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A B S T R A C T   

A system for approximate number discrimination has been shown to arise in at least two types of hierarchical 
neural network models—a generative Deep Belief Network (DBN) and a Hierarchical Convolutional Neural 
Network (HCNN) trained to classify natural objects. Here, we investigate whether the same two network ar
chitectures can learn to recognise exact numerosity. A clear difference in performance could be traced to the 
specificity of the unit responses that emerged in the last hidden layer of each network. In the DBN, the emergence 
of a layer of monotonic ‘summation units’ was sufficient to produce classification behaviour consistent with the 
behavioural signature of the approximate number system. In the HCNN, a layer of units uniquely tuned to the 
transition between particular numerosities effectively encoded a thermometer-like ‘numerosity code’ that 
ensured near-perfect classification accuracy. The results support the notion that parallel pattern-recognition 
mechanisms may give rise to exact and approximate number concepts, both of which may contribute to the 
learning of symbolic numbers and arithmetic.   

1. Introduction 

What is the foundation for the conceptual development of natural 
numbers and elementary arithmetic? Although counting is our only 
procedure for exactly determining the size of large sets of items, both 
humans and non-human animals have a natural ‘number sense’ that 
consists of two components; for sets smaller than five, we can directly 
perceive the exact number of items in a process called ‘subitizing’ 
(Agrillo, Piffer, Bisazza, & Butterworth, 2012; Clements, Sarama, & 
Macdonald, 2019; Jevons, 1871; Tomonaga & Matsuzawa, 2002). 
Beyond this ‘subitizing range’, we can make approximate judgements 
about (i) the numerosity of a single set of items (estimation task), and (ii) 
the relative size of two sets of items (discrimination task), with an ac
curacy that decreases logarithmically with the size of the set or the 
difference between sets (Dehaene, 2011; Izard, Sann, Spelke, & Streri, 
2009; Rugani, Regolin, & Vallortigara, 2008). Recently, our under
standing of how this approximate number sense may be grounded in 
perception has been substantially advanced through neurophysiological 
experiments and computational modelling (Nieder & Dehaene, 2009). 
However, what cognitive mechanisms underlie and differentiate 
approximate estimation and exact enumeration is still unclear. 

Understanding natural numbers and arithmetic requires a notion of 
exact numerosity and the association of exact numerosity to number- 
word labels. A system representing discrete numerosity should allow 
(i) the establishment of one-to-one correspondence between numerosity 
and objects and (ii) the distinguishing of transformations that are 
invariant to numerosity, such as the spatial translation of objects (But
terworth, 2010). An example of a representation system which satisfies 
these requirements is the ‘magnitude code’—a thermometer-like rep
resentation of numerosity in which the numerosity ‘one’ is represented 
by the activity of one particular group of neural units, ‘two’ by the ac
tivity of an additional group of units, etc. (Testolin, Zou, & McClelland, 
2020; Verguts & Fias, 2004; Verguts, Fias, & Stevens, 2005; Zorzi & 
Butterworth, 1999). Building on this representation of numerosity 
enabled a network model, trained with a one-shot Hebbian learning 
rule, to make exact number judgements about the largest of two sets that 
accounted for several aspects of human performance on the task (Zorzi & 
Butterworth, 1999). Subsequently, Verguts and Fias (2004) successfully 
trained a model to classify one-dimensional vectors by their digit sum 
with supervised learning and observed that a magnitude code emerged 
in the hidden layer. These results suggest an important role of symbols 
and direct feedback in the learning of representations which support 
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exact number concepts. 
Recently, deep neural network models trained on two-dimensional 

dot-pattern images that more closely resemble experimental condi
tions have shed light on the potential mechanisms underlying approxi
mate number sense. Some studies have used a strategy based on 
unsupervised learning in a class of hierarchical generative networks called 
deep belief networks (DBNs). Rather than explicitly recognising or 
classifying the input, these networks are trained with the objective of 
building an internal representation of the input data through minimising 
the error when reconstructing the input data (Hinton, Osindero, & Teh, 
2006; Hinton & Salakhutdinov, 2006). Based on the internal represen
tation, the networks can learn to discriminate between numerosities in 
an approximate manner that is comparable to empirical studies with 
humans (Stoianov & Zorzi, 2012; Testolin, Dolfi, Rochus, & Zorzi, 2020; 
Testolin, Zou, & McClelland, 2020; Zorzi & Testolin, 2018). These 
modelling results highlight the relevance of unsupervised sensory 
experience in developing an approximate number sense. Other studies, 
growing out of the latest developments in neural network models for 
visual pattern recognition (Krizhevsky, Sutskever, & Hinton, 2012; 
LeCun et al., 1989), have shown that approximate sensitivity to 
numerosity can also arise in hierarchical neural networks trained with 
supervised learning, either as a result of classifying dot-pattern images 
(Chen, Zhou, Fang, & McClelland, 2018) or as a byproduct of classifying 
objects in natural scenes (Nasr, Viswanathan, & Nieder, 2019). All of 
these deep network models differed in their architectural design, 
learning policy (supervised learning via backpropagation versus unsu
pervised learning via reconstruction error), learning objective (classifi
cation of objects versus reconstruction of input images), and input data. 

