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Abstract

This article traces the evolution of ambulance location and relocation models proposed over the past 30 years. The

models are classified in two main categories. Deterministic models are used at the planning stage and ignore stochastic

considerations regarding the availability of ambulances. Probabilistic models reflect the fact that ambulances operate as

servers in a queueing system and cannot always answer a call. In addition, dynamic models have been developed to

repeatedly relocate ambulances throughout the day.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: Ambulances; Emergency medical services; Location; Relocation; Redeployment

1. Introduction

This review article traces the evolution of am-

bulance location and relocation models proposed
over the past 30 years. This period was marked by

an unprecedented growth not only in computer

technology, but also in modeling and algorithmic

sophistication, in the performance of mathemati-

cal programming solvers, and in the widespread

adoption of computer software at several levels of

decision making. The literature on ambulance

positioning systems truly reflects this evolution.

The first models proposed were unsophisticated

integer linear programming formulations, but over
time more realistic features were gradually intro-

duced, and solution techniques also evolved.

Most of the early models dealt with the static

and deterministic location problem. These were

meant to be used at the planning stage and they

ignored stochastic considerations. Several proba-

bilistic models were then developed to reflect

the fact that ambulances operate as servers in a
queueing system and are sometimes unavailable to

answer a call. Dynamic models are more recent.

They address the problem of repeatedly relocating

ambulances in the same day to provide better

coverage. In recent years, the development of
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powerful local search algorithms, particularly tabu

search (Glover and Laguna, 1997), coupled with

the growth of parallel computing (Crainic and

Toulouse, 1998) have given rise to a new stream of

research that deals effectively with the dynamic
nature of the problem. With the newest models

and algorithms, large scale problems can be solved

rapidly and dynamically in real time, with a high

level of accuracy.

There exists a rich literature on emergency ve-

hicles sitting models. The survey by Marianov and

ReVelle (1995) provides an overview of the most

important models published until that date. Our
review is less general since it focuses on ambulance

services, but it unavoidably covers some of the

same material, albeit with a different emphasis.

The Marianov–ReVelle survey ends with an indi-

rect reference to dynamic relocation models inte-

grated within geographic information systems:

‘‘rarely have ambulances been positioned at free

standing stations’’ . . ., ‘‘Lastly we have a warming
competition . . . The technique of GIS’’ (p. 223).

Our survey precisely addresses this issue by de-

voting a section to dynamic relocation models

which have just started to emerge. We also report

on actual implementations of ambulance location

and relocation models. Finally, we provide a syn-

thetic overview, in table form, of all the models we

discuss.
The article is structured as follows. In Section 2,

we briefly describe the functioning of emergency

medical services. Two early models developed for

the static case are described in Section 3. An im-

portant shortcoming of these models is that they

may no longer guarantee adequate coverage as

soon as ambulances dispatched to a call become

unavailable. Two types of models have been de-
veloped to handle the need to provide extra cov-

erage: deterministic models and probabilistic

models. These are presented in Sections 4 and 5,

respectively. We have chosen to concentrate on

the most important models, leaving aside several

minor variants already listed in the articles of

ReVelle (1989), Swersey (1994) and Marianov and

ReVelle (1995). In Section 6, we provide an ac-
count of some of the emerging research in the area

of dynamic ambulance repositioning. A summary

and conclusions follow in Section 7.

2. How emergency medical services operate

The chain of events leading to the intervention

of an ambulance to the scene of an incident includes
the following four steps: (1) incident detection and

reporting, (2) call screening, (3) vehicle dispatching

and (4) actual intervention by paramedics. Deci-

sions made by emergency services managers are

concerned with the second and third steps. The

main function of the screening process is to deter-

mine the severity of the incident and its degree of

urgency (e.g., on a one-to-four scale), and to make
a decision on the type and number of ambulances

to dispatch. Since time is vital in emergency situa-

tions, it is critical that vehicles be at all time located

so as to ensure an adequate coverage and a quick

response time (Wisborg et al., 1994). The United

States Emergency Medical Services Act (see Ball

and Lin, 1993) sets some standards: in urban areas,

95% of requests should be served within 10 min-
utes; in rural areas, they should be served within 30

minutes. This is where ambulance location and

relocation models and algorithms come into play.

Advanced information technologies are now often

used to assist the ambulance management process.

These include road network surveillance (Hedde-

baut, 1997; Cohen, 1999), vehicle positioning sys-

tems (Bouveyron and Didier, 1993; American
TriTech, 1996), geographical information systems

(Bernhardsen, 1999), and artificial intelligence

based call screening systems (Clawson and Der-

nocoeur, 1991). Ideally, these systems should be

fully integrated and interconnected within an am-

bulance relocation module.

From a medical and economic point of view, it

seems advisable for an urban emergency medical
services system to operate several vehicle types

serially (Stout et al., 2000). This has been shown to

increase the global system performance in trauma

cases and cardiac incidents (Haas et al., 1995).

Emergency medical services typically work with

two types of providers having different capabili-

ties: basic life support (BLS) units and advanced

life support (ALS) units, both of which are often
dispatched to the same incident, but within dif-

ferent time standards (Mandell, 1998). In several

North-American cities, BLS is assured by firemen

trained as paramedics. They are based at local fire
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stations and are often the first to arrive on scene.

ALS is covered by ambulances. Most calls can be

served by only one ambulance, but on occasions

two or more are required.

There are important differences between the op-
erations of emergency medical services and those

of fire companies or police departments. First,

ambulances are not always based in a building, but

often at a very rudimentary location such as a

parking lot. More importantly, they are periodi-

cally relocated to insure a good coverage at all

times. Ambulances do not normally patrol streets

between calls, but once they are dispatched to the
scene of an incident, they may be diverted to a

more important call. Police cars, on the contrary,

regularly perform patrol duties since their presence

on city streets acts as a crime deterrent. For fur-

ther readings on fire and police operations, the

interested reader is referred to Larson (1972),

Walker et al. (1979), Swersey (1994), and Adams

(1997).

3. Two early models for the static ambulance

location problem

Ambulance location models are defined on

graphs. The set of demand points is denoted by

V and the set of potential ambulance location
sites is denoted by W. The shortest travel time tij
from vertex i to vertex j of the graph is known.

As is common in location theory, assigning de-

mands to a discrete set can be achieved through

an aggregation process which unavoidably results

in a loss of accuracy. Various techniques have

been proposed to measure and control the error

bound (Erkut and Bozkaya, 1999; Francis et al.,
2000). A demand point i 2 V is said to be covered

by site j 2 W if and only if tij 6 r, where r is

a preset coverage standard. Let Wi ¼ fj 2 W :
tij 6 rg be the set of location sites covering de-

mand point i.

In the location set covering model (LSCM) in-

troduced by Toregas et al. (1971), the aim is to

minimize the number of ambulances needed to
cover all demand points. It uses binary variables xj
equal to 1 if and only if an ambulance is located at

vertex j:

(LSCM)

Minimize
X

j2W
xj ð1Þ

subject to
X

j2Wi

xj P 1 ði 2 V Þ; ð2Þ

xj 2 f0; 1g ðj 2 W Þ: ð3Þ
This model ignores several aspects of real-life

problems, the most important probably being that

once an ambulance is dispatched, some demand
points are no longer covered. Some of the more

sophisticated models described in Section 4 ade-

quately address this shortcoming. The model also

assumes that up to jW j ambulances are available,

which is not always the case in practice. It does,

however, provide a lower bound on the number of

ambulances required to ensure full coverage.

An alternative approach proposed to counter
some of the shortcomings of the LSCM is to

maximize population coverage subject to limited

ambulance availability. In the maximal covering

location problem (MCLP) originally proposed

by Church and ReVelle (1974), di denotes the de-

mand of vertex i, and p is the number of available

ambulances. The binary variable yi is equal to 1 if

and only if vertex i is covered by at least one
ambulance. The model is then:

(MCLP)

Maximize
X

i2V
diyi ð4Þ

subject to
X

j2Wi

xj P yi ði 2 V Þ; ð5Þ

X

j2W
xj ¼ p; ð6Þ

xj 2 f0; 1g ðj 2 W Þ; ð7Þ

yi 2 f0; 1g ði 2 V Þ: ð8Þ
Each of the two models LCSM and MCLP makes

sense in its own right. The first can be used as a

planning tool to help determine the right number
of vehicles to cover all demand, while the second
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attempts to make the best possible use of avail-

able limited resources. Several extensions of both

models have been proposed in the ambulance lo-

cation literature. A sensible approach is to re-
peatedly solve MCLP with increasing values of p

until all demand is covered. A tradeoff between

cost and coverage can then be made.

Eaton et al. (1985) have used MCLP to plan the

reorganization of the emergency medical service in

Austin, Texas. The proposed plan has saved the

city $3.4 million in construction costs, and $1.2

million annually in operating costs, in 1984. In
addition, average response time has been reduced

despite an increase in calls for service.

