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On the Classification of MDS Codes
Janne I. Kokkala, Denis S. Krotov, Patric R. J.Östergård

Abstract

A q-ary code of lengthn, sizeM , and minimum distanced is called an(n,M, d)q code. An(n, qk, n − k + 1)q code is
called a maximum distance separable (MDS) code. In this work, some MDS codes over small alphabets are classified. It is shown
that every(k + d − 1, qk, d)q code withk ≥ 3, d ≥ 3, q ∈ {5, 7} is equivalent to a linear code with the same parameters. This
implies that the(6, 54, 3)5 code and the(n, 7n−2, 3)7 MDS codes forn ∈ {6, 7, 8} are unique. The classification of one-error-
correcting8-ary MDS codes is also finished; there are14, 8, 4, and4 equivalence classes of(n, 8n−2, 3)8 codes forn = 6, 7, 8, 9,
respectively. One of the equivalence classes of perfect(9, 87, 3)8 codes corresponds to the Hamming code and the other three are
nonlinear codes for which there exists no previously known construction.

I. I NTRODUCTION

A CODE of lengthn over analphabetA is a subset ofAn. With alphabet sizeq = |A|, the code is called aq-ary code.
The number of codewords is called thesizeof the code. TheHamming distancebetween two words inAn is the number

of coordinates in which they differ. Theminimum distanceof a code is the minimum Hamming distance between any two
distinct codewords. A code with minimum distanced is able to detect errors in up tod− 1 coordinates and correct errors in
up to ⌊(d− 1)/2⌋ coordinates. Aq-ary code of lengthn, sizeM , and minimum distanced is called an(n,M, d)q code.

A code with the alphabetFq, the finite field of orderq, is linear if the codewords form a vector subspace ofF
n
q . For

unrestricted(that is, either linear or nonlinear) codes, two codes are called equivalentif one can be obtained from the other by
a permutation of coordinates followed by permutations of symbols at each coordinate separately. We use the notationC ∼= C′ to
denote that codesC andC′ are equivalent. Equivalence maintains the Hamming distance between codewords but not linearity.

A general bound for the size of an(n,M, d)q code is the Singleton bound [1], which states that

M ≤ qn−d+1.

Codes withM = qn−d+1 are calledmaximum distance separable (MDS).
The Hamming bound, or the sphere-packing bound, states that

M ≤
qn

∑t

i=0

(

n
i

)

(q − 1)i
,

wheret =
⌊

d−1
2

⌋

is the number of errors a code with minimum distanced can correct. Codes attaining this bound are called
perfect. For one-error-correcting codes,d = 3, and thus

M ≤
qn

1 + n(q − 1)
.

Even the existence of linear MDS codes with given parametersis in general an open question (see [2, Chapter 11]), and
less is known about the unrestricted case. The(n, q2, n− 1)q codes correspond to sets of mutually orthogonal Latin squares,
which have been widely studied [3]. For some results for other unrestricted MDS codes, see [4]–[7].

Perfect one-error-correcting MDS codes are(q + 1, qq−1, 3)q codes. For a prime powerq, the only linear code up to
equivalence with these parameters is the Hamming code, whose parity check matrix contains the maximal numberq + 1
of pairwise linearly independent columns. A natural question is whether codes with the same parameters exist that are not
equivalent to linear codes.

The (3, 21, 3)2 code is trivially unique, and the uniqueness of the(4, 32, 3)3 code is not difficult to prove either. Alderson
[8] showed that the(5, 43, 3)4 code is unique. The nonexistence of Graeco-Latin squares oforder6 implies the nonexistence
of (7, 65, 3)6 codes. The casesq = 5, 7, 8 are settled in the present work: the(6, 54, 3)5 and (8, 76, 3)7 codes are unique and
there exists four equivalence classes of(9, 87, 3)8 codes.

In the general case, whenq is a proper prime power andq ≥ 9, there exists a(q+1, qq−1, 3)q code that is not equivalent to
the Hamming code with the same parameters, as demonstrated by an early construction by Lindström [9]. Heden [10] studied
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certain perfect codes whenq is a prime and showed that they are equivalent to linear codes. There exist also constructions for
nonlinear perfect codes using more restrictive notions of equivalence, such as [11].

Shortening the perfect codes gives one-error-correcting(n, qn−2, 3)q MDS codes for3 ≤ n < q + 1. Our work relies on
known classification results of(n, qn−2, 3)q MDS codes forn = 4, 5. For n = 4, the codes are equivalent to Graeco-Latin
squares of orderq, which have been classified forq ≤ 8 by McKay [12]; there are1, 1, 1, 0, 7, 2165 equivalence classes
of such codes forq = 3, 4, . . . , 8, respectively. Forn = 5, the codes are equivalent to Graeco-Latin cubes which have been
classified recently [13]; there are1, 1, and12484 equivalence classes of such codes forq = 5, 7, 8, respectively.

This work consists of two parts. In the first part, we show thatevery(k+d−1, qk, d)q code, wherek, d ≥ 3 andq = 5, 7, is
equivalent to a linear code. For one-error-correcting codes, this implies that the(6, 54, 3)5 code and the(n, 7n−2, 3)q codes for
n = 6, 7, 8 are unique. This part is easier to carry out using the terminology of Latin squares. In the second part, we present
an algorithm for exhaustive generation of(n, qn−2, 3)q codes starting from(n − 1, qn−3, 3)q codes. Running this algorithm
for q = 8 yielded14, 8, 4, and4 equivalence classes of(n, 8n−2, 3)8 codes forn = 6, 7, 8, 9, respectively.

II. PRELIMINARIES

For ease of notation, we denote[m] = {1, 2, . . . ,m} when referring to sets of indices.

A. Latin Hypercubes and MDS Codes

A Latin squareof orderq is a q × q array of symbols from an alphabetA of sizeq such that each symbol appears exactly
once in each row and each column. Two Latin squares are calledorthogonalif each pair of symbols occurs exactly once when
the squares are superimposed. A pair of orthogonal Latin squares is called aGraeco-Latin square.

A Latin hypercubeof dimensionk is a q × q × · · · × q (k times) array of symbols from an alphabetA of size q where
eachq× q subarray, obtained by fixing anyk− 2 coordinates, is a Latin square. Two Latin hypercubes of samedimension are
called orthogonal if when the hypercubes are superimposed,every q × q subarray is a Graeco-Latin square. A pair of Latin
hypercubes is called aGraeco-Latin hypercube.

We denote the positions in a Latin hypercube of dimensionk by elements inAk, so Latin hypercubes can be viewed as
functions fromAk to A. For ease of notation, we assume thatA = Fq whenq is a prime power unless otherwise mentioned.

There is a one-to-one correspondence between Latin hypercubes of orderq and dimensionk and (k + 1, qk, 2)q codes: let
c = (c1, c2, . . . , ck+1) be a codeword ifck+1 occurs at position(c1, c2, . . . , ck) in the Latin hypercube. Similarly, there is a
one-to-one correspondence between Graeco-Latin hypercubes of orderq and dimensionk and (k + 2, qk, 3)q MDS codes: let
c = (c1, c2, . . . , ck+2) be a codeword if(ck+1, ck+2) occurs at position(c1, c2, . . . , ck) in the Graeco-Latin hypercube.

We define linearity of Latin hypercubes and tuples of Latin hypercubes as follows. A Latin hypercubef of order q and
dimensionk is linear if there are permutationsα0, α1, . . . , αk of Fq such that

α0(f(x1, x2, . . . , xk)) = α1(x1) + α2(x2) + · · ·+ αk(xk). (1)

This is equivalent to the condition that the corresponding MDS code be equivalent to a linear code. Anr-tuple of (not necessarily
mutually orthogonal) Latin hypercubes(f1, f2, . . . , fr) is linear if there are permutationsα1, α2, . . . , αk, β1, β2, . . . , βr of Fq

and coefficientsai,j ∈ Fq for i ∈ [r], j ∈ [k] such that

βi(fi(x1, x2, . . . , xk)) = ai,1α1(x1) + ai,2α2(x2) + · · ·+ ai,kαk(xk),

for eachi ∈ [r]. We may assume thata1,i = 1 for all i. For Graeco-Latin hypercubes, this is equivalent to the condition that
the corresponding MDS code be equivalent to a linear code.

B. Properties of MDS Codes

Codes can be transformed into shorter and longer codes by operations called shortening and extending. Because these
operations are used extensively in the description of the algorithm, we introduce precise notation for them here.

Definition II.1. For an (n,M, d)q MDS codeC, let

s(C, i, v) = {(c1, c2, . . . , ci−1, ci+1, . . . , cn) : c ∈ C and ci = v}.

This operation is calledshortening.

Definition II.2. For an (n,M, d)q MDS codeC, let

e(C, i, v) = {(c1, c2, . . . , ci−1, v, ci, . . . , cn) : c ∈ C}.

This operation is calledextending.
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In other words,s(C, i, v) is the(n− 1,M ′, d′)q code that is obtained by removing theith coordinate fromC and retaining
the codewords that havev at that coordinate, ande(C, i, v) is the(n+1,M, d)q code which is obtained by adding a coordinate
at i with the symbolv to each codeword ofC.

The following basic theorems are important in the construction of MDS codes based on shorter codes presented in Section IV.

Theorem II.3. A shortened MDS code is an MDS code.

Theorem II.4. An (n, qk, n − k + 1)q MDS code is a union ofq extended MDS codes: for each coordinatei there are
(n− 1, qk−1, n− k + 1)q MDS codesC′

v for eachv ∈ Fq such that

C =
⋃

v∈Fq

e(C′
v, i, v).

Proof: Simply chooseC′
v = s(C, i, v).

C. Code Equivalence

The operations maintaining equivalence of codes of lengthn and alphabetA form a groupG that acts onAn. Each element
g ∈ G can be expressed in terms of a permutationπ of [n] and permutationsσi for i ∈ [n] of A as

g = (π;σ1, σ2, . . . , σn),

such that for eachc = (c1, c2, . . . , cn) ∈ An and for eachi ∈ [n],

(gc)π(i) = σπ(i)(ci),

where(gc)i denotes theith symbol ofgc.
Two codes,C andC′, are thus equivalent when there exists ag ∈ G such thatC = gC′. The set of all elements ofG that

mapC to C′ is denoted byIso(C,C′). An element ofIso(C,C) is called an automorphism ofC. The group of automorphisms
of C is denoted byAut(C). For equivalent codesC andC′, we can write

Iso(C,C′) = Aut(C′)g, (2)

whereg is any element ofIso(C,C′).
Each word that has valuev at coordinatei is mapped byg to a word that has valueσπ(i)(v) at coordinateπ(i). We also

define an action ofG on [n]×A by
g(i, v) = (π(i), σπ(i)(v)).

When the length of the codes is not obvious from the context, we denote byG = Gn the group acting onAn. Because
the study of equivalence of shortened codes of two codes plays a crucial role in the algorithm, we need the following two
definitions to ease notation.

Definition II.5. For everyg ∈ Gn and everyi ∈ [n], definee(g, i) ∈ Gn+1 to be the element that appliesg to the subcodes
obtained by removingi and keeps the coordinatei intact, that is,

e(gC, i, v) = e(g, i)e(C, i, v),

for everyv ∈ A, andC ⊆ An.

Definition II.6. For everyg ∈ Gn and everyi ∈ [n] such thatg maps coordinatei to itself and does not permute the symbols
in coordinatei, defines(g, i) ∈ Gn−1 such that it appliesg ignoring the coordinatei to codes of lengthn− 1, that is,

s(gC, i, v) = s(g, i)s(C, i, v),

for eachv ∈ A andC ⊆ An.

D. Computational Tools

To solve the problem of code equivalence computationally, we reduce it to the graph isomorphism problem. For eachq-ary
codeC of lengthn, we define a labeled coloured graph as follows. The graph containsn copies of the complete graph withq
vertices, colored with the first colour. For each codeword, the graph contains a vertex colored with the second color. From a
vertex corresponding to codewordc, there is an edge to thevth vertex in theith complete graph if and only ifc has a value
v at coordinatei.

Now two codes,C andC′, are equivalent if and only if their corresponding graphs,H andH ′, respectively, are isomorphic.
The permutation of coordinates corresponds to permutationof the complete graphs, and the permutations of symbols in each
coordinate corresponds to permutation of vertices in each complete graph. Moreover, in a graph isomorphism mappingH to



4

H ′, the permutation of the vertices of the first colour uniquelydetermines the permutation of the vertices of the second colour,
so there is a direct correspondence betweenIso(C,C′) and the set of graph isomorphisms fromH to H ′.

The softwarenauty[14] can be used to find canonical labelings of graphs, which then can be used to find a graph isomorphism
between isomorphic graphs. In addition,nauty returns the automorphism of a graph. Along with (2), this allows finding the
set Iso(C,C′) for two codesC andC′. We usenauty in the sparse mode with the random Schreier method enabled.

III. T HEORETICAL RESULTS

In this section, we show that anr-tuple of Latin hypercubes of prime order and dimensionk, wherer ≥ 2 andk ≥ 3, is
linear if each pair of Latin hypercubes of dimension3 obtained by fixingk− 3 coordinates from two hypercubes of the tuple
is linear. We start by showing that every Latin hypercube of prime order and dimensionk, wherek ≥ 4, is linear if every
Latin hypercube obtained from it by fixing one coordinate is linear.

Definition III.1. A rectangleof directionsi and j (i 6= j) is a quadruple(a = (a1, a2, . . . , ak), b = (b1, b2, . . . , bk), c =
(c1, c2, . . . , ck), d = (d1, d2, . . . , dk)) of elements ofFk

q such thatai = bi, ci = di, bj = cj , anddj = aj andal = bl = cl = dl
for all l ∈ [k] \ {i, j}.

Lemma III.2. For every linear Latin hypercubef of prime orderq there is a unique functionRectf : F3
q → Fq such that for

every rectangle(a, b, c, d),
f(a) = Rectf (f(b), f(c), f(d)).

Proof: Using the notation in (1), we find that

f(a) = α−1
0 (α0(f(b))− α0(f(c)) + α0(f(d))).

Lemma III.3. A linear Latin hypercubef of order q can be uniquely reconstructed from the functionRectf and the values
f(x1, x2, . . . , xk) where at most one ofxi is nonzero.

Proof: Whenx hasm ≥ 2 nonzero elements, the valuef(x) can be uniquely determined from the functionRectf and
the valuesf(x′) wherex′ hasm− 1 nonzero elements using

f(x1, . . . , xi, . . . , xj , . . . , xk)

= Rectf (f(x1, . . . , 0, . . . , xj , . . . , xk), f(x1, . . . , 0, . . . , 0, . . . , xk), f(x1, . . . , xi, . . . , 0, . . . , xk)).

The lemma follows by induction onm.

Lemma III.4. Let f be a hypercube of dimensionk, wherek ≥ 4, such that each(k − 1)-dimensional Latin hypercube
obtained fromf by fixing one argument is linear. Thenf is linear.

Proof: For j ∈ [k], let rj be the linear hypercube of dimensionk − 1 obtained fromf by letting thejth argument be0.
Without loss of generality, we may assume that

rn(x1, x2, . . . , xk−1) = x1 + x2 + · · ·+ xk−1,

and that
f(0, 0, . . . , 0, xk) = xk.

Now
Rectrk(a, b, c) = a− b+ c.

For j ∈ [k − 1], let sj be the linear hypercube of dimensionk − 2 obtained by letting thejth and thekth argument off be
0. Becausesj occurs as a subarray in bothrj andrk, we get

Rectrj = Rectsj = Rectrk .

Because
rj(0, 0, . . . , 0, xi, 0, . . . , 0) = xi,

wherei ∈ [k − 1] andxi occurs in theith position, Lemma III.3 implies that

rj(x1, x2, . . . , xk−1) = x1 + x2 + · · ·+ xk−1,

for eachj ∈ [k], or equivalently,
f(x1, x2, . . . , xk) = x1 + x2 + · · ·+ xk, (3)

whenxi = 0 for at least one value ofi.
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For eacha ∈ Fq, let ta be the Latin hypercube obtained fromf by letting the last argument bea. Now

ta(0, 0, . . . , 0, xi, 0, . . . , 0) = xi + a,

wherexi occurs in theith position. The functionRectta is determined by (3), and again by Lemma III.3, we get that

ta(x1, x2, . . . , xk−1) = x1 + x2 + · · ·+ xk−1 + a,

for all a, or equivalently
f(x1, x2, . . . , xk) = x1 + x2 + · · ·+ xk.

Thus,f is linear.
We need one more lemma before proving the main theorem.

Lemma III.5. Let q be a prime, letc ∈ Fq, let a1, a2, a3 ∈ Fq \ {0}, and letγ1, γ2, andγ3 be permutations ofFq. If

γ1(x1) + γ2(x2) + γ3(x3) = c

whenever
a1x1 + a2x2 + a3x3 = 0,

thenγi is an affine transformation ofFq, for all i.

Proof: For all x ∈ Fq, we find that

γ1(x+ 1)− γ1(x) =
[

c− γ2(−a−1
2 a1x)− γ3(−a−1

3 a1)
]

−
[

c− γ2(−a−1
2 a1x)− γ3(0)

]

= γ3(0)− γ3(−a−1
2 a1).

Because1 generates the additive group ofFq, we get

γ1(x) = [γ3(0)− γ3(−a−1
3 a1)]x+ γ1(0),

for eachx ∈ Fq. Thus,γ1 is an affine transformation. By symmetry, so areγ2 andγ3.

Theorem III.6. Let (f1, f2, . . . , fr) be anr-tuple of Latin hypercubes of prime orderq and dimensionk, with r ≥ 2 and
k ≥ 4, such that each pair of Latin cubes obtained from any pair of them by fixing the samek − 3 arguments is linear. Then
(f1, f2, . . . , fr) is a linear r-tuple of Latin hypercubes.

Proof: By induction and Lemma III.4,fi is a linear Latin hypercube for eachi. Without loss of generality, we may assume
that

fi(x1, x2, . . . , xk) = γi,1(x1) + γi,2(x2) + · · ·+ γi,k(xk),

for eachi ∈ [r], whereγi,j are permutations ofFq andγ1,j is the identity for eachj ∈ [k].
Consider somei ∈ [r] and distinctj1, j2, j3 ∈ [k]. Letting all arguments exceptj1, j2, j3 of f1 and fi be 0, we obtain a

linear pair(g, h) of Latin hypercubes of dimension3 for which

β0(g(x1, x2, x3)) = β0(x1 + x2 + x3) = α1(x1) + α2(x2) + α3(x3),

β1(h(x1, x2, x3)) = β1(γi,j1 (x1) + γi,j2(x2) + γi,j3(x3)) = a1α1(x1) + a2α2(x2) + a3α3(x3),

for somea1, a2, a3 ∈ Fq and permutationsβ0, β1, α1, α2, α3 of Fq.
Becauseβ0(g(x1, x2, x3)) = β0(0) wheneverx1 + x2 + x3 = 0, we see by Lemma III.5 thatα1, α2, andα3 are affine

transformations. Similarly,h(x1, x2, x3) is a function ofb1x1+ b2x2+ b3x3 for someb1, b2, b3 ∈ Fq, and thusγi,jl is an affine
transformation for eachl ∈ {1, 2, 3}.

Therefore,γi,j is an affine transformation for alli ∈ [r] and j ∈ [k]. Thus, (f1, f2, . . . , fr) is a linearr-tuple of Latin
hypercubes.

Using the known computational results for Graeco-Latin cubes of orders5 and7, Theorem III.6 implies the following.

Theorem III.7. Every code with parameters(k+d− 1, 7k, d)7 or (k+d− 1, 5k, d)5, wherek, d ≥ 3, is equivalent to a linear
code.

Proof: For every(n, qk, d)q codeC with n = k+ d− 1, there is a(d− 1)-tuple of mutually orthogonal Latin hypercubes
(f1, f2, . . . , fd−1) of orderq and dimensionn such thatC is the set ofn-tuples(x1, x2, . . . , xn) that satisfy

f1(x1, x2, . . . , xk) = xk+1,

f2(x1, x2, . . . , xk) = xk+2,

...

fd−1(x1, x2, . . . , xk) = xk+d−1.
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Because every Graeco-Latin cube of order5 or 7 is linear,(f1, . . . , fk) is a linear(d−1)-tuple of Latin hypercubes forq = 5, 7
by Theorem III.6. Therefore,C is equivalent to a linear code.

Corollary III.8 (MDS conjecture forq = 5, 7). For q ∈ {5, 7}, k ≥ 2 andd = n−k+1 > 2, there exists an(n, qk, n−k+1)q
MDS code if and only ifn ≤ q + 1.

Proof: The casek = 2 follows from the well known theorem that the size of a set of mutually orthogonal Latin squares
of orderq is at mostq − 1. We have shown that the existence of any MDS code fork ≥ 3, d ≥ 3 implies the existence of a
linear code with the same parameters, and the MDS conjectureis true for linear codes over prime fields [15].

Lemma III.9. Let q be a prime power andn ∈ {q − 1, q, q + 1}. All linear (n, qn−2, 3)q codes are equivalent.

Proof: Let α be a primitive element ofFq. After multiplying each column by a scalar, the parity checkmatrix of an
(n, qn−2, 3)q code can be written as

(

0 1 1 · · · 1
1 a1 a2 · · · an−1

)

,

where allai are distinct. Because at most two elements fromFq are missing fromS = {a1, a2, . . . , an−1} whenn ≥ q − 1,
there is an affine transformationx 7→ bx+ c with b 6= 0 that mapsS to {0, 1, α1, α2, . . . , αn−2}. Multiplying the second row
by b, adding the first row multiplied byc to the first row, multiplying the first column byb−1 and permuting the columns
yields

(

0 1 1 1 · · · 1
1 0 1 α1 · · · αn−2

)

.

Because elementary row operations on the parity check matrix do not change the code and multiplying a column and permuting
columns maintain equivalence, every linear(n, qn−2, 3)q code is equivalent to the code with the parity check matrix described
above.

Corollary III.10. The (6, 54, 3)5 code and the(n, 7n−2, 3)7 codes forn = 6, 7, 8 are unique.

Proof: By Theorem III.7 these codes are linear, and by Lemma III.9 they are equivalent.

IV. COMPUTATIONAL CLASSIFICATION

A. Algorithm

The algorithm to be presented generates representatives ofall equivalence classes of(n+1, qn−1, 3)q codes using an ordered
set of representatives of equivalence classes of(n, qn−2, 3)q codes, denoted bŷSn = {Ĉn

1 , Ĉ
n
2 , . . . , Ĉ

n
N}. For simplicity, we

assume that everŷCn
k contains the all-zero codeword.

Definition IV.1. Let φ be a function that maps each(n, qn−2, 3)q codeC to an integer in[N ] such thatC ∼= Ĉn
φ(C).

To reduce the search tree and the number of equivalent codes generated, we construct only(n+1, qn−1, 3)q codes and their
subsets of a certain form. More precisely, we call a subsetC of Fn+1

q semi-canonicalif it satisfies the following properties:

1) C has minimum distance3,
2) s(C, 1, 0) = Ĉn

k for somek,
3) For all i ∈ [n+ 1] andv ∈ Fq for which s(C, i, v) hasqn−2 codewords,φ(s(C, i, v)) ≥ k.

Every (n+ 1, qn−1, 3)q codeC is equivalent to a code that satisfies these properties.
The central part of the algorithm is a procedure which, givenan indexk, a coordinatei ∈ [n], andv ∈ Fq, finds, up to a

permutation of the valuesFq \ {0} in the first coordinate, all possible(n, qn−2, 3)q codesC for which

e(Ĉn
k , 1, 0) ∪ e(C, i + 1, v)

is semi-canonical. A necessary condition is that

s(C, 1, 0) = s(Ĉn
k , i, v). (4)

The following theorem yields a way to exhaustively construct the codesC satisfying the above condition.

Definition IV.2. For eachi ∈ [n] and v ∈ Fq, let hi,v ∈ Gn be the element that applies the cyclic permutation(1 2 · · · i) to
the coordinates and then swaps the valuesv and 0 in the first coordinate.

Theorem IV.3. Let Ĉ be an(n, qn−2, 3)q code and letD̂ be an(n− 1, qn−3, 3)q code. LetC be a code equivalent tôC for
which s(C, 1, 0) = D̂. NowC can be expressed as

C = g′e(g, 1)hi,vĈ,
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whereg′ ∈ Gn permutes the valuesFq\{0} in the first coordinate and keeps other coordinates intact,(i, v) is a coordinate-value
pair, and g ∈ Iso(s(hi,vĈ, 1, 0), D̂).

Proof: Let g′′ ∈ Gn such thatC = g′′Ĉ. Let (i, v) = g′′−1(1, 0). Becauseg′′h−1
i,v (1, 0) = (1, 0), we can expressg′′h−1

i,v

as
g′′h−1

i,v = g′e(g, 1, 0),

whereg′ permutes the nonzero values in the first coordinate and keepsother coordinates intact andg = s(g′′h−1
i,v , 1) ∈ Gn−1.

We obtain
D̂ = s(C, 1, 0) = s(g′′Ĉ, 1, 0) = s(g′e(g, 1, 0)hi,vĈ, 1, 0) = gs(hi,vĈ, 1, 0),

and thusg ∈ Iso(s(hi,vĈ, 1, 0), D̂).
The codesC satisfying (4) are now generated with the following algorithm. We loop over alll = k, k+ 1, . . . , |Ŝn| and all

coordinate-value pairs(j, w) for whichs(Ĉn
l , j, w)

∼= s(Ĉn
k , i, v). In each step, we loop over allg ∈ Iso(s(hj,wĈ

n
l , 1, 0), s(Ĉ

n
k , 1, 0))

and consider the code
C = e(g, 1)hj,wĈ

n
l , (5)

and report it if
e(Ĉn

k , 1, 0) ∪ e(C, i + 1, v)

has minimum distance3.
We generate the(n+ 1, qn−1, 3)q codes in two phases. In the first phase, we consider codes containing the codewords that

have a0 in the first or the second coordinate. These codes are potential subsets of(n + 1, qn−1, 3)q codes. More precisely,
we construct, for eachk separately, the semi-canonical codes that are of the form

e(Ĉn
k , 1, 0) ∪ e(C, 2, 0),

whereC has the property that for allv ∈ Fq there is aw ∈ Fq such thatC contains the codewordv00..0vw. These codes
form the seeds for the next phase. The permutation of the nonzero values in the first coordinate ofC can be chosen to satisfy
the last requirement, so the seeds can be constructed by the procedure described above. We perform isomorph rejection onthe
obtained seeds, since equivalent seeds would be augmented to equivalent codes.

In the second phase, we start from a seed

C = e(Ĉn
k , 1, 0) ∪ e(C′, 2, 0)

and find all semi-canonical(n+ 1, qn−1, 3)q codes that haveC as a subset. These codes can be written in the form
⋃

v∈Fq

e(C′′
v , 3, v),

where eachC′′
v is an (n, qn−2, 3)q code with the following properties:

• φ(C′′
v ) ≥ k,

• e(Ĉn
k , 1, 0) ∪ e(C′′

v , 3, v) has minimum distance3,
• e(C′, 2, 0) ∪ e(C′′

v , 3, v) has minimum distance3.

The first two properties allow us to find all possible choices for the codeC′′
v using the procedure described above. The third

property implies
s(C′, 2, v) = s(C′′

v , 2, 0),

which either rejects a code immediately or yields a unique permutation of the values in the first coordinate ofC′′
v . The

requirement thate(C′, 2, 0)∪ e(C′′
v , 3, v) have minimum distance3 can also be used to reject some choices. When all possible

choices forC′′
v for eachv have been generated, we loop over all sets ofC′′

v for v ∈ Fq and report

D =
⋃

v∈Fq

e(C′′
v , 3, v)

if it is semi-canonical.
Most time is spent usingnauty to detect code equivalence, so an obvious way to optimize performance is to reduce the

number of code equivalence instances that need to be solved.For example, detecting the equivalence class where each shortened
codes(Ĉn

k , i, v) belongs needs to be done only when generating the codes of length n, and the results can be used when
generating the codes of lengthn + 1. In addition, when generating codes in (5), we can consider only one (j, w) from each
orbit of the coordinate-value pairs in the automorphism group of Ĉn

l .
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TABLE I
AUTOMORPHISMGROUPORDERS OF(n, 8n−2, 3)8 CODES

n = 6 n = 7
|Aut(C)| # |Aut(C)| #

1 536 3 16 384 1
2 048 1 24 576 1
3 072 1 65 536 2
4 096 5 86 016 1

12 288 3 98 304 1
516 096 1 196 608 1

9 633 792 1
n = 8 n = 9

|Aut(C)| # |Aut(C)| #

393 216 1 25 165 824 1
688 128 1 44 040 192 1
786 432 1 50 331 648 1

308 281 344 1 22 196 256 768 1

TABLE II
DETAILS OF THE SEARCH

n # of seeds # of inequivalent seeds # of codes# of inequivalent codes CPU time (hours)
6 122 107 21 14 15
7 15 9 9 8 49
8 9 6 6 4 340
9 4 4 4 4 1516

B. Results

The algorithm was run for the caseq = 8 starting from the representatives of the12484 equivalence classes of(5, 83, 3)8
codes constructed in [13] and proceeding step by step to the(9, 87, 3)8 codes. The search yielded14, 8, 4, and4 equivalence
classes of(n, 8n−2, 3)8 codes forn = 6, 7, 8, 9, respectively. The orders of the automorphism groups of thecodes are given
in Table I. One of the equivalence classes of perfect codes correspond to the Hamming code, and the other three are new
nonlinear codes for which no known construction exists; forexample, the construction in [11] is equivalent to the linear code
with the present definition of code equivalence. The nonlinear codes are presented in the Appendix.

We give in Table II, for eachn separately, the number of seeds before and after isomorph rejection and the number of codes
the inequivalent seeds were augmented to, again before and after isomorph rejection. The time required for the search for each
n is also given and corresponds to one core of an Intel Xeon E5-2665 processor. The time for casen includes the search for
seeds and augmenting seeds, isomorph rejection after both steps, and identifying the shortened codes of obtained(n, qn−2, 3)q
codes to detect whether the codes are semi-canonical. Theseresults can also be used when generating(n+1, qn−1, 3)q codes,
so the time requirement of a step would be higher if no previous results were available.

C. Consistency Check

To check the consistency of the results given by the algorithm, we count for eachk in two ways the numberNk of
semi-canonical(n+ 1, qn−1, 3)q codesC for which s(C, 1, 0) = Ĉn

k .
The first count is obtained by detecting subcodes of the(n + 1, qn−1, 3)q codes codes obtained. For an(n + 1, qn−1, 3)q

codeC and an(n, qn−2, 3)q codeC′, let S(C,C′) be the number of pairs(i, v) such thats(C, i, v) ∼= C′. Let Sk be the set
of obtained inequivalent(n + 1, qn−1, 3)q codesC for which mini,v φ(s(C, i, v)) = k. Consider an arbitraryC ∈ Sk. The
size of the equivalence class ofC is simply |Gn+1|/|Aut(C)|. The proportion of the codesC′ in the equivalence class for
which s(C′, 1, 0) ∼= Ĉn

k is S(C, Ĉn
k )/(q(n+1)). Further, the proportion of those that haves(C′, 1, 0) = Ĉn

k is |Aut(Ck)|/|Gn|
Therefore, the total numberNk becomes

Nk =
|Aut(Ck)|

|Gn|

∑

C∈Sk

|Gn+1|S(C, Ĉ
n
i )

|Aut(C)|q(n + 1)
= (q − 1)!|Aut(Ck)|

∑

C∈Sk

S(C, Ĉn
k )

|Aut(C)|
.

On the other hand, the numberNk can be obtained by finding the number of different codes that would be generated by
the algorithm if equivalent codes were not rejected at any phase of the algorithm. LetTk be the set of seeds obtained during
the search starting from the codêCn

k that were not rejected during the isomorph rejection. For each seedD ∈ Tk, let N(D)
be the number of different seeds equivalent toD obtained during the search, and letM(D) be the number of semi-canonical
full codes that were obtained from the seed. Now the count becomes

Nk = (q − 1)!
∑

D∈Tk

N(D)M(D).
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Here, the factor(q − 1)! accounts for the permutations ofFq \ {0} in the first coordinate of the seed.
This check also alerts if the obtained full codes contain subsets equivalent to codes that should have been seeds but were

not obtained during the search, or if any seeds that are equivalent to obtained seeds are missing.

APPENDIX

PERFECTONE-ERROR-CORRECTING8-ARY MDS CODES

It turns out that every nonlinear(9, 87, 3)8 codeC has the property that there is a coordinatei such thats(C, i, v) is
equivalent to the linear(8, 86, 3)8 code for eachv. This allows us to present the nonlinear perfect codes in terms of these
shortened codes.

Let α be a primitive element ofF8 with α3 + α2 + 1 = 0. An elementx ∈ F8 can be written as

x = a2α
2 + a1α+ a0,

wherea0, a1, a2 ∈ {0, 1}. We denote the elementx by a number in{0, 1, . . . , 7} whose binary representation isa2a1a0.
Let C′ ⊆ F

8
8 be a linear code with the generator matrix

















1 1 1
1 1 2

1 1 3
1 1 4

1 1 5
1 1 6

















.

Now a nonlinear(9, 87, 3)8 codeC can be expressed as

C =
⋃

v∈F8

e(gvC′, i, v),

wherei ∈ {1, 2, . . . , 9} andgv = (πv;σv
1 , σ

v
2 , . . . , σ

v
8 ) ∈ G8 for permutationsπv of {1, 2, . . . , 8} and permutationsσv

j of F8

as defined in Section II-C.
Selecting the coordinatei corresponds to permuting the coordinates of the perfect code, so we may choose for examplei = 1.

For each of the three nonlinear equivalence classes of(9, 87, 3)8, one choice of these permutations to generate one representative
is given in Table III. The permutationsπv of {1, 2, . . . , 8} are expressed asπv(1)πv(2) · · ·πv(8) and the permutationσv

i of
F8 asσv

i (0)σ
v
i (1) · · ·σ

v
i (7).
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TABLE III
PERMUTATIONS FORCONSTRUCTING THENONLINEAR PERFECT(9, 87, 3)8 CODES

v 0 1 2 3 4 5 6 7

πv 12836457 12564378 12743685 12743685 12835764 12564378 12835764 12836457

σv
1

06452371 05371246 01436752 04653127 06715432 07426153 02476351 03624157

σv
2

03624157 02471536 07536142 05643721 06235417 07356124 07426153 01346725

σv
3

07163542 20635174 04652731 06235417 03142657 60541732 07613524 05731264

σv
4

01346725 05217346 03625741 06542317 06457123 01436752 03146275 70615324

σv
5

07623154 25734610 04326157 03652471 04617523 61327540 03564271 01736425

σv
6

02764351 01374625 40236157 30714265 02347615 07265413 05632174 03247165

σv
7

03624157 02476351 25347610 32175460 40723165 07531624 60235471 01346725

σv
8

06523147 01243675 02375641 03547216 67531240 04765312 13742560 42753610

πv 12653478 12736854 12738645 12734586 12843576 12654387 12845367 12735468

σv
1

02314675 03746512 06247153 02641375 05634127 07253416 04375162 01543267

σv
2

04157362 06421753 07435216 01457632 04372615 03561247 05726314 03476521

σv
3

07526134 05367241 01672345 03216547 02751364 50413627 70165234 02135746

σv
4

01765423 04152637 02754631 07523461 01546732 01674523 01453276 40263751

σv
5

05172463 03567214 07462351 70236451 20617354 07321546 05176324 05361742

σv
6

02453716 06352174 10627534 01752634 05367124 25673140 05247136 02541673

σv
7

04253617 27345160 25176340 23567410 07264153 01327456 05736124 24731650

σv
8

01765423 40516273 05361427 06174253 34256170 02315764 75643120 04627315

πv 12438765 12438765 12347658 12347658 12347658 12438765 12438765 12347658

σv
1

02164753 04635172 02471653 07563124 01735462 06573421 03712546 05326741

σv
2

06573421 03712546 04273651 07561342 03715264 07241365 01456237 05146723

σv
3

03712546 02164753 32671450 45736210 56423170 01456237 06573421 74165320

σv
4

04635172 41672350 02537461 03641725 07316542 64521730 35746120 06124357

σv
5

01273645 03754261 06527431 02341765 07213546 07465312 05621437 03164257

σv
6

05261473 01637245 30165724 10547263 70216435 06743152 03425716 40321576

σv
7

01456237 60754312 04631527 03257146 01372654 50236741 70423156 02745361

σv
8

07652431 02513647 02746351 04531627 06415732 05341276 01467325 05123476
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