Yet, they yield very similar results which mirror those obtained both in 
behavioural experiments in a wide range of species and electrophysio
logical recordings from single neurons in the primate brain (Nieder, 
2005, 2016). 

In this paper, we ask to what extent two prominent deep network 
models of the approximate number sense—a DBN and an HCNN—can 
learn to recognise exact numerosity and what learning mechanisms and 
representations might underlie this ability. 

2. Methods 

2.1. Hierarchical convolutional neural network model 

We used a supervised HCNN, similar to that of Nasr and coworkers 
(Nasr et al., 2019). The HCNN is a standard feed-forward network ar
chitecture for classifying images (Krizhevsky et al., 2012; LeCun et al., 
1989) which is loosely inspired by the architecture of the visual cortex. 
The model's weights are updated through the backpropagation learning 
algorithm for which a biologically plausible implementation is currently 
lacking. However, the principle of learning from labels is both biologi
cally relevant and highly effective, and the search for biologically 
realistic approximations to the backpropagation algorithm and alter
native supervised learning algorithms is ongoing (e.g. Lillicrap, Santoro, 
Marris, Akerman, & Hinton, 2020). The architecture of the network is 
depicted in Fig. 1A and the details of its dimensions, hyperparameters, 
and the implementation can be found in Table 1. 

The HCNN consisted of four alternating layers of convolution and 
pooling operations responsible for the extraction of visual features. The 
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Fig. 1. Simplified architecture of the two deep learning models. A: The Hierarchical Convolutional Neural Network (HCNN) used to classify the labelled input images 
by their numerosities from 1 to 10 with a fully supervised learning strategy. B: The Deep Belief Network consisted of two layers of Restricted Boltzmann Machines 
(RBM) and extracted abstract representations of unlabelled input data with unsupervised learning. These abstract representations were used to classify the 
numerosity of the input data into one of ten classes using a linear Softmax classifier. Vn denotes visible layer number n and Hm denotes hidden layer number m. 
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extracted features were then passed on to the classification layer of the 
network, which generated numerosity-label probabilities via a Softmax 
activation function. The architecture was chosen to be as simple as 
possible while still reliably solving the numerosity classification task. 
Models with 30 or 10 units in the last feature extraction layer did not 
reliably show the same level of performance as the model with 90 units. 

The weights were adapted based on the gradient of the cross-entropy 
loss function, given the Softmax of the network's output and the one-hot 
encoded numerosity labels. The neural network was trained for 100 
epochs, with each epoch consisting of gradient updates over sampled 
batches of size 128 iterated through the whole training set. The gradient 
updates were calculated using the RMSProp optimiser with an initial 
learning rate of 0.0005 and a learning decay rate of 0.7. 

The model was implemented in Python 3.0 using TensorFlow 1.15.2. 
All the trainable variables were initialised by the default initialiser of 
TensorFlow. 

2.2. Deep belief network model 

A DBN (Hinton et al., 2006; Hinton & Salakhutdinov, 2006) is an 
unsupervised, hierarchical neural network model with the learning 
objective of developing an internal representation adequate to recon
struct its own sensory input, rather than to directly classify the input 
data. This learning principle can be interpreted as a form of learning by 
observation with no specific behavioural task to perform and no feed
back from the environment about the quality of the representation that 
develops. The network updates its weights through a Hebbian-like 
associative learning rule, which is a familiar principle of neural plas
ticity that adds to the model's biological plausibility (Hinton et al., 2006; 
Stoianov & Zorzi, 2012; Testolin, Dolfi, et al., 2020; Testolin, Zou, & 
McClelland, 2020; Zorzi & Testolin, 2018). 

The DBN was composed by stacking together two Restricted Boltz
mann Machines (RBMs) (Fig. 1B), in a similar manner as in Testolin, 
Dolfi, Rochus, and Zorzi (2020). The RBM realises a hierarchical 
generative model where two layers of non-linear processing units are 
trained with the scope of minimising the discrepancy (reconstruction 
error) between the empirical distribution of the input data and the 
generative model distribution, i.e. the internal representation generated 
by the network in response to the input. The neural units in the first 
hidden layer (H1 in Fig. 1B) encode simple visual properties of the input 
nodes (V1) to which they are fully connected via a matrix of symmetric 
weights. These encoded features (the activation of the hidden neurons) 
represent the first, abstract (or internal) representation of the external 
stimuli generated by the model. These features are then combined into 
more complex features in the subsequent layer (H2 in Fig. 1B). 

The RBMs were trained using the one-step contrastive divergence 
method (Hinton, 2002) for 400 epochs. The connection weights between 
the visible and hidden units were randomly initialised using a normal 

distribution with zero mean and standard deviation of 0.1. The source 
code of the DBN was implemented in Python 3.0 using Pytorch and was 
based on the implementation of the original Hinton's DBN model 
developed in Python by Testolin, Stoianov, De Grazia and Zorzi (Tes
tolin, Stoianov, De Filippo De Grazia, & Zorzi, 2013). 

In order to evaluate how efficiently the emergent representations of 
the DBN could determine the numerosity of the input images, we trained 
a 10-class Softmax classifier, corresponding to the one in the HCNN 
model, to classify the input images according to their numerosities based 
on input from the second layer of the DBN. 

2.3. Numerosity datasets 

We generated a dataset of visual stimuli consisting of 60,000 two- 
dimensional binary images of size 28 × 28 pixels. The dataset con
tained ten labelled classes of images corresponding to the numerosities 1 
through 10. Each image was composed of between one and ten non- 
overlapping white squares (pixel intensity equal to one) drawn on a 
black background (pixel intensity equal to zero). The side length of the 
white squares varied from 2 to 6 pixels, for a total of five different sizes 
of squares. Each image was created by placing squares, drawn uniformly 
from the range of possible side lengths, at random positions with the 
requirement that the squares have a minimum of 2 pixels distance to 
other squares and to the edges of the image. The dataset was split into a 
training set with 75% of the images and a test set with 25% of the im
ages. Another dataset of 100,000 images was produced with the same 
statistics to create the tuning curves of the trained networks. As a 
consequence of the white squares varying in size and position, the 
number of white squares in the images correlated with other variables 
such as the total area of the white squares (r = 0.89) and the convex hull 
of the white squares (r = 0.94). Statistics for the dataset are visualised in 
Fig. S1. 

To investigate the influence of non-numerical features of the images 
on the performance of the networks, we generated three additional 
datasets with distinctive shape statistics. The first dataset consisted of 
images with identically sized squares of side length 3 pixels. In this 
dataset, numerosity perfectly correlated with area (Fig. S2), and the 
correlation between numerosity and convex hull was r = 0.94. The 
second dataset consisted of randomly sized rectangles with side length 
between 1 and 5 pixels (Fig. S3). In this dataset the correlation between 
numerosity and area was r = 0.87 and between numerosity and convex 
hull was r = 0.93. The third dataset consisted of images where the total 
area of rectangles was fixed to 64 pixels for all numerosities. In this 
dataset the correlation between numerosity and area was r = 0 (Fig. S4). 
The correlation between numerosity and convex hull of white rectangles 
was r = 0.9. Properties of the additional datasets, other than the shapes 
and sizes of the objects, such as the restrictions on the objects' relative 
distance or spatial distributions, were the same as for the original 
dataset of randomly sized squares described above. 

2.4. Tuning curves 

In order to analyse the functionality of single units in the network, 
we produced neural tuning curves by averaging the neural activities 
over all the images depicting the same numerosity. Assigning each unit 
to the numerosity it encoded was carried out algorithmically. A unit was 
said to encode numerosity n if the unit was only active for numerosities 
‘≥n’ (and inactive for ‘<n’) or only active for numerosities ‘≤n’ (and 
inactive for ‘>n’). A unit was defined as active when its activity level was 
above 0.5. 

2.5. Representational similarity analysis 

We used representational similarity analysis (Kriegeskorte, Mur, & 
Bandettini, 2008; Testolin, Dolfi, et al., 2020) to measure the similarity 
between internal representations associated with different numerosities. 

Table 1 
Description of the layers in the HCNN.  

Layer Type Spatial 
Size 

Parameters Activation 

0 Input 28 × 28   
1 Convolutional 28 × 28 filters = 8, kernel size 

= 5 
ReLU 

2 Max Pooling 14 × 14 pool size = 2, stride =
2  

3 Convolutional 14 × 14 filters = 64, kernel 
size = 3 

ReLU 

4 Max Pooling 7 × 7 pool size = 2, stride =
2  

5 Flatten 3136   
6 Fully connected 90  Sigmoid 
7 Dropout (For 

training) 
90 dropout rate = 0.25  

8 Fully connected 10  Softmax  
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An activity vector was defined as the vector of activity levels of all neural 
units in a network layer in response to a given input image. The Pearson 
correlation between any pair of activity vectors was used as a metric of 
similarity and visualised in a colour-coded representational similarity 
matrix. In a representational similarity matrix, the element ri, j repre
sents the Pearson correlation between the population vectors computed 
for input image i and input image j. High positive correlation was shown 
in red and high negative correlation was shown in blue. 

2.6. Hinton diagrams 

A Hinton diagram (Hinton & Shallice, 1991) was used to visualise the 
connections and connection strengths (weights) between the last hidden 
layer of the HCNN and the output classifier. In a Hinton diagram, pos
itive connection weights are represented by white squares and negative 
connection weights by black squares. The size of a square represents the 
magnitude of the corresponding connection weight. 

2.7. Area-adjusted baseline 

In order to investigate to what extent the neural networks could base 
their inference of numerosity on the total area of squares in each image, 
we calculated an area-adjusted baseline for each dataset. The area- 
adjusted baseline corresponds to the average probability of guessing 
the right numerosity when the total area of shapes in an image in the 
dataset, as well as the distribution of total area in the dataset, is known. 
We first calculated the proportion of images belonging to each numer
osity for each distinct value of total area in the dataset. Next, the area- 
adjusted baseline accuracy was calculated as the weighted average of 
these proportions over the set of total areas in each numerosity. 

3. Results 

3.1. Numerosity classification performance 

We first asked to what degree the two network architectures, a DBN 
and an HCNN (Fig. 1), could learn to classify square-pattern images by 
their numerosity from one through ten. The networks were trained and 
tested on the very same datasets: an input dataset of 45,000 synthetic 
square-pattern images depicting different numbers of white squares that 
varied in size and position, and a separate test set of 15,000 square- 
pattern images (see section 2). After training, the HCNN classified the 
test set images by the number of squares with an overall accuracy of 99% 
(chance level = 10%). The performance was close to uniform over all 
numerosities (Fig. S5). This result demonstrates that a neural network 
can learn to recognise exact numerosity even beyond the standard 
subitizing range of up to four items. 

The DBN was trained with an unsupervised, layer-wise policy until 
the convergence of the reconstruction error at each hidden layer of the 
network (see Section 2). Following the procedure of Stoianov and Zorzi 
(2012) we next used the abstract features learnt at the second and final 
hidden layer of the DBN as input to train a simple Softmax classifier for 
the classification of the images into ten numerosity categories (Fig. 1B). 
We evaluated the classification performance of several DBN architec
tures on the test images by varying the number of neural units in the first 
hidden layer (h1) and the second hidden layer (h2) within the range of 
100 − 1000 (Fig. S6). A DBN architecture with h1 = 200 units in the first 
hidden layer and h2 = 1000 units in the second hidden layer produced 
the highest overall accuracy of approximately 60%. This accuracy was 
substantially higher than the accuracy obtained using the same Softmax 
classifier trained and tested using either the raw/original test images as 
input (max 33%, see also Fig. S6) or the abstract features learned with 
the first hidden layer as input (max 47%), showing that the network had 
learned representations of the input images that were increasingly 
sensitive to numerosity for successive layers of processing. 

Most previous models of the approximate number system have used a 

binary numerosity discrimination task (Nasr et al., 2019; Stoianov & 
Zorzi, 2012; Zorzi & Testolin, 2018). Here, we followed Chen et al. 
(2018) and Testolin, Zou, and McClelland (2020) and used a numerosity 
estimation task. The numerosity estimation task allowed us to produce a 
distribution of classification responses across all numerosities that is 
more directly comparable to experimental data (Viswanathan & Nieder, 
2013) and the theoretical prediction of a number line code (Dehaene, 
2011). In a number line code, the approximate representation of 
numerosity is conceived as a distribution of activation on a mental 
number line (Dehaene, Piazza, Pinel, & Cohen, 2003) where numbers 
are sorted by their proximity and the overlap between the distributions 
of activation increases with numerosity. We found that DBN accuracy 
was highest for small numerosities, starting with 100% for images with a 
single square and gradually decreased for larger numerosities (Fig. 2). 
This numerosity response distribution qualitatively reproduced the 
classic behavioural variability signature often attributed to the 
approximate number system and a model that instantiates a number line 
code (Dehaene, 2001; Gallistel & Gelman, 1992). The graded perfor
mance apparent in Fig. 2 is also in qualitative agreement with empirical 
studies assessing pre-counters' enumeration of up to six items (Sella, 
Berteletti, Lucangeli, & Zorzi, 2016). 

The network performance results show that exact numerosity 
perception can be learned by a hierarchical neural network trained with 
supervised learning and consolidate the view that a network model 
trained under unsupervised learning, like the DBN, can capture key as
pects of approximate number perception. We next asked whether the 
qualitative difference in classification performance, exact versus 
approximate enumeration of squares in an image, could be explained by 
the neural representations emerging from the two networks' learning 
processes. 

3.2. Population level representations of numerosity 

Although the two network models differed in many regards, they 
implemented the same Softmax classifier to determine the correct 
numerosity label. We therefore expected that, after training, classifica
tion performance would depend primarily on the representations that 
had developed in the networks and were fed into the output classifier, 
rather than the specifics of the architectures or learning algorithms. To 
provide mechanistic insight into why the two networks performed 
differently, we investigated the representations of the last layer before 
the Softmax classifier of each network. We exposed the trained network 
models to a subset of 1000 images (100 images per numerosity) from the 
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Fig. 2. Numerosity response distribution of the deep belief network. Different 
colours represent the actual numerosity from one through ten in the input 
image, as specified in the figure legend. The x-axis denotes the numerosity 
predicted by the Softmax classifier. The y-axis denotes the percentage of clas
sification responses for each predicted numerosity. Note the decreasing accu
racy and broader response variability with increasing target numerosity. The 
higher performance for numerosity 10 was an artifact of the limited range of 
numerosities tested. 
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original test set of square-pattern images and recorded the neural ac
tivities triggered by each test image across the 90 and 1000 units in the 
last layer of the HCNN and DBN, respectively. 

A representational similarity analysis (see Section 2) of the neural 
activities revealed that the two architectures solved the numerosity 
classification task in qualitatively different ways (Fig. 3). In the last layer 
of the HCNN, ten separate network states were selectively activated by a 
specific input numerosity (Fig. 3A). These states exhibited neural ac
tivity patterns whose pairwise similarity was high for input images with 
the same numerosity, and systematically decreased with the difference 
in numerosity between input images. That is, input images with the 
same number of squares, but in different sizes and locations, triggered 
neural activity patterns that were highly correlated (yellow blocks along 
the diagonal of the representational similarity matrix where ri, j ≈ 1 for 
images i and j depicting the same numerosity), while input images with 
different numbers of squares triggered neural activity patterns with 
correlations which decreased as a function of the difference between the 
number of squares in the input images. This population level represen
tation corresponds to a local neural code where the numerosity of the 
input image can be decoded from which particular subpopulation of the 
network units are activated by the input. 

In contrast to the HCNN, the DBN did not develop a uniquely iden
tifiable activity pattern for each numerosity. Correlations between ac
tivity states for input images of both the same and different numerosities 
were small, and the representational similarity matrix did not show 
sharp network states or a clear code with discrete transitions in network 
activity between different numerosities (Fig. 3B). However, summing up 
the activity of all units for input images of each numerosity showed that 
the total neural activity generated at the second hidden layer of the DBN 
increased with increasing numerosity (Fig. 4). Thus, the DBN as a whole 
was sensitive to different visual numerosities in a manner that supported 
approximate numerosity judgement comparable to biological data. 

3.3. Single unit representations of numerosity 

A more detailed picture of the representations developed by the 

networks can be obtained by tracing the activity of single neural units in 
the final network layer as a function of the input numerosity. We pro
duced neural tuning curves by averaging the neural activities over all the 
images depicting the same numerosity obtaining a total of 1000 and 90 
tuning curves for the DBN (Fig. S7) and the HCNN (Fig. S8), respectively. 

In the case of the DBN, single neural units at the second hidden layer 
exhibited graded ‘summation unit’ responses with high response vari
ability rather than units selectively responding to particular numer
osities (Fig. 5). Given that the DBN was not trained with the specific 
objective of classifying the visual stimuli by their numerosity labels, the 
lack of numerosity-selective units may not be surprising. It may also be 
an indication that the network estimated numerosity indirectly from an 
encoding of associated statistical features such as the size or area of 
shapes in the image (see section 3.4). Regardless, while numerosity- 

Fig. 3. Representational similarity matrix for the HCNN (A) and the DBN (B). The representational similarity matrix plot shows the correlation ri, j, colour coded from 
low values in dark blue to high values in yellow, between the neural activities developed at the last layer of the network in response to test images i and j. The total 
number of test images was 1000 (black number labels), with 100 images per numerosity (red number labels). A: The block pattern shows that the population activity 
was very similar for different images with the same number of squares in them, ri, j ≈ 1 when images i and j had the same numerosity (red labels); in contrast the 
activity was gradually more dissimilar for images depicting different numbers of squares. B: In the case of the DBN, no clear network states could be identified and the 
correlation ri, j was low both when images contained the same number of items and when they depicted different numerosities. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. Total activity of all 1000 units in the second hidden layer of the DBN as 
a function of the numerosity of the input image. The total activity was calcu
lated by first summing up the 1000 single-neuron activities generated by each 
image across the second hidden layer and then averaging these quantities across 
all images belonging to the same numerosity. Vertical bars represent the stan
dard deviation associated with these averages. 
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selective tuning has been reported in other models of approximate 
number sense (e.g. Nasr et al., 2019), these results extend previous work 
(e.g. Stoianov & Zorzi, 2012) in showing that monotonic tuning curves 
are sufficient to produce approximate number judgements and the 
behavioural performance profile predicted by a more sophisticated 
number-line code (Fig. 2). 

Fig. 6 shows tuning curves extracted from the last layer of the HCNN 
for 19 neural units preferentially responding to distinct numerosities. 
Half of the sharply selective units were activated for numerosities larger 
than a particular cardinal number, while the other half was activated for 
numerosities smaller than a particular cardinal number. About 10% of 
the units were not selective for numerosity. Collectively, the units 
encoded the exact numerosity of the input image. The tuning curve 
analyses indicate that the HCNN learned to extract and represent 
numerosity in a form consistent with the numerosity code proposed by 

Zorzi and Butterworth (1999), also described as a ‘thermometer code’ or 
‘cardinality code’. The representation reflects the property of cardinal 
numbers that each preceding number is contained in the succeeding 
number, i.e. 1 is part of 2, which is part of 3, and so on. Tuning curves for 
the entire population of units in the last layer of the HCNN are shown in 
Fig. S8. 

Having identified that numerosity was represented in the HCNN as 
units responding to numerosities ‘larger than’ or ‘smaller than’ different 
preferred cardinal numbers, we asked exactly how this code was used to 
compute the correct numerosity labels in the output. The pattern of 
connections between different units in the final hidden layer and the 
output units Softmax classifier provides insight into this mechanism. 
Fig. 7 shows a visual representation of the connection weights from the 
last hidden layer to the output layer using a Hinton diagram (see Section 
2). The weight matrix shows that units in the last hidden layer that 
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Fig. 5. Tuning curves for 5 of 1000 units in the last hidden layer of the deep belief network. Graphs denote mean activity and error bars denote standard deviation. 
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Nine units selectively activated by images 
representing less than a particular numer
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units selectively activated by images repre
senting more than a particular numerosity, 
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represented ‘≤n’ objects in the input image activated output units rep
resenting numerosity labels ‘≤n’ and inhibited output units representing 
numerosity labels ‘>n’. Units in the final hidden layer that represented 
‘≥n’ objects in the input image inhibited output units representing 
numerosity labels ‘<n’. The resulting computation activated the 
appropriate output cardinality units via a superposition principle, which 
is a familiar computational principle of many brain systems. 

As an example, assume that the network has been given an image 
with 3 squares. Units that respond to numerosity ‘≤3’, such as unit N =
14 in Fig. S8, will excite output units 1–3 and inhibit output units 4–10. 
Units that respond to numerosity ‘≥3’, such as unit N = 54 in Fig. S8, 
will inhibit output units 1–2. Thus, only output unit 3 would receive a 
positive net activation. 

This qualitative analysis of the network's functionality can be tested 
on the behavioural outcome it predicts. To test the functional relevance 
of the subset of units tuned to a specific numerosity, we silenced all units 
whose tuning curves switched activity state for each of the cardinal 
numbers in turn (3–15 units per numerosity; see Section 2). The classi
fication performance then dropped to 0% for the silenced number 
without affecting performance for other numbers (Fig. 8). Note that 
silencing the only unit responding selectively to images of numerosity 
10 caused only a marginal drop in the network's classification perfor
mance. However, when we silenced all ‘≥n’ units, classification per
formance dropped to 0% exclusively for numerosity 10, confirming the 
impression from the Hinton diagram (Fig. 7) that the corresponding 
output unit was activated when all other output units were inhibited by 
‘≤n’ units. 

3.4. Non-numerical features 

In light of a recent and hot debate concerning the role of non- 
numerical perceptual cues in numerosity judgements (see e.g. Gebuis, 
Cohen Kadosh, & Gevers, 2016; Wilkey & Ansari, 2019), we asked 

whether the network models were primarily sensitive to numerosity per 
se, or, rather, to non-numerical features that co-vary with numerosity, 
such as the total area of white shapes in the images. We first analysed 
how single unit activity was associated with numerosity, and next we 
directly tested how network performance was affected by the total area 
of white shapes in the images in different datasets. 

On the level of single units, plotting neural activity in the final HCNN 
layer as a function of total surface area of the squares (Fig. S9) or as a 
function of convex hull of the squares (Fig. S10) resulted in broad tuning 
curves with gradual rather than abrupt transitions. Moreover, units 
responding to the same numerosities (Fig. S8) also responded identically 
when input images varied as a function of either area (Fig. S9) or convex 
hull (Fig. S10), essentially distinguishing 10 discrete network states. 
This encoding would not be expected if the network coded for contin
uous variables such as total area or convex hull of the squares. The sharp 
tuning curves with abrupt transitions at a preferred numerosity (Fig. 6) 
were distinctively associated with tracing activity as a function of 
numerosity and suggest that the HCNN was primarily selective to nu
merical information. 

For the DBN, both individual tuning curves (Fig. 5) and cumulative 
network activity (Fig. 4) displayed high variability in response to images 
of the same numerosity, indicating that variables other than numerosity 
affected the representation. 

In the dataset of square-pattern images, the number of squares 
correlated with non-numerical variables such as the total area of squares 
(the total number of white pixels) in the images (see Section 2). To 
investigate the extent to which network performance could be explained 
by the total area of squares in the images, we calculated the probability 
that a square-pattern image belonged to each numerosity given the total 
area of squares in the image. From Fig. 9A we see that while the per
formance of the HCNN seemed unrelated to this area-adjusted baseline, 
the DBN performed only slightly better than the level expected if clas
sification was based exclusively on the total area of squares in the 
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Fig. 7. Hinton diagram (see Section 2) of the connection weights that connect the last hidden layer with the output units of the hierarchical convolutional neural 
network (HCNN). Numbers in the left column (1− 10) indicate the output labels corresponding to different output numbers of the Softmax classifier. Numbers in the 
top row represent units of the final hidden layer of the HCNN connecting to the output layer, and corresponding tuning curves are shown in Fig. S8. 
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images. These results consolidate the impression that the DBN's perfor
mance could, to a large degree, be explained by a mapping of area to 
numerosity and is consistent with the perspective that the system 
developed sensitivity to numerosity through performing sensory inte
gration rather than extracting numerosity per se (Gebuis et al., 2016). 

When trained and tested on a new dataset consisting of white squares 
of identical size, and thus a one-to-one mapping between the total area 
of white squares and the numerosity of an image, both networks reached 
near-perfect performances (Fig. 9B). This result shows that the DBN 
could perform at a level comparable to the HCNN for less abstract, non- 
numerical variables but does not show whether the DBN could also 
develop sensitivity to numerosity without relying on area. 

The effect of area on network performance can be more directly 
tested in a dataset where all images have the same total area of white 
shapes. However, for square shapes, it is not possible to make images 
with a common total area for all numerosities. We therefore generated 
two additional datasets of rectangles: one dataset with images of rect
angles of random sizes, and one dataset with images in which the total 
area of rectangles was fixed at 64 pixels for all numerosities. The iden
tical total area of all images ensured that there was no correlation be
tween area and numerosity in this dataset (see Section 2 and 
supplementary material). 

When trained and tested on the dataset with randomly sized rect
angles, network performance did not deviate much from that of the 

dataset with randomly sized squares for either network (Fig. 9C). When 
trained and tested on the dataset with rectangles of identical total area, 
the HCNN preserved its near-perfect performance. The accuracy of the 
DBN was close to chance level for numerosities larger than four, but still 
identified smaller numerosities (Fig. 9D). Similar results were obtained 
when the networks were trained on the dataset with rectangles of 
random sizes and tested on the dataset with rectangles with a fixed, 
identical area (Fig. S11). 

We conclude that while the HCNN learned an area-invariant repre
sentation of numerosity, the DBN relied more strongly on non-numerical 
features, especially for large numerosities. It is still possible that other 
non-numerical features supported the performance of either network. 

4. Discussion 

In this paper we investigated if and how learning of small symbolic 
numbers can be supported by general learning principles of hierarchical 
neural networks. We trained two networks of different architectures and 
learning algorithms to classify the same input dataset of dot-pattern 
images using the same output classifier. 

A deep belief network (DBN) trained to generate dot-pattern images 
without associated labels learned to estimate the number of squares at 
an overall accuracy of 60% and a single-number accuracy that declined 
for increasing numerosity. This result is in qualitative agreement with 
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behavioural data from pre-counting toddlers (Sella et al., 2016) as well 
as with other recent proposals simulating the task of discriminating 
between pairs of numerosities with similar network models (Chen et al., 
2018; Testolin, Zou, & McClelland, 2020; Zorzi & Testolin, 2018). The 
hierarchical convolutional neural network (HCNN), trained to directly 
classify the input images by numerosity labels, learned to exactly 
enumerate the squares with near-perfect performance. This behaviour is 
reminiscent of subitizing, i.e. the direct perception of the number of 
items in a set, whose neurobiological underpinnings are currently 
largely unknown. Underlying the difference in function and perfor
mance of the two networks, qualitatively distinct mechanisms for rec
ognising numerosity emerged at the level of neural representations. The 
final layer of both networks encoded statistics of numerosity in the input 
images in such a way that numerosity could be extracted to a much 
higher degree than from the raw images directly. However, the encoding 
of numerosity information differed radically between the networks. 

The DBN developed a dense population representation of 
numerosity-sensitive neural units with monotonically increasing 
response profiles called summation units (Dehaene & Changeux, 1993). 
Contrary to previous models of approximate number discrimination 
(Nasr et al., 2019; Zorzi & Testolin, 2018), we did not find symmetric, 
numerosity-selective neural units in the DBN. However, the summation 
code was sufficient for producing the characteristics of a logarithmic 
number-line code (Dehaene, 2011) in the output units of the simple 
Softmax classification layer (Fig. 2). Using a 10-class classification task 
rather than a binary discrimination task allowed us to directly demon
strate the behavioural response profile of the approximate number sys
tem in the output classification layer of the DBN, which also 
qualitatively matched single neuron activity in primates (Viswanathan 
& Nieder, 2013). The logarithmic representation of number is efficient 
in the sense that a large range of numerosities can be represented with 
relatively few neural resources. However, it lacks the single-object res
olution for large numerosities that is necessary for establishing one-to- 
one correspondences between objects and number words and for the 
exact enumeration required for the concept of natural numbers. 

In contrast to the DBN, the HCNN developed a sparse population 
code for numerosity in which single neurons abruptly switched their 
responses for a particular, preferred numerosity (Fig. 6). This repre
sentation effectively implements a thermometer-like numerosity code 
(Zorzi & Butterworth, 1999), that captures the compositional principle 
of natural numbers: that each numerosity (natural number) includes the 
smaller numerosities. The single-unit response profiles were distinct 
from the Gaussian-like tuning curves of number-selective neurons re
ported in experimental data (Viswanathan & Nieder, 2013) and models 
of approximate number perception (Nasr et al., 2019; Zorzi & Testolin, 
2018). However, the numerosity code enables the exact numerosity of 
the input image to be clearly distinguished by the population of neural 
units and allows two important properties necessary for the conceptual 
development of natural numbers: i) establishing one-to-one correspon
dence between numerosity categories and objects in the real world, and 
ii) distinguishing transformations that are invariant to numerosity 
(Butterworth, 2010). 

A potential strength of the summation code that developed in the 
DBN is that it might more easily generalise to an extended range of 
numerosities. Training a new output classifier on top of the summation 
code would likely suffice to approximately estimate an extended range 
of numerosities, e.g. from one through twenty. In comparison, the rep
resentation that developed in the HCNN was closely tailored to the input 
training set, having groups of neural units uniquely representing single 
numerosities. Exactly classifying an extended range of input numer
osities with the same HCNN would require restructuring of the existing 
representation through retraining of the entire network. Alternatively, 
supporting an extended range of input numerosities could be achieved 
by retraining a subgroup of neural units or recruiting additional neural 
units into the code. Such plasticity processes might be reasonable from 
the point of view of a neurobiological mechanism or of an extended 

neural network model with a mechanism for continual learning (e.g. 
Kirkpatrick et al., 2017). 

Although the brain is unlikely to implement details of the network 
architectures and learning algorithms of the simulations in this study, 
the results of such simulations are still relevant to understanding 
cognitive function. For example, the current simulations contribute to 
our understanding of how specific behaviours are supported by the 
development of specific neural representations. In this paper we showed 
how exact number perception can emerge from developing neural rep
resentations that correspond to the cardinality of a set of items and that 
language in the form of number labels may be key to developing exact 
number concepts. Whether humans and non-human animals that can 
classify and label exact numerosities also develop a precise neural 
numerosity code remains to be settled by neurophysiological experi
ments. Directly comparing different computational models trained on 
the same input data provides a useful approach to investigating what 
architectural components and learning processes are important to 
numerosity perception and will ultimately allow us to better understand 
the basic principles that shape our numerical cognition. 

While human subitizing is typically limited to four objects, the HCNN 
learned to perfectly classify numerosities up to ten. If a general neural 
network mechanism underlies human subitizing, one might expect an 
effect of practice on the subitizing range. There is currently limited 
empirical data on the effect of extended practice on human subitzing 
performance. However, in some schools, subitizing is routinely prac
ticed and extended to a form of rapid arithmetic reasoning called ‘con
ceptual subitizing’ or ‘groupitizing’ (Clements, 1999; Clements et al., 
2019; Starkey & Mccandliss, 2014; Wender & Rothkegel, 2000). By 
learning to recognise the numerosity of an image as a combination of 
sub-patterns of smaller numerosities, elementary school children can 
rapidly perceive numerosities up to 10 and beyond without counting 
(Clements, 1999). Indeed, some early 20th century curricula considered 
subitizing a prerequisite to learning the counting algorithm, with the 
benefit of being faster and less error-prone in the initial phases of 
number learning (Clements et al., 2019). Conceptual subitizing is 
rapidly gaining interest in primary education for its potential to 
strengthen arithmetic fluency and foster a conceptual understanding of 
the compositional nature of numbers (Clements et al., 2019; Clements & 
Sarama, 2014; Özdem & Olkun, 2019). A natural further step towards a 
computational understanding of mathematical cognition would be to 
investigate the development of a similar rudimentary form of mathe
matical reasoning in neural networks or other computational model 
systems. 

An ongoing debate about whether and how perceptual number sense 
contributes to mathematics achievement is influencing educational 
policy (e.g. Butterworth, 2010; Dehaene, 2011; Siegler & Braithwaite, 
2017). Children's performances in approximate number judgement tasks 
have been conjectured to influence, and reported to correlate with, 
mathematical proficiency (e.g. Feigenson, Libertus, & Halberda, 2013; 
Halberda, Mazzocco, & Feigenson, 2008; Siegler & Braithwaite, 2017; 
Starr, Libertus, & Brannon, 2013). However, studies taking other vari
ables, such as attention, into account suggest that exact enumeration, 
but not approximate estimation, is directly related to mathematical 
performance (Libertus, 2019; Soltész, Szücs, & Szücs, 2010; Szűcs, 
Devine, Soltész, Nobes, & Gabriel, 2014). It is possible that the direct 
perception and classification of exact numerosity through subitizing 
constitutes a cognitive foundation for the conceptual development of 
natural numbers as well as learning elementary arithmetic and more 
advanced symbolic mathematics (Carey, 2001; Dehaene, 2011; Siegler 
& Braithwaite, 2017). However, the causal relationship between num
ber sense and mathematics achievement is likely to be more complex. 
Developing proficiency with symbolic numbers extends over many years 
and likely involves an intricate interplay between subitizing, analogue 
and approximate number processing, and higher cognitive processes 
such as working memory and attention which might change consider
ably over time (e.g. Szűcs et al., 2014). 
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In conclusion, we have compared two neural network models and 
seen that they develop different internal representations that support 
qualitatively different numerosity perception systems—exact enumera
tion and approximate estimation. The results support the theory that 
parallel neural-level mechanisms underlie exact and approximate 
number sense (Piazza, 2010). Generic learning mechanisms in hierar
chical neural networks are sufficient to reproduce key features of the 
approximate visual perception of numbers, consistent with the view that 
our approximate number sense may arise naturally from sensory inte
gration (Gebuis et al., 2016). At the same time, rather than being a 
Kantian a priori concept (Siegler & Braithwaite, 2017), and consistent 
with the observation that subitizing is not reserved for the visual mo
dality (Camos & Tillmann, 2008; Riggs et al., 2006), exact enumeration 
can also emerge from sensory experience through a general pattern 
recognition mechanism that is efficiently supported by language in the 
form of labelled examples. 
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