
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 2, NO. 1, FEBRUARY 2018 3

A Three-Layer Privacy Preserving Cloud Storage
Scheme Based on Computational Intelligence

in Fog Computing
Tian Wang , Jiyuan Zhou, Xinlei Chen , Guojun Wang , Anfeng Liu , and Yang Liu, Member, IEEE

Abstract—Recent years witness the development of cloud com-
puting technology. With the explosive growth of unstructured data,
cloud storage technology gets more attention and better develop-
ment. However, in current storage schema, user’s data is totally
stored in cloud servers. In other words, users lose their right of
control on data and face privacy leakage risk. Traditional privacy
protection schemes are usually based on encryption technology,
but these kinds of methods cannot effectively resist attack from the
inside of cloud server. In order to solve this problem, we propose a
three-layer storage framework based on fog computing. The pro-
posed framework can both take full advantage of cloud storage and
protect the privacy of data. Besides, Hash-Solomon code algorithm
is designed to divide data into different parts. Then, we can put a
small part of data in local machine and fog server in order to pro-
tect the privacy. Moreover, based on computational intelligence,
this algorithm can compute the distribution proportion stored in
cloud, fog, and local machine, respectively. Through the theoretical
safety analysis and experimental evaluation, the feasibility of our
scheme has been validated, which is really a powerful supplement
to existing cloud storage scheme.

Index Terms—Cloud computing, cloud storage, fog computing,
privacy protection.

I. INTRODUCTION

S INCE the 21st century, computer technology has developed
rapidly. Cloud computing, an emerging technology, was

first proposed in SES 2006 (Search Engine Strategies 2006) by
San Jose and defined by NIST (National Institute of Standards

Manuscript received June 14, 2017; revised September 25, 2017; accepted
October 7, 2017. Date of current version January 19, 2018. This work was
supported in part by the National Natural Science Foundation of China under
Grants 61672441, 61472451, and 61632009, in part by the Guangdong Provin-
cial Natural Science Foundation under Grant 2017A03030800, in part by the
High Level Talents Program of Higher Education in Guangdong Province un-
der Grant 2016ZJ01, and in part by the Foster Project for Graduate Student
in Research and Innovation of Huaqiao University under Grant 1611414016.
(Corresponding author: Guojun Wang.)

T. Wang, J. Y. Zhou, and X. L. Chen are with the Department of Computer
Science and Technology, Huaqiao University, Xiamen 361021, China (e-mail:
cs_tianwang@163.com; zhoujiyuan1994@foxmail.com; adamwt@163.com).

G. Wang is with the School of Computer Science and Educational Soft-
ware, Guangzhou University, Guangzhou 510006, China (e-mail: wsnman@
gmail.com).

A. F. Liu is with the School of Information Science and Engineering, Cen-
tral South University, Changsha 410083, China (e-mail: afengliu@mail.csu.
edu.cn).

Y. Liu is with the State Key Laboratory of Networking and Switching Tech-
nology, Beijing University of Posts and Telecommunications, Beijing 100876,
China (e-mail: liu.yang@bupt.edu.cn).

Digital Object Identifier 10.1109/TETCI.2017.2764109

and Technology) [1]. Since it was proposed, cloud computing
has attracted great attention from different sectors of society.
Cloud computing has gradually matured through so many peo-
ple’s efforts [2]. Then there are some cloud-based technologies
deriving from cloud computing. Cloud storage is an important
part of them.

With the rapid development of network bandwidth, the vol-
ume of user’s data is rising geometrically [3]. User’s requirement
cannot be satisfied by the capacity of local machine any more.
Therefore, people try to find new methods to store their data.
Pursuing more powerful storage capacity, a growing number
of users select cloud storage. Storing data on a public cloud
server is a trend in the future and the cloud storage technology
will become widespread in a few years. Cloud storage is a cloud
computing system which provides data storage and management
service. With a cluster of applications, network technology and
distributed file system technology, cloud storage makes a large
number of different storage devices work together coordinately
[4], [5]. Nowadays there are a lot of companies providing a va-
riety of cloud storage services, such as Dropbox, Google Drive,
iCloud, Baidu Cloud, etc. These companies provide large ca-
pacity of storage and various services related to other popular
applications, which in turn leads to their success in attracting hu-
morous subscribers. However, cloud storage service still exists
a lot of security problems. The privacy problem is particularly
significant among those security issues. In history, there were
some famous cloud storage privacy leakage events. For exam-
ple, Apples iCloud leakage event in 2014, numerous Hollywood
actresses private photos stored in the clouds were stolen. This
event caused an uproar, which was responsible for the users’
anxiety about the privacy of their data stored in cloud server.

As shown in Fig. 1, user uploads data to the cloud server
directly. Subsequently, the Cloud Server Provider (CSP) will
take place of user to manage the data. In consequence, user do
not actually control the physical storage of their data, which
results in the separation of ownership and management of data
[6]. The CSP can freely access and search the data stored in
the cloud. Meanwhile the attackers can also attack the CSP
server to obtain the user’s data. The above two cases both make
users fell into the danger of information leakage and data loss.
Traditional secure cloud storage solutions for the above prob-
lems are usually focusing on access restrictions or data encryp-
tion. These methods can actually eliminate most part of these

2471-285X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4819-621X
https://orcid.org/0000-0001-5233-8335
https://orcid.org/0000-0001-9875-4182
https://orcid.org/0000-0001-5190-4761

4 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 2, NO. 1, FEBRUARY 2018

Fig. 1. Traditional cloud storage structure.

problems. However, all of these solutions cannot solve the inter-
nal attack well, no matter how the algorithm improves. There-
fore, we propose a TLS scheme based on fog computing model
and design a Hash-Solomon code based on Reed-Solomon code
[7], [8]. Fog computing is an extended computing model based
on cloud computing which is composed of a lot of fog nodes.
These nodes have a certain storage capacity and processing ca-
pability. In our scheme, we split user’s data into three parts and
separately save them in the cloud server, the fog server and the
user’s local machine. Besides, depending on the property of the
Hash-Solomon code, the scheme can ensure the original data
cannot be recovered by partial data. On another hand, using
Hash-Solomon code will produce a portion of redundant data
blocks which will be used in decoding procedure. Increasing
the number of redundant blocks can increase the reliability of
the storage, but it also results in additional data storage. By
reasonable allocation of the data, our scheme can really protect
the privacy of user’ data. The Hash-Solomon code needs com-
plex calculation, which can be assisted with the Computational
Intelligence (CI). Paradigms of CI have been successfully used
in recent years to address various challenges, for example, the
problems in Wireless sensor networks (WSNs) field. CI pro-
vides adaptive mechanisms that exhibit intelligent behavior in
complex and dynamic environments like WSNs [9]. Thus in our
paper, we take advantage of CI to do some calculating works in
the fog layer. Compared with traditional methods, our scheme
can provide a higher privacy protection from interior, especially
from the CSPs. The remainder of this paper is organized as
follows: Section II reviews related research work, Section III
detailedly elaborates the TLS architecture, the Implementation
detail of work flow, the theoretical safety analysis of the stor-
age scheme and the efficiency analysis proposed in this paper,
Section IV evaluates the scheme by different experiments and
Section V concludes this paper at last.

II. RELATED WORKS

The importance of security in cloud storage has attracted a
lot of attention no matter in academe or industry. There are a lot
of researches about secure cloud storage architectures in recent
years. In order to solve the privacy issue in cloud computing,
paper [10] proposed a privacy-preserving and copy-deterrence
CBIR scheme using encryption and watermarking techniques.
This scheme can protect the image content and image features
well from the semi-honest cloud server, and deter the image
user from illegally distributing the retrieved images. Shen et al.
think cloud is semi-trusted and propose a framework for urban
data sharing by exploiting the attribute-based cryptography. The
scheme they proposed is secure and can resist possible attacks
[11]. Fu et al. propose a content-aware search scheme, which
can make semantic search more smart. The experiments results
show that their scheme is efficient [12].

In paper [13], Hou, Pu and Fan consider that in traditional
situation, user’s data is stored through CSP, even if CSP is
trustworthy, attackers can still get user’s data if they control the
cloud storage management node. To avoid this problem, they
propose an encrypted index structure based on an asymmetric
challenge-response authentication mechanism. When user
requests data from cloud server, the user sends a password to
the server for identification. Taking it into consideration that
the password may be intercepted, the structure uses asymmetric
response mode. Hou, Wu, Zhen and Yang point out that the se-
cure core of cloud storage is security and privacy in distributed
system. So they propose a secure virtual protection scheme
based on SSL and Daoli in paper [14], [15]. By transferring data
over SSL and deploying Daoli on the cloud server, the system
encrypts data before it is written into the hard disk. In paper
[16], Feng points out that in paper [14], the burden of server
will increase and data may leak during transmission in cloud
servers. Feng proposes a more concise scheme: encrypting
data in closed cloud environment. Besides, it can achieve
multi-point secure storage with one time encrypting. However,
these encryption make search in cloud more difficult. Currently,
searchable encryption is a hot topic in the field of cloud com-
puting. Paper [17]–[20] give different solutions to this problem.
Each of them achieves high accuracy, security and efficient.

In paper [21], Seny and Kristin concern that the service
provider is not complete trusted, so they design a virtual pri-
vate storage service based on recent developed cryptographic
techniques. Such a service achieves the best of both worlds by
providing the security of a private cloud and the functionality
and cost saving of a public cloud. In paper [22], Wang et al.
point out that users no longer have physical possession of the
outsourced data and it makes the data integrity protection in
cloud computing a formidable task. Thus, enabling public audit
ability for cloud storage is of critical importance so that user
can resort to a third-party auditor (TPA) to check the integrity
of outsourced data. They propose a secure cloud storage sys-
tem supporting privacy-preserving public auditing and further
extend our result to enable the TPA to perform audits for mul-
tiple users simultaneously and efficiently. Shen et al. propose
an efficient public auditing protocol with global and sampling

WANG et al.: THREE-LAYER PRIVACY PRESERVING CLOUD STORAGE SCHEME BASED ON COMPUTATIONAL INTELLIGENCE 5

blockless verification as well as batch auditing, where data dy-
namics are substantially more efficiently supported than is the
case with the state of the art [23]. In paper [24], Wei et al. point
out that most of the previous works on the cloud security fo-
cus on the storage security rather than taking the computation
security into consideration together. Thus they propose a pri-
vacy cheating discouragement and secure computation auditing
protocol, also named SecCloud which is a first protocol bridg-
ing secure storage and secure computation auditing in cloud
and achieves privacy cheating discouragement by designated
verifier signature, batch verification and probabilistic sampling
techniques. In paper [25], Atan R et al. propose a secure frame-
work, consisting of two main layers: agent layer and cloud data
storage layer. The architecture includes five types of agents:
User Interface Agent, User Agent, DER Agent, Data Retrieval
Agent and Data Distribution Preparation Agent.

The researches above are all improvements of privacy pro-
tection in cloud storage in different aspects. Some of them use
variety encryption policies in different positions. Others solve
the privacy problem with the help of auditing or building their
own secure framework. However, there is a common defect in
these researches. Once the CSP is untrusted, all of these schemes
are invalid. They cannot resist internal attacks or prevent the CSP
from selling user’s data to earn illegal profit. The private data
will be decoded once malicious attackers get it no matter how
advanced the encryption technologies are because user’s data
was integrally stored in cloud server. Therefore, we propose a
new secure cloud storage scheme in this paper. By dividing file
with specific code and combining with TLS framework based
on fog computing model, we can achieve high degree privacy
protection of data. It does not means that we abandon the en-
cryption technology. In our scheme encryption also help us to
protect fine-grained secure of the data.

III. SECURE CLOUD STORAGE BASED ON FOG COMPUTING

The security degree is an important metric to measure the
quality of cloud storage system. Furthermore, data security is
the most important part in cloud storage security and it includes
three aspects: data privacy, data integrity and data availability.
Ensuring data privacy and integrity has always been the focus
of relevant researches [26]. On another hand, data privacy is
also the most concerned part of the users. From a business per-
spective, company with high security degree will attract more
users. Therefore improving security is an crucial goal no mat-
ter in academia or business. In this section, we will detailedly
elaborate how the TLS framework protects the data privacy, the
implementation details of work flow and the theoretical safety
and efficiency analysis of the storage scheme.

A. Fog Computing

Our scheme is based on fog computing model, which is an ex-
tension of cloud computing. Fog computing was firstly proposed
by Ciscos Bonomi in 2011 [27]. In Bonomi’s view, fog comput-
ing is similar to the cloud computing, the name of fog computing
is very vivid. Compared to highly concentrated cloud comput-
ing, fog computing is closer to edge network and has many ad-

vantages as follows: broader geographical distributions, higher
real-time and low latency. In considering of these characters, fog
computing is more suitable to the applications which are sensi-
tive to delay. On another hand, compared to sensor nodes, fog
computing nodes have a certain storage capacity and data pro-
cessing capability, which can do some simple data processing,
especially those applications based on geographical location.
Thus we can deploy CI on the fog server to do some calculating
works.

Fog computing is usually a three-level architecture, the up-
most is cloud computing layer which has powerful storage ca-
pacity and compute capability. The next level is fog computing
layer. The fog computing layer serves as the middle layer of the
fog computing model and plays a crucial role in transmission
between cloud computing layer and sensor network layer. The
fog nodes in fog computing layer has a certain storage capacity
and compute capability. The bottom is wireless sensor network
layer [28]. The main work of this layer is collecting data and
uploading it to the fog server. Besides, the transfer rate between
fog computing layer and other layers is faster than the rate di-
rectly between cloud layer and the bottom layer [29]–[31]. The
introduction of fog computing can relief the cloud computing
layer, improving the work efficiency. In our scheme, we take
advantage of the fog computing model, adopt three-layer struc-
ture. Furthermore, we replace the WSNs layer by user’s local
machine.

B. Three-Layer Privacy Preserving Cloud Storage Scheme
Based on Fog Computing Model

In order to protect user’s privacy, we propose a TLS frame-
work based on fog computing model. The TSL framework can
give user a certain power of management and effectively protect
user’s privacy. As mentioned, the interior attack is difficult to
resist. Traditional approaches work well in solving outside at-
tack, but when CSP itself has problems, traditional ways are all
invalid. Different from the traditional approaches, in our scheme,
user’s data is divided into three different-size parts with encod-
ing technology. Each of them will lack a part of key information
for confidentiality. Combining with the fog computing model,
the three parts of data will be stored in the cloud server, the
fog server and user’s local machine according to the order from
large to small. By this method, the attacker cannot recover the
user’s original data even if he gets all the data from a certain
server. As for the CSP, they also cannot get any useful informa-
tion without the data stored in the fog server and local machine
because both of the fog server and local machine are controlled
by users.

As shown in Fig. 2, the TLS framework makes full use of fog
server’s storage and data processing capability. The architecture
includes three layers, the cloud server, the fog server and the
local machine. Each server saves a certain part of data, the
storage proportion is determined by users’ allocation strategy.
Firstly, user’s data will be encoded on user’s local machine.
Then, for example, let 1% encoded data be stored in the machine.
Then upload the remainder 99% data to the fog server. Secondly,
on the fog server, we do similar operations to the data which

6 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 2, NO. 1, FEBRUARY 2018

Fig. 2. Illustration of Three-Layer storage framework based on fog computing.

comes from user’s machine. There will be about 4% data stored
in the fog server and then upload the remainder data to the cloud
server. The above operations are based on Hash-Solomon code.
Hash-Solomon code is a kind of coding methods based on Reed-
Solomon code. After being encoded by Hash-Solomon code,
the data will be divided into k parts and generates m redundant
data. Hash-Solomon code has such property, in these k+m parts
of data, if someone has at least k parts, he can recover the
complete data. In other word, nobody can recover the complete
data with less than k parts of data. According to this property
of Hash-Solomon code, in our scheme, we let no more than
k-1 parts of data be stored in higher server which has larger
storage capacity and let the remainder be stored in the lower
server. In this way, the stealer cannot recover the complete data
even if one of the three layers’ data was stolen. Thus we can
ensure the privacy of user’s data. Then we consider the value
of k and m. Assuming that we want to save r% data on the
fog server. In the Hash-Solomon code, we have definitions as
follows:

Definition 1 Invalid Ratio: the ratio of the number of failure
data blocks to the number of data blocks which will be used in
encoding. In other words, the ratio of the number of data blocks
stored in lower server to the number of data blocks stored in
the upper server. For example, the ratio of the number of data
blocks stored in the local machine to the number of data blocks
stored in the fog server. In the same way, the ratio of the number
of data blocks stored in the fog server to the number of data
blocks stored in the cloud server.

Definition 2 Maximal Invalid Ratio: the maximal invalid ra-
tio is the ratio of the number of invalid data to the number of all
data blocks when the upper server can just recover the complete
data by the data blocks stored in them. If there was one more

invalid data blocks, the upper server can’t recover the complete
data anymore.

In Hash-Solomon code, the Maximal Invalid Ratio can be
expressed as m

k+m . For convenience, we just consider two layers
situation. Assuming that there is x MB data which is prepared
to save. After encoding, there will be k+m

m ∗ x data. We prepare
to save r% in the lower server.

In order to avoid the upper server recovers the data, the value
of k, m and r must satisfy the relationship:

m

k + m
≤ k + m

k
∗ r (1)

Through functional transformation, the relationship between
k m and r can be expressed as formula (2). We can see that if
the parameter r is determined, the parameter k can be expressed
by m. So we can only consider the ratio and the number of data
blocks when we use our scheme.

k =
(m − 2mr) +

√
(2mr − m)2 − 4m2r2

2r
(2)

The parameter k is the number of blocks after data being di-
vided, the parameter m is the number of redundant data blocks
and the parameter r is the storage ratio of different servers. Be-
sides, the fog server includes Computational Intelligence which
can help the system with calculating the results of the values of
k and m, because of the nodes in the fog server having its own
computing power.

C. Implementation Detail of Workflow

1) Stored Procedure: When user wants to store his file to the
cloud server, the procedure is shown as Fig. 3. First of all, user’s

WANG et al.: THREE-LAYER PRIVACY PRESERVING CLOUD STORAGE SCHEME BASED ON COMPUTATIONAL INTELLIGENCE 7

Fig. 3. Diagram of stored procedure.

file will be encoded with Hash-Solomon code. And then, the
file will be divided into several data blocks and the system will
also feedback encoding information simultaneously. Assuming
that 1% data blocks and the encoding information will be stored
locally. The remainder 99% data blocks will be uploaded to the
fog server. Secondly, after receiving the 99% data blocks from
user’s machine, these data blocks will be encoded with Hash-
Solomon again. These data blocks will be divided into smaller
data blocks and generates new encoding information. Similarly,
assuming that 4% data blocks and encoding information will
be stored in the fog server. The remainder 95% data blocks
will be uploaded to the cloud server. Thirdly, after cloud server
received the data blocks form fog side, these data blocks will
be distributed by cloud manage system [32]. Finally, the storage
procedure ends when all the related information be recorded in
different servers.

2) Download Procedure: When user wants to download his
file from the cloud server, the procedure is shown in Fig. 4.
Firstly, cloud server receives user’s request and then integrates
the data in different distributed servers. After integration, cloud
server sends the 95% data to the fog server. Secondly, the fog
server receives the data from the cloud server. Combining with
the 4% data blocks of fog server and the encoding information,
we can recover 99% data. Then the fog server returns the 99%
data to the user. Thirdly, the user receives the data from fog
server. User can get the complete data by repeating the above
steps.

D. Theoretical Safety Analysis

This section will provide theoretical safety analysis of the
structure proposed in our research and prove that the secure

Fig. 4. Diagram of download procedure.

Fig. 5. Diagram of download procedure.

storage structure can really improve the capability of privacy
protection.

Based on the Reed-Solomon code algorithm, we propose a
Hash-Solomon code algorithm. The Hash-Solomon encoding
process is actually a matrix operation. As shown in Fig. 5,
firstly we should do mapping transformation on the file which is
prepared to be stored, so that each word of the file corresponds
to a number in GF (2ω) [33]. After mapping transformation we
get file matrix O. Secondly we do hash transform on matrix O
and get matrix X. Then we multiply the transformed matrix X
by the encoding matrix A. The multiplication will generate k
data blocks X1 to X6 and m redundant data blocks C (k = 6, m

8 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 2, NO. 1, FEBRUARY 2018

TABLE I
CRACKING DIFFICULTY DEGREE

Galois Field m k Times of exhaustion

GF (24) 1 6 2563

GF (24) 2 6 2566

GF (28) 1 6 2566

GF (28) 2 6 25612

GF (216) 1 6 25612

GF (216) 2 6 25614

= 1). In Fig. 5, we prepare to save X1 to X5 in the Cloud and
Fog, and store X6 and C in the local machine. The next step
is similar to the above operations, we do hash transform on X ′

and get file matrix Y. Then we multiply the transformed matrix
Y by the encoding matrix B. At last, we store Y1 to Y4 in the
cloud server and store Y5 and R in the fog server (k = 5, m = 1).
The encoding matrix usually consists of an identity matrix and
a Vandermonde matrix or a Cauchy matrix.

It is worth noting that Hash-Solomon code has the following
properties: in the k+m data blocks, if we have at least k data
blocks, we can recover the original data combining with the
encoding matrix. But once the number of data blocks is less
than k, it cannot be recovered. Using the above properties in our
scheme, after each encoding, we store less than k parts of data
blocks in the higher server and store the remainder parts of data
blocks in the lower server. With such reasonable allocation, the
cloud server, the fog server and user’s local machine indepen-
dently store a certain percentage of data blocks. It is impossible
to recover the original data with any single server’s data. The
TLS framework largely solves the leakage of user’s privacy. Fur-
ther considering a worse case, if the attacker is brilliant enough,
he steals data blocks from two servers so that he owns more
than k parts of data blocks. Is the attacker able to recover the
user’s original data? Here is the encoding problem. Assuming
that the attacker steals enough data, but if he doesn’t have the
information contained in the encoding matrix, he can hardly
recover user’s original data from the scattered data blocks. If he
wants to crack the encoding matrix, the degree of difficulty is
shown in the Table I.

As can be seen from the Table I, attacker can hardly crack
the encoding matrix. In the real scenario, the values of m and k
are usually very large, so it is impossible to crack the encoding
matrix in theory. But using encoding technology cannot ensure
the privacy of each data block especially for document file. For
example, after a document is encoded, each part of data blocks
still contains the information of the document. For some high
privacy demanding documents, it is obviously not available. So
we add a hash transform before encoding to disrupt the sequence
of original data and save the relevant hash information in the
local server. As shown in Fig. 6, the original code divides a sen-
tence into different fragments according to original sequence.
However, the hash code divides the sentence into different frag-
ments according to random sequence. Thereby Hash-Solomon
code improves the privacy protection and prevents the attacker
from getting fragmentary information.

Fig. 6. Original transform vs. Hash Transform.

Fig. 7. Diagram of relationship of the number of data blocks (k), redundant
data blocks (m) and storage ratio (r).

E. Efficiency Analysis

In Section III-B, we have discussed the relationship of k and
m. As shown in the Fig. 7, we find that the ratio of k and m is
decided once the storage ratio is decided. It means that if we set
the storage ratio as 20%, k = 3m. Then we set k = 3, m = 1.
In the real scenario, data blocks cannot be stored partly. In the
above example, the lower server must store at least 2 blocks, so
that the real storage ratio is 50%, which is far from the 20%.
In order to reduce error, we can let k or m be a large number.
However, with the increasing of k, the encoding and decoding
efficiency will decrease, which will be proved by experiments in
the next section. In this section, we will discuss how to balance
the storage efficiency and the coding efficiency. At last, we
propose a comprehensive index of the whole efficiency of the
scheme.

The storage efficiency is an important index for a storage-
related algorithm. A good system with high storage efficiency
can save storage capacity as much as possible. Storage Industry
Networking Association defines the storage efficiency as:

StorageEfficiency =
DataSpace

DataSpace + CheckSpace
(3)

In our scheme, storage efficiency can be expressed as Es =
k

k+m . Then we can get the following formulas (4, 5).We can see
that the storage efficiency will increase with the increment to
the ratio of k and m. From Fig. 7 we know that when the ratio
of k and m increase, the number of data blocks (k) also increase,

WANG et al.: THREE-LAYER PRIVACY PRESERVING CLOUD STORAGE SCHEME BASED ON COMPUTATIONAL INTELLIGENCE 9

Fig. 8. Diagram of the influence of the number of data blocks (k) to the
efficiency of storage and coding.

which influences the coding efficiency.

Es =
k

k + m
=

k
m

k
m + 1

(4)

lim
k
m →∞

=
k
m

k
m + 1

= 1 (5)

The coding efficiency is related to the operation on Galois
field. We consider the influence of different bits of coding which
is related to the ω of the Galois field. The relationship of ω, k
and m satisfy the equation 2ω > k + m. When ω increases, the
consume of RAM increases. Therefore, we let the reciprocal of
ω to present the coding efficiency and it can be expressed as

Ec =
ln(k + m)

ln 2
(6)

Fig. 8 shows the change of storage efficiency and the coding
efficiency when the number of k increases. The value of m is set
to 2. Apparently, the tendency of storage efficiency is contrary
to the tendency of coding. It means there must be a value of k
which can achieve a best efficiency of the whole system.

Therefore we should design a new index to take both of the
storage efficiency and coding efficiency into consideration. The
comprehensive efficiency of the scheme can be expressed as

Ew = C1
ln(k + m)

ln 2
+ C2

k

k + m
(7)

The parameter C1 and C2 are related to the storage ratio. For
example, we set the value of m to 2, then the value of C1 is set
as 0.6, the value of C2 is set as 0.4. As shown in Fig. 9, the
comprehensive efficiency of the scheme increases at first and
decreases after it achieve the summit of the functional graph.
We can consider the value of k which corresponds to the summit
is the most suitable value for the whole efficiency of the scheme.

Fig. 9. Diagram of the influence of the number of data blocks (k) to the
efficiency of storage and coding.

TABLE II
EXPERIMENTS ENVIRONMENT

Items Parameter value

Operating system Linux
Programming language C
CPU Intel Core i7 2.50 GHz
Memory 8 GB
Hard Disk 1TB

IV. EXPERIMENT AND ANALYSIS

In this section, we evaluate the performance and feasibility of
the TLS framework based on fog computing model through a
series of tests, including encoding, decoding and test of different
sizes of data.

A. Experimental Environment

All of the experiments in this paper were conducted by simu-
lation and the environmental parameters are shown as Table II.
There are three types files which are listed as flows: picture
(.NEF, 24.3 MB), audio (.MP3, 84.2 MB) and video (.RMVB,
615 MB).

All the experiments in this paper use ’one more block’ prin-
ciple which means the lower server only saving m + 1 data
blocks. In this way, the scheme can ensure the privacy of data
and reduce the storage pressure of the lower servers at the same
time.

B. Experiment Results

Fig. 10 shows the relationship between data storage in user’s
machine and the number of blocks while using different kinds
of data. The parameter m represents the number of redundant
data blocks while the parameter k represents the number of data
blocks which we want the original data be divided into. Note
that the value of m is set as 2 in this part. As we can see, when

10 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 2, NO. 1, FEBRUARY 2018

Fig. 10. The local storage volume of different files.

Fig. 11. Relationship between time of encoding and the number of k.

the number of data blocks k increases, the data volume stored
in user’s local machine decreases. It means that the more the
number of data blocks is, the smaller the local storage pressure
is. On another hand, our method performs differently when using
different volume of data. The larger the volume of the data is, the
better effect our method performs in the experiment. Therefore,
in the real scenario, it is of vital importance to increase the
value of k to alleviate user’s storage pressure. As for small files,
merging files before uploading is necessary.

Fig. 11 shows the tendency of encoding time with different
number of data blocks. The value of m is also set as 2. When
the number of data blocks k increases, the encoding time grows
exponentially. Accordingly, in the real scenario, we should con-
sider delay degree that user can endure and adjust the value of
k according to the user’s machine performance dynamically.

The relationship between decoding time and number of data
blocks is shown in Fig. 12. Both the value of m and the value

Fig. 12. Relationship between time of decoding and the number of k.

Fig. 13. Relationship between time of decoding and the number of removed
data.

of removed data is set as 2. When the number of data blocks
k increases from 100 to 600, the decoding time increases at
express speed. As we can see, the decoding process costs more
time than the encoding process does, so we should pay more
attention to enhance decoding efficiency in real scenario.

In the Fig. 13, we present the tendency of decoding time
with different number of removed data from 1 to 5. The value
of k is set as 100 and the value of m is set as 5. In the real
scenario, the ratio of m and k should be very small to relieve the
user’s storage pressure. What’s more, the number of removed
data should be smaller than m, otherwise, system will be error-
reporting. On another hand, the decoding time increases with
the increment of the number of removed data, which means that
we should download all of the data from the upper server as
much as possible to maximize the decoding efficiency.

The Hash-Solomon code is the key to the whole efficiency
of our scheme. Therefore, find a better coding matrix is of vital

WANG et al.: THREE-LAYER PRIVACY PRESERVING CLOUD STORAGE SCHEME BASED ON COMPUTATIONAL INTELLIGENCE 11

Fig. 14. Cauchy matrix vs. Vandermonde matrix.

Fig. 15. Relationship between time of encoding and word size of Galois field.

importance. The code matrix can be chosen from Vandermonde
matrix and Cauchy matrix. Different from Vandermonde matrix,
Cauchy matrix uses AND operation and XOR logical operation.
In Cauchy’s way, coding efficiency improves. Besides, the com-
plexity decrease from O(n3) to O(n2). As shown in the Fig. 14,
we present the two tendencies of encoding time with different
number of data blocks k from 100 to 600. The value of m is
set as 2. We can see that the encoding time raises with the in-
crease of the number of data blocks k, no matter Vandermonde
or Cauchy. On another hand, the Cauchy matrix has better per-
formance than Vandermonde matrix. The time cost of Cauchy
always less than the Vandermonde. When the number of k is
very large, the cost of Vandermonde raises sharply while the
cost of Cauchy increases slightly.

In the Section III, the coding efficiency is related to the ω
in Galois field GF (2ω). As shown in Fig. 15, we present the
encoding time with different values of ω. Besides, we also con-
sider the comparison of Vandermonde and Cauchy. As shown

in the Fig. 15, we set the value of ω as 8, 16 and 32. As we can
see, no matter Vandermonde or Cauchy, the cost of encoding
time increases with the increase of ω.

V. CONCLUSION

The development of cloud computing brings us a lot of bene-
fits. Cloud storage is a convenient technology which helps users
to expand their storage capacity. However, cloud storage also
causes a series of secure problems. When using cloud storage,
users do not actually control the physical storage of their data
and it results in the separation of ownership and management of
data. In order to solve the problem of privacy protection in cloud
storage, we propose a TLS framework based on fog computing
model and design a Hash-Solomon algorithm. Through the the-
oretical safety analysis, the scheme is proved to be feasible.
By allocating the ratio of data blocks stored in different servers
reasonably, we can ensure the privacy of data in each server.
On another hand, cracking the encoding matrix is impossible
theoretically. Besides, using hash transformation can protect
the fragmentary information. Through the experiment test, this
scheme can efficiently complete encoding and decoding with-
out influence of the cloud storage efficiency. Furthermore, we
design a reasonable comprehensive efficiency index, in order
to achieve the maximum efficiency, and we also find that the
Cauchy matrix is more efficient in coding process.

REFERENCES

[1] P. Mell and T. Grance, “The NIST definition of cloud computing,” Nat.
Inst. Stand. Technol., vol. 53, no. 6, pp. 50–50, 2009.

[2] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud
computing: Architecture, applications, and approaches,” Wireless Com-
mun. Mobile Comput., vol. 13, no. 18, pp. 1587–1611, 2013.

[3] J. Chase, R. Kaewpuang, W. Yonggang, and D. Niyato, “Joint virtual
machine and bandwidth allocation in software defined network (sdn) and
cloud computing environments,” in Proc. IEEE Int. Conf. Commun., 2014,
pp. 2969–2974.

[4] H. Li, W. Sun, F. Li, and B. Wang, “Secure and privacy-preserving data
storage service in public cloud,” J. Comput. Res. Develop., vol. 51, no. 7,
pp. 1397–1409, 2014.

[5] Y. Li, T. Wang, G. Wang, J. Liang, and H. Chen, “Efficient data collection
in sensor-cloud system with multiple mobile sinks,” in Proc. Adv. Serv.
Comput., 10th Asia-Pac. Serv. Comput. Conf., 2016, pp. 130–143.

[6] L. Xiao, Q. Li, and J. Liu, “Survey on secure cloud storage,” J. Data
Acquis. Process., vol. 31, no. 3, pp. 464–472, 2016.

[7] R. J. McEliece and D. V. Sarwate, “On sharing secrets and reed-solomon
codes,” Commun. ACM, vol. 24, no. 9, pp. 583–584, 1981.

[8] J. S. Plank, “T1: Erasure codes for storage applications,” in Proc. 4th
USENIX Conf. File Storage Technol., 2005, pp. 1–74.

[9] R. Kulkarni, A. Forster, and G. Venayagamoorthy, “Computational intelli-
gence in wireless sensor networks: A survey,” IEEE Commun. Surv. Tuts.,
vol. 13, no. 1, pp. 68–96, First Quarter 2011.

[10] Z. Xia, X. Wang, L. Zhang, Z. Qin, X. Sun, and K. Ren, “A privacy-
preserving and copy-deterrence content-based image retrieval scheme in
cloud computing,” IEEE Trans. Inf. Forensics Security, vol. 11, no. 11,
pp. 2594–2608, Nov. 2016.

[11] J. Shen, D. Liu, J. Shen, Q. Liu, and X. Sun, “A secure cloud-assisted
urban data sharing framework for ubiquitous-cities,” Pervasive Mobile
Comput., vol. 41, pp. 219–230, 2017.

[12] Z. Fu, F. Huang, K. Ren, J. Weng, and C. Wang, “Privacy-preserving smart
semantic search based on conceptual graphs over encrypted outsourced
data,” IEEE Trans. Inf. Forensics Security, vol. 12, no. 8, pp. 1874–1884,
Aug. 2017.

[13] J. Hou, C. Piao, and T. Fan, “Privacy preservation cloud storage architec-
ture research,” J. Hebei Acad. Sci., vol. 30, no. 2, pp. 45–48, 2013.

12 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 2, NO. 1, FEBRUARY 2018

[14] Q. Hou, Y. Wu, W. Zheng, and G. Yang, “A method on protection of user
data privacy in cloud storage platform,” J. Comput. Res. Develop., vol. 48,
no. 7, pp. 1146–1154, 2011.

[15] P. Barham et al., “Xen and the art of virtualization,” ACM SIGOPS Oper.
Syst. Rev., vol. 37, no. 5, pp. 164–177, 2003.

[16] G. Feng, “A data privacy protection scheme of cloud storage,” vol. 14,
no. 12, pp. 174–176, 2015.

[17] Z. Fu, X. Wu, C. Guan, X. Sun, and K. Ren, “Toward efficient multi-
keyword fuzzy search over encrypted outsourced data with accuracy im-
provement,” IEEE Trans. Inf. Forensics Security, vol. 11, no. 12, pp. 2706–
2716, Dec. 2016.

[18] Z. Fu, K. Ren, J. Shu, X. Sun, and F. Huang, “Enabling personalized
search over encrypted outsourced data with efficiency improvement,”
IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 9, pp. 2546–2559, Sep.
2016.

[19] Z. Xia, X. Wang, X. Sun, and Q. Wang, “A secure and dynamic multi-
keyword ranked search scheme over encrypted cloud data,” IEEE Trans.
Parallel Distrib. Syst., vol. 27, no. 2, pp. 340–352, Feb. 2016.

[20] Z. Fu, F. Huang, X. Sun, A. Vasilakos, and C.-N. Yang, “Enabling
semantic search based on conceptual graphs over encrypted out-
sourced data,” IEEE Trans. Serv. Comput.. [Online]. Available: http://
doi.ieeecomputersociety.org/10.1109/TSC.2016.2622697

[21] G. Kulkarni, R. Waghmare, R. Palwe, V. Waykule, H. Bankar, and K. Koli,
“Cloud storage architecture,” in Proc. 7th Int. Conf. Telecommun. Syst.,
Serv., Appl., 2012, pp. 76–81.

[22] C. Wang, S. S. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving
public auditing for secure cloud storage,” IEEE Trans. Comput., vol. 62,
no. 2, pp. 362–375, Feb. 2013.

[23] J. Shen, J. Shen, X. Chen, X. Huang, and W. Susilo, “An efficient public
auditing protocol with novel dynamic structure for cloud data,” IEEE
Trans. Inf. Forensics Security, vol. 12, no. 10, pp. 2402–2415, Oct. 2017.

[24] L. Wei et al., “Security and privacy for storage and computation in cloud
computing,” Inf. Sci., vol. 258, pp. 371–386, 2014.

[25] R. Atan, A. M. Talib, and M. A. A. Murad, “Formulating a security layer of
cloud data storage framework based on multi agent system architecture,”
GSTF J. Comput., vol. 1, no. 1, pp. 121–124, 2014.

[26] M. Z. A. Bhuiyan, T. Wang, T. Hayajneh, and G. M. Weiss, “Maintaining
the balance between privacy and data integrity in internet of things,” in
Proc. Int. Conf. Manage. Eng., Softw. Eng. Serv. Sci., 2017, pp. 177–182.

[27] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proc. 1st Edition MCC Workshop Mobile
Cloud Comput, 2012, pp. 13–16.

[28] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”
Comput. Netw., vol. 52, no. 12, pp. 2292–2330, 2008.

[29] T. Wang et al., “Maximizing real-time streaming services based on a
multi-servers networking framework,” Comput. Netw., vol. 93, pp. 199–
212, 2015.

[30] T. Wang et al., “Reliable wireless connections for fast-moving rail users
based on a chained fog structure,” Inf. Sci., vol. 379, pp. 160–176, 2017.

[31] J. Zeng, T. Wang, Y. Lai, J. Liang, and H. Chen, “Data delivery from
WSNs to cloud based on a fog structure,” in Proc. Int. Conf. Adv. Cloud
Big Data, 2016, pp. 104–109.

[32] M. D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali, “Cloