The third
property implies
s(C',2,v) = s(CY,2,0),

which either rejects a code immediately or yields a uniquempgation of the values in the first coordinate @f. The
requirement that(C’,2,0) Ue(C?, 3,v) have minimum distanc® can also be used to reject some choices. When all possible
choices forC!/ for eachv have been generated, we loop over all seté?gﬁffor v € F, and report

D= LJ (j”
veElF,
if it is semi-canonical.

Most time is spent usingiauty to detect code equivalence, so an obvious way to optimizeomeance is to reduce the
number of code equivalence instances that need to be séleedxample, detecting the equivalence class where eactesbd
codes(C',?,i,v) belongs needs to be done only when generating the codes gthlen and the results can be used when
generating the codes of length+ 1. In addition, when generating codes [d (5), we can considér one (j,w) from each
orbit of the coordinate-value pairs in the automorphismugrof C“l”.



TABLE |
AUTOMORPHISMGROUP ORDERS OF(n, 8"~ 2, 3)s CODES

n==~6 n="7T

[Aut(C)]  # [Aut(C)]  #
1536 3 16384 1
2048 1 24576 1
3072 1 65536 2
4096 5 86016 1
12288 3 98304 1
516 096 1 196 608 1
9633792 1

n=3~§ n=29

Aut(C)]  # Aut(C)]  #
393216 1 25165824 1
688128 1 44040192 1
786432 1 50331648 1
308281344 1| 22196256768 1

TABLE Il

DETAILS OF THE SEARCH

n | # of seeds # of inequivalent seeds  # of code# of inequivalent code§ CPU time (hours)
6 122 107 21 14 15
7 15 9 9 8 49
8 9 6 6 4 340
9 4 4 4 4 1516

B. Results

The algorithm was run for the cage= 8 starting from the representatives of th2484 equivalence classes 05,83, 3)s
codes constructed in [13] and proceeding step by step tgoth&, 3)s codes. The search yielded, 8, 4, and4 equivalence
classes ofn,8" 2, 3)s codes forn = 6,7,8,9, respectively. The orders of the automorphism groups ofctiges are given
in Table[l. One of the equivalence classes of perfect codegsmond to the Hamming code, and the other three are new
nonlinear codes for which no known construction exists;eéoample, the construction in_[11] is equivalent to the Imeade
with the present definition of code equivalence. The noaliredes are presented in the Appendix.

We give in Tabldl, for each. separately, the number of seeds before and after isomojexttiom and the number of codes
the inequivalent seeds were augmented to, again beforefendsmmorph rejection. The time required for the searahefich
n is also given and corresponds to one core of an Intel Xeon@& drocessor. The time for caseincludes the search for
seeds and augmenting seeds, isomorph rejection after tept, @nd identifying the shortened codes of obtained” 2, 3),
codes to detect whether the codes are semi-canonical. Tégsés can also be used when generating- 1,¢" !, 3), codes,
so the time requirement of a step would be higher if no previ@sults were available.

C. Consistency Check

To check the consistency of the results given by the algmritve count for eachk in two ways the numberV;, of
semi-canonicaln + 1, ¢" 1, 3), codesC for which s(C, 1,0) = C7.

The first count is obtained by detecting subcodes of(the- 1,¢"!,3), codes codes obtained. For &m+ 1,¢" "', 3),
codeC and an(n,¢"2,3), codeC’, let S(C,C") be the number of pair§i, v) such thats(C,i,v) = C’. Let S;, be the set
of obtained inequivalentn + 1,¢" "1, 3), codesC for which min; , ¢(s(C,i,v)) = k. Consider an arbitrarg’ € S;. The
size of the equivalence class 6f is simply |G,,+1|/|Aut(C)|. The proportion of the codeS’ in the equivalence class for
which s(C’,1,0) = C7 is S(C, C')/(q(n+1)). Further, the proportion of those that hau€”, 1,0) = CJ" is |Aut(Cy)|/| G|
Therefore, the total numbéy, becomes

|[Aut(C)] |Gri1]S(C, CM) B | S(C, C S(C,CF)

Col - 2 TAui(O)fa(n 1 1) — (@~ DHAu(C 'C%; TAut(0)[’

On the other hand, the numbaf, can be obtained by finding the number of different codes thaildvbe generated by
the algorithm if equivalent codes were not rejected at argsptof the algorithm. Lef;, be the set of seeds obtained during
the search starting from the codfgb that were not rejected during the isomorph rejection. FeheseedD < 7y, let N(D)
be the number of different seeds equivalenftmbtained during the search, and fet(D) be the number of semi-canonical
full codes that were obtained from the seed. Now the counbrnes

Ni=(g—1)! Y N(D)M(D).
DeTy

Ny =

CeSk



Here, the factofg — 1)! accounts for the permutations Bf, \ {0} in the first coordinate of the seed.
This check also alerts if the obtained full codes containsstequivalent to codes that should have been seeds but were
not obtained during the search, or if any seeds that are &euivto obtained seeds are missing.

APPENDIX
PERFECTONE-ERROR-CORRECTING8-ARY MDS CODES

It turns out that every nonlinedi9, 87,3)s code C' has the property that there is a coordinateuch thats(C,i,v) is
equivalent to the lineafs, 8¢, 3)s code for eachy. This allows us to present the nonlinear perfect codes imseof these
shortened codes.

Let o be a primitive element oFs with o® + a? + 1 = 0. An elementz € Fg can be written as

T = a2a2 + a1 + ag,

whereay, a1, a2 € {0,1}. We denote the elementby a number in{0,1,...,7} whose binary representationdsa;ag.
Let C’ C F§ be a linear code with the generator matrix
1 1 1
1 1 2
1 1 3
1 1 4
1 1 5
1 1 6

Now a nonlinear(9, 87, 3)s codeC' can be expressed as

C: U e(gvc/7i7v)7

veFg

wherei € {1,2,...,9} andg” = (7¥;07,05,...,08) € Gs for permutationsr® of {1,2,...,8} and permutations’ of Fs
as defined in Sectidn 1[1C.

Selecting the coordinatecorresponds to permuting the coordinates of the perfea,smwe may choose for example- 1.
For each of the three nonlinear equivalence classés, 6f, 3)s, one choice of these permutations to generate one repagisent
is given in Tablell. The permutations” of {1,2,...,8} are expressed as’(1)7"(2)---7"(8) and the permutation? of
Fs aso?(0)o?(1)---a?(7).
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PERMUTATIONS FORCONSTRUCTING THENONLINEAR PERFECT(9, 87, 3)s CODES

TABLE Il

[»] o 1 2 3 4 | 5 | s 7
mv | 12836457 12564378 12743685 | 12743685| 12835764| 12564378] 12835764 12836457
oy | 06452371 | 05371246 | 01436752| 04653127 | 06715432| 07426153| 02476351 | 03624157
oy | 03624157 | 02471536 | 07536142 | 05643721 | 06235417 | 07356124 | 07426153 | 01346725
oy | 07163542 | 20635174 | 04652731| 06235417 | 03142657 | 60541732| 07613524 | 05731264
oy | 01346725 | 05217346 | 03625741| 06542317 | 06457123 | 01436752| 03146275 | 70615324
oY | 07623154 | 25734610 | 04326157 | 03652471| 04617523 | 61327540| 03564271 | 01736425
og | 02764351 | 01374625 | 40236157 | 30714265| 02347615| 07265413| 05632174 | 03247165
0¥ | 03624157 | 02476351 | 25347610 | 32175460 | 40723165| 07531624 | 60235471 | 01346725
og | 06523147 | 01243675 | 02375641 | 03547216 | 67531240 | 04765312| 13742560 | 42753610
mv | 12653478 12736854| 12738645| 12734586 | 12843576] 12654387| 12845367 | 12735468
oy | 02314675 | 03746512 | 06247153 | 02641375| 05634127 | 07253416| 04375162 | 01543267
o3 | 04157362 | 06421753 | 07435216 | 01457632| 04372615| 03561247 | 05726314 | 03476521
oy | 07526134 | 05367241 | 01672345| 03216547 | 02751364 | 50413627 | 70165234 | 02135746
oy | 01765423 | 04152637 | 02754631 | 07523461 | 01546732| 01674523 | 01453276 | 40263751
oy | 05172463 | 03567214 | 07462351 | 70236451| 20617354 | 07321546| 05176324 | 05361742
o¢ | 02453716 | 06352174 | 10627534 | 01752634 | 05367124| 25673140| 05247136 | 02541673
0% | 04253617 | 27345160 | 25176340 | 23567410 | 07264153| 01327456| 05736124 | 24731650
oy | 01765423 | 40516273 | 05361427 | 06174253 | 34256170 | 02315764 | 75643120 | 04627315
mv | 12438765 12438765 12347658 | 12347658 12347658] 12438765] 12438765 12347658
oy | 02164753 | 04635172 | 02471653 | 07563124 | 01735462 | 06573421| 03712546 | 05326741
oy | 06573421 | 03712546 | 04273651 | 07561342| 03715264 | 07241365| 01456237 | 05146723
oy | 03712546 | 02164753 | 32671450 | 45736210 | 56423170 | 01456237 | 06573421 | 74165320
oy | 04635172 41672350 | 02537461 | 03641725| 07316542| 64521730| 35746120 | 06124357
oY | 01273645 | 03754261 | 06527431 | 02341765| 07213546| 07465312| 05621437 | 03164257
og | 05261473 | 01637245 | 30165724 | 10547263 | 70216435| 06743152| 03425716 | 40321576
0¥ | 01456237 | 60754312 | 04631527 | 03257146 | 01372654 | 50236741| 70423156 | 02745361
og | 07652431 | 02513647 | 02746351 | 04531627 | 06415732| 05341276| 01467325 05123476
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