4. Deterministic static models with extra coverage

Neither LSCM nor MCLP recognizes the fact

that on occasions vehicles of several types may be
dispatched to the scene of an incident. Also, even if

only one vehicle type is used, solving MCLP alone

may not provide a sufficiently robust location

plan. We present in this section a number of de-

terministic models developed to deal with the issue

of multiple coverage. Probabilistic models will be

presented in Section 5.

One of the first models developed to handle
several vehicle types is the tandem equipment al-

location model, or TEAM (Schilling et al., 1979).

It applies naturally to fire companies that operate

with two types of equipment (pumpers and rescue

ladders), but it is also relevant in an ambulance

location context where BLS and ALS units are

used. Denote by pA and pB the number of vehicles

of types A and B available, let rA and rB be the
coverage standards for each vehicle type, and

define W A
i ¼ fj 2 W : tij 6 rAg, W B

i ¼ fj 2 W : tij 6
rBg. Let xAj ðxBj Þ be a binary variable equal to 1 if

and only if a vehicle of type AðBÞ is located at

vertex i, and let yi be a binary variable equal to 1 if

and only if vertex i 2 V is covered by two types of

vehicle. The TEAM model can be written as fol-

lows:

(TEAM)

Maximize
X

i2V
diyi ð9Þ

subject to
X

j2W A
i

xAj P yi ði 2 V Þ; ð10Þ

X

j2W B
i

xBj P yi ði 2 V Þ; ð11Þ

X

j2W
xAj ¼ pA; ð12Þ

X

j2W
xBj ¼ pB; ð13Þ

xAj 6 xBj ðj 2 W Þ; ð14Þ

xAj ; x
B
j 2 f0; 1g ðj 2 W Þ; ð15Þ

yi 2 f0; 1g ði 2 V Þ: ð16Þ

This model is a direct extension of MCLP except

for constraints (14) which impose a hierarchy be-

tween the two vehicle types. This constraint can of

course be removed if circumstances warrant it. In
the facility-location, equipment-emplacement tech-

nique, or FLEET model (Schilling et al., 1979),

constraints (14) are relaxed, but only p location

sites may be used. A more elaborate model for fire

protection siting, and belonging to the same fam-

ily, was later developed by Marianov and ReVelle

(1992). It can be used to locate capacitated fire

stations with two types of equipment, subject to
constraints ensuring that each demand point is

adequately covered by the right number of pumper

and rescue ladders.

In any of the above models, coverage may be-

come inadequate when vehicles become busy. A

strategy employed in the case of a single vehicle

type is to modify MCLP in order to provide bet-

ter multiple coverage, without increasing the to-
tal number of vehicles beyond p. As suggested

by Daskin and Stern (1981) and by Hogan and

ReVelle (1986), a second objective can be incor-

porated within MCLP to better distinguish be-

tween multiple optima of (4). In the first case the

authors use a hierarchical objective to maximize

the number of demand points covered more than

once. In the second case, the total demand covered
twice is maximized. Hogan and ReVelle (1986)
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also present two models backup coverage formu-

lations, called BACOP1 and BACOP2, incorpo-

rating binary variables yi equal to 1 if and only if

demand point i 2 V is covered once by an ambu-

lance within a coverage standard r, and binary
variables ui equal to 1 if and only if i is covered

twice within r. The two models are:

(BACOP1)

Maximize
X

i2V
diui ð17Þ

subject toX

j2Wi

xj � ui P 1 ði 2 V Þ; ð18Þ

X

j2W
xj ¼ p; ð19Þ

06 ui 6 1 ði 2 V Þ; ð20Þ

xj P 0 ði 2 V Þ; ð21Þ
and

(BACOP2)

Maximize h
X

i2V
diyi þ ð1� hÞ

X

i2V
diui ð22Þ

subject to
X

j2Wi

xj � yi � ui P 0 ði 2 V Þ; ð23Þ

ui � yi 6 0 ði 2 V Þ; ð24Þ
X

j2W
xj ¼ p; ð25Þ

06 ui 6 1 ði 2 V Þ; ð26Þ

06 yi 6 1 ði 2 V Þ; ð27Þ

xj P 0; ði 2 W Þ; ð28Þ
where h is a weight chosen in [0,1].

In the model proposed by Gendreau et al.

(1997), two coverage standards are used: r1 and r2,
with r1 < r2. All demand must be covered by an

ambulance located within r2 time units, and a

proportion a of the demand must lie within r1 time

units of an ambulance, which may possibly coin-

cide with the ambulance that covers that demand

within r2 units. The United States Emergency

Medical Services Act of 1973 sets a value of 10

minutes for r1, but no value for r2, and a ¼ 0:95.
The double standard model (DSM) of Gendreau,

Laporte and Semet seeks to maximize the demand
covered twice within a time standard of r1, using p
ambulances, at most pj ambulances at site j, and

subject to the double covering constraints.

Let W 1
i ¼ fj 2 W : tij 6 r1g and W 2

i ¼ fj 2 W :
tij 6 r2g. The integer variable yj denotes the num-

ber of ambulances located at j 2 W and the binary

variable xki is equal to 1 if and only if the demand

at vertex i 2 V is covered k times ðk ¼ 1or 2Þ
within r1 time units. The formulation is then:

(DSM)

Maximize
X

i2V
dix2i ð29Þ

subject toX

j2W 2
i

yj P 1 ði 2 V Þ; ð30Þ

X

j2V
dix1i P a

X

i2V
di; ð31Þ

X

j2W 1
i

yj P x1i þ x2i ði 2 V Þ; ð32Þ

x2i 6 x1i ði 2 V Þ; ð33Þ
X

j2W
yj ¼ p; ð34Þ

yj 6 pj ðj 2 W Þ; ð35Þ

x1i ; x
2
i 2 f0; 1g ði 2 V Þ; ð36Þ

yj integer ðj 2 W Þ: ð37Þ
Here, the objective function computes the demand

covered twice within r1 time units, constraints (30)
and (31) express the double coverage require-

ments. The left-hand side of (32) represents the

number of ambulances covering vertex i within r1
units, while the right-hand side is 1 if i is covered

within r1 units, and 2 if it is covered at least twice

within r1 units. The combinations of constraints

(31) and (32) ensures that a proportion a of the

demand is covered and the coverage standard must
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be r1. Constraints (33) state that vertex i cannot be
covered at least twice if it is not covered at least

once. In constraints (35), pj can be set equal to 2

since an optimal solution using this value always
exists.

5. Probabilistic static models with extra coverage

One of the first probabilistic models for ambu-

lance location is the maximum expected covering

location problem formulation (MEXCLP) due to

Daskin (1983). In this model, it is assumed that

each ambulance has the same probability q, called

the busy fraction, of being unavailable to answer a

call, and all ambulances are independent. The busy
fraction can be estimated by dividing the total

estimated duration of calls for all demand points

by the total number of available ambulances.

Thus, if vertex i 2 V is covered by k ambulances,

the corresponding expected covered demand is

Ek ¼ dið1� qkÞ, and the marginal contribution of

the kth ambulance to this expected value is

Ek � Ek�1 ¼ dið1� qÞqk�1. In MEXCLP, up to p

ambulances may be located in total, but more than

one vehicle may be located at the same vertex. Let

yik be a binary variable equal to 1 if and only if

vertex i 2 V is covered by at least k ambulances.

The model can be written as follows:

(MEXCLP)

Maximize
X

i2V

Xp

k¼1

dið1� qÞqk�1yik ð38Þ

subject to

X

j2Wi

xj P
Xp

k¼1

yik ði 2 V Þ; ð39Þ

Xp

j2W
xj 6 p; ð40Þ

xj integer ðj 2 W Þ; ð41Þ

yik 2 f0; 1g ði 2 V ; k ¼ 1; . . . ; pÞ: ð42Þ

The validity of this model stems from the fact that

the objective function is concave in k. Therefore, if

yik ¼ 1, then yih ¼ 1 for h6 k. Since the objective is
to be maximized, both (39) and (40) will be satis-

fied as equalities. It follows that the two sides of

(39) will be equal to the number of ambulances

covering vertex i 2 V .
An application of MEXCLP to the city of

Bangkok is described in Fujiwara et al. (1987). The

authors have solved MEXCLP heuristically on an

instance with jV j ¼ 59, jW j ¼ 46 and 106 p6 30.

One conclusion of their study is that by reducing

the number of ambulances from 21, as in the

current situation, to 15, a similar expected cover-

ing and average response time could be obtained.

An extension of MEXCLP, called TIMEXCLP,
was also developed by Repede and Bernardo

(1994) and applied to the Louisville, Kentucky,

data. In TIMEXCLP, variations in travel speed

throughout the day are explicitly considered. The

authors have combined this model with a simula-

tion module to provide an assessment of the pro-

posed solutions. The main result was an increase

of the proportion of calls covered in 10 minutes or
less from 84% to 95%. In addition, the response

time went down by 36%. Finally, Goldberg et al.

(1990b) have developed yet another variant of

MEXCLP in which stochastic travel times are

considered. The objective was to maximize the

expected number of calls covered within 8 minutes.

The authors classify the potential location sites in

order of preference. They compute the probability
of reaching a demand point within this time

standard, based on the following three probabili-

ties: (1) the probability that an ambulance at the

kth preferred site for a demand point be able to

reach this point within 8 minutes; (2) the proba-

bility that this ambulance is available; (3) the

probability that the ambulances located at the

k � 1 less preferred site are not available. On data
from the city of Tucson, Arizona, they showed

that a better location plan could yield a one per-

cent increase in the expected number of calls cov-

ered within 8 minutes and that the worst covering

ratio of a zone in time could be increased from

24% to 53.1%.

Two other probabilistic models were proposed

by ReVelle and Hogan (1989) to maximize the
demand covered with a given probability a. These
authors formulate the maximum availability lo-

cation problem (MALP I and MALP II) as a

chance constrained stochastic program (Charnes
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and Cooper, 1959). In MALP I, the busy fraction

q is assumed to be the same for all potential lo-

cation sites. The minimum number of ambulances

required to serve each demand point i with a reli-

ability level of a is determined by the constraints

1� q

P
j2Wi

xj

P a ði 2 V Þ ð43Þ
which can be linearized asX

j2Wi

xj P dlogð1� aÞ= log qe ¼ b ði 2 V Þ: ð44Þ

To formulate MALP I, define binary variables yjk
as in MEXCLP. The model can be written as:

(MALP I)

Maximize
X

i2V
diyib ð45Þ

subject to

Xb

k¼1

yjk 6
X

j2Wi

xj ði 2 V Þ; ð46Þ

yik 6 yi;k�1 ði 2 V ; k ¼ 2; . . . ; bÞ; ð47Þ
X

j2W
xj ¼ p; ð48Þ

xj 2 f0; 1g ðj 2 W Þ; ð49Þ

yik 2 f0; 1g ði 2 V ; k ¼ 1; . . . ; pÞ: ð50Þ
Here, constraints (47) are required since the con-

cavity property observed in MEXCLP no longer
holds.

In MALP II, the assumption that the busy

fraction is identical for all sites is relaxed. Instead,

ReVelle and Hogan compute an estimate of the

busy fraction qi associated with each i 2 V , as the
ratio of the total duration of all calls associated

with i to the total availability of all ambulances in

Wi . This value is a lower bound since some am-
bulances in Wi may be dispatched to calls unrelated

to i, but a valid albeit conservative model can be

constructed along the lines of MALP I. In MALP

II, instead of b, a value bi is computed for each

i 2 V . ReVelle and Hogan (1989) rightly point out

the difficulty of working with a busy fraction qj
specific to each j 2 W since these values are an

output of the model and cannot be known a priori.
However, given an ambulance location plan and

demand levels, probabilities can be estimated using

analytical tools such as the hypercube model

(Larson, 1974, 1975; Burwell et al., 1992), an

iterative optimization algorithm (Jarvis, 1975;

Fitzsimmons and Srikar, 1982), or simulation
(Davis, 1981; Goldberg et al., 1990a).

Several articles are devoted to the estimation of

the busy fraction associated with the whole system

or with a specific vertex j 2 W . Thus, Batta et al.

(1989) have developed the adjusted MEXCLP

model (AMEXCLP) in which each term of the

objective function (38) is multiplied by a correction

factor that accounts for the fact that ambulances
do not operate independently, but may be viewed

as servers in a queueing system to which the hy-

percube model (Larson, 1974) can be applied to

compute busy fractions. Whereas Batta et al. as-

sume the same busy fraction for the entire system,

Marianov and ReVelle (1994) propose the queue-

ing probabilistic location set covering problem

(QPLSCP) in which busy fractions are site specific.
These authors compute the minimum number bi of
ambulances necessary to cover a demand point

i 2 V in such a way that the probability of all of

them being simultaneously busy does not exceed a

given threshold. This number is then used as an

input in MALP II.

Ball and Lin (1993) have developed an exten-

sion of LSCM, called Rel-P, that incorporates a
linear constraint on the number of vehicles re-

quired to achieve a given reliability level. The

model contains binary variables xjk equal to 1 if

and only if k ambulances are located at vertex

j 2 W , and constants cjk equal to the cost of lo-

cating k vehicles at site j. An upper bound pj is

imposed on the number of ambulances located at

site j. Their model is as follows:

(Rel-P)

Minimize
X

j2J

X

16 k6 pj

cjkxjk ð51Þ

subject to
X

16 k6 pj

xjk 6 1 ðj 2 W Þ; ð52Þ

X

j2Wi

X

16 k6 pj

ajkxjk P bi ði 2 V Þ; ð53Þ
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xjk 2 f0; 1g ðj 2 W ; 16 k6 pjÞ: ð54Þ
In constraints (53), the constants ajk and bi are

computed to ensure that given the number of

ambulances covering demand point i, the proba-
bility of being unable to answer a call does not

exceed a certain value. The computation of the ajk
and bi coefficients are in fact carried out by using

an upper bound on that probability.

Finally, Mandell (1998) describes a two-tiered

system in which ALS and BLS units are to be lo-

cated. The system is inclusive in the sense that ALS

units can provide BLS services. The probability
that a call originating at vertex i 2 V is adequately

served depends on the number h of ALS units

within travel time rA of i, the number k of ALS

units within rB of i, and the number ‘ of BLS units

within rB of i, where rA P rB. Using a queueing

model, Mandell computes the associated proba-

bility hihk‘. The problem is to locate pA ALS units

and pB BLS units in W. Let xAj ðxBj Þ be the number
of ALS (BLS) units located at site j 2 W . Also

define binary variables yihk‘ equal to 1 if and only if

h ALS units are located within rA of i, k ALS units

are located within rB of i, and ‘ BLS units are lo-

cated within rB of i. Letting W A
i ¼ fj 2 W : tij 6 rAg

and W B
i ¼ fj 2 W : tij 6 rBg, the range of yihk‘ goes

from 0 to hi ¼ minfpA; jW A
i jg for h, from 0 to

ki ¼ minfh; pA; jW B
i jg for k, and from 0 to ‘i ¼

minfpB; jW B
i jg for ‘. The two-tiered model (TTM)

proposed by Mandell is to maximize the expected

covered demand:

(TTM)

Maximize
X

i2V

Xhi

h¼1

Xki

k¼0

X‘i

‘¼0

dihihk‘yihk‘ ð55Þ

subject to

Xhi

h¼1

h
Xki

k¼0

X‘i

‘¼0

yihk‘ 6
X

j2W i
A

xAj ði 2 V Þ; ð56Þ

Xki

k¼1

k
Xhi

h¼k

X‘i

‘¼‘0

yihk‘ 6
X

j2W i
B

xBj ði 2 V Þ; ð57Þ

X‘i

‘¼1

‘
Xhi

h¼1

Xki

k¼0

yihk‘ 6
X

j2W i
B

xBj ði 2 V Þ; ð58Þ

Xhi

h¼1

Xki

k¼0

X‘i

‘¼‘0

yihk‘ 6 1 ði 2 V Þ; ð59Þ

X

j2W
xAj 6 pA; ð60Þ

X

j2W
xBj 6 pB; ð61Þ

yihk‘ 2 f0; 1g
ði 2 V ; 06 h6 hi; 06 k6 ki; 06 ‘6 ‘iÞ; ð62Þ

xAj ; x
B
j 2 f0; 1g ðj 2 W Þ; ð63Þ

where ‘0 ¼ 1 if k ¼ 0 and ‘0 ¼ 0 if k > 0. Con-

straints Eqs. (56)–(58) ensure that the values taken

by the coverage variables yihk‘ are consistent with
the number of located ALS and BLS units. Con-

straints (59) mean that at most one combination

h; k and ‘ units of different types is used for any

demand point i.

6. A dynamic model

When siting emergency vehicles, relocation de-

cisions must periodically be made in order not to

leave areas unprotected. This was recognized by

Kolesar and Walker (1974) who designed a relo-
cation system for fire companies. The ambulance

relocation problem is more difficult to tackle since

it has to be solved more frequently at very short

notice. More powerful solution methodologies are

called for in this case. With the development of

faster heuristics and advanced computer technol-

ogies, it is now possible to quickly solve the

ambulance location problem in real-time. What
this means is that a new ambulance redeployment

strategy can be recomputed at any time t, using the

available information. As far as we are aware, only

one such model exists in the area of ambulance

relocation. It was developed by Gendreau et al.

(2001) and makes use of the DSM put forward by

the same authors in 1997 (see Section 4). In addi-

tion to the standard coverage and site capacity
constraints, the model takes into account a num-

ber of practical considerations inherent to the dy-

namic nature of the problem: (1) vehicles moved in
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successive redeployments cannot always be the

same; (2) repeated round trips between the same

two location sites must be avoided; (3) long trips

between the initial and final location sites must be

avoided.
The ambulance relocation problem is solved at

each instant t at which a call is registered. The

dynamic aspect of the redeployment model is

captured by time dependent constants Mt
j‘ equal to

the cost of repositioning, at time t, ambulance ‘
from its current site to site j 2 W . This includes the

case where site j coincides with the current location

of the ambulance, i.e., Mt
j‘ ¼ 0. The constant Mt

j‘

captures some of the history of ambulance ‘. If it
has been moved frequently prior to time t, thenMt

j‘

will be larger. If moving ambulance ‘ to site j vi-

olates any of the above constraints, then the move

is simply disallowed. Binary variables yj‘ are equal
to 1 if and only if ambulance ‘ is moved to site j.

The dynamic double standard model at time t

(DDSMt) can now be described:

ðDDSMtÞ

Maximize
X

i2V
dix2i �

X

j2W

Xp

‘¼1

Mt
j‘yj‘ ð64Þ

subject to

X

j2W 2
i

Xp

‘¼1

yj‘ P 1 ði 2 V Þ; ð65Þ

X

i2V
dix1i P a

X

i2V
di; ð66Þ

X

j2W 1
i

Xp

‘¼1

yi‘ P x1i þ x2i ði 2 V Þ; ð67Þ

x2i 6 x1i ði 2 V Þ; ð68Þ
X

j2W
yj‘ ¼ 1 ð‘ ¼ 1; . . . ; pÞ; ð69Þ

Xp

‘¼1

y‘j 6 pj ðj 2 W Þ; ð70Þ

x1i ; x
2
i 2 f0; 1g ði 2 V Þ; ð71Þ

yj‘ 2 f0; 1g ðj 2 W ; ‘ ¼ 1; . . . ; pÞ: ð72Þ

Apart from the variables yj‘, all variables, para-
meters and constraints of this model can be inter-

preted as in the static case. The objective function

is the demand covered twice within r1 time units,
minus the sum of penalties associated with vehicle

moves at time t.

To solve DDSMt, Gendreau, Laporte and

Semet have developed a fast tabu search heuristic

implemented on parallel processors. This algo-

rithm runs non-stop and continuously computes

the best possible redeployment plans associated

with the current positions of ambulances, in re-
sponse to each potential anticipated ambulance

request. In other words, the algorithm computes

the best relocation plan for all h, where h repre-

sents the next ambulance assigned to answer a call.

In effect, a table is built in which each line h con-

tains a solution to DDSMt. When h becomes

known, the associated redeployment strategy can

readily be applied. If the elapsed time between two
successive requests is sufficiently long, all possible

redeployments plan can be computed in time for

the next request. Otherwise, a suitable redeploy-

ment solution may not be available when needed

and no redeployment then takes place. Several

secondary features relative to the relative urgency

of calls, rerouting of ambulances on their way to a

call, etc. are incorporated into the system.
The system was run on a network on eight

parallel Sun Ultra–1/140 workstations and tested

on six problems generated using real data sets

from the Island of Montreal. In these test prob-

lems, between 120 and 140 calls were randomly

generated from 5 a.m. to 12 noon, according to a

Poisson distribution. There are 2521 aggregated

demand points on the Island of Montreal, and
between 40 and 51 available ambulances, depend-

ing on the time of day. The covering standards

used were r1 ¼ 7 minutes and r2 ¼ 15 minutes.

Speeds varying between 35 and 50 km/h were ap-

plied. Results obtained on the six test problems

show that the parallel tabu search algorithm was

capable of precomputing a redeployment strategy

in 95% of all cases. It failed when two calls arrived
within less than 32 seconds of each other. Out of

all calls, 38% required at least one ambulance re-

location and 99.5% of all relocations involved at

most five ambulances, with an average of 2.08.
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Table 1

Summary of deterministic static and dynamic models

Reference Model Objective Coverage constraints Constraints on location sites Ambulances

ReVelle and co-

workers (1971)

LSCM Minimize the number of

ambulances

Cover each demand point

at least once

At most one ambulance

per site

One type. Number

unlimited

Church and

ReVelle (1974)

MCLP Maximize the demand

covered

None At most one ambulance

per site

One type. Number

given

Schilling et al.

(1979)

TEAM Maximize the demand

covered

None At most on ambulance of each

type per site. Type A can only

be located if B is located

Two types. Numbers

given

Schilling et al.

(1979)

FLEET Maximize the demand

covered

None At most one ambulance per

site. Only p sites can be used

Two types. Numbers

given

Daskin and Stern

(1981)

Modified

MCLP

Maximize the demand

covered, then the number

of demand points covered

more than once

Cover each demand point

at least once

At most one ambulance per

site

One type. Number

given

Hogan and

ReVelle (1986)

Modified

MCLP (BA-

COP1 and

BACOP2)

Maximize the demand

covered twice, or a com-

bination of the demand

covered once or twice

Cover each demand point

at least once

At most one ambulance

per site

One type. Number

given

Gendreau et al.

(1997)

DSM Maximize the demand

covered at least twice

within r1

All demand covered within

r2. Proportion
a of all demand covered

within r1

Upper bound on the number

of ambulances per site

One type. Number

given

Gendreau et al.

(2001)

DDSMt Dynamically maximize

the demand covered at least

twice within r1, minus a

redeployment penalty term

All demand covered within

r2. Proportion
a of all demand covered

within r1

Upper bound on the number

of ambulances per site

One type. Number

given

4
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Table 2

Summary of probabilistic models

Reference Model Objective Coverage

constraints

Constraints on

location sites

Ambulances Busy period

Daskin (1983) MEXCLP Maximize the

expected demand

covered

None None One type. Upper bound

given

(always reached).

Same for each

ambulance. Given

value

ReVelle and

Hogan (1989)

MALP I Maximize the total

demand covered

with a probability a

None None One type. Number

given

Same for all potential

location site

ReVelle and

Hogan (1989)

MALP II Maximize the total

demand covered

with a probability at

least a

None None One type. Number

given

Varies according to each

demand point

Batta et al.

(1989)

Adjusted

MEXCLP

(AMEXCLP)

Maximize the expected

demand covered

None None One type. Number

given

Varies according to each

demand point. Ambu-

lances not independent

Goldberg et al.

(1990b)

Adjusted

MEXCLP

Maximize the expected

demand covered within

8 minutes

None At most one

ambulance per

site

One type. Number

given. Two types of

calls

Same for each ambulance.

Given value

Ball and Lin

(1993)

Modified

LSCM (Rel-P)

Minimize the sum of

ambulance fixed costs

Proportion a of

all demand

covered within r1

At most pj ambu-

lances at site j

One type. Number

unlimited

Upper bound computed

on busy period

Repede and

Bernardo

(1994)

Time dependent

MEXCLP

(TIMEXCLP)

Maximize the expected

demand covered

None None One type. Number

given. Varying speeds

Same for each ambulance.

Given value

Marianov and

ReVelle (1994)

QPLSCP Maximize the total

demand covered with

a probability at least a

None None One type. Lower bound

computed for each

demand point

Varies according to

demand points

Mandell (1998) TTM Maximize the expected

total demand

None Bounds on

each type per

site

Two types. Inclusive

system. Numbers given

Computed using a

queueing model
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Comparisons with exact solutions obtained by

CPLEX on a sample of scenarios show a maximal

departure of 2% from optimality.

7. Summary and conclusions

There has been an important evolution in the

development of ambulance location and relocation

models over the past thirty years. The first models

were very basic and did not take into account the

fact that some coverage is lost when an ambulance

is dispatched to a call. Nevertheless, these early
models served as a sound basis for the develop-

ment of all subsequent models. The question of

ambulance non-availability was addressed in two

main ways. Deterministic models yield solutions in

which demand points are overcovered, but the

actual availability of ambulances is not considered.

Probabilistic models work with the busy fraction

of vehicles, which can be estimated in a number of
ways, including sophisticated queueing calcula-

tions. Dynamic models have just started to emerge.

They can be used to periodically update ambu-

lance positions throughout the day. Tests have

shown that such models can work in practice

provided that fast heuristics exist and sufficient

computing power are available. We summarize in

Tables 1 and 2 the main available deterministic
and probabilistic models for ambulance location

and relocation.

As noted by Marianov and ReVelle (1995) the

development of ambulance location and relocation

models will likely parallel the growth of informa-

tion technologies. We anticipate that much of the

evolution will take place in the field of dynamic

models which are not only dependent on sophis-
ticated system technologies, but also on the avail-

ability of fast and accurate search heuristics. In

addition, we expect that advanced algorithms in

the area of stochastic programming with recourse

(see, e.g., Birge and Louveaux, 1997) and new

techniques for dynamic shortest path computa-

tions (see, e.g., Pallottino and Scutella, 1998) will

soon become standard ingredients of dynamic
models. In the first case, the idea is to incorporate

into the models the expected cost incurred when

no suitable ambulance is available to answer a call,

as opposed to just imposing a probabilistic con-

straint in the model. In the second case, variations

in travel times during the day should be reflected in

shortest path computations used in repeated ap-

plications of the dynamic model.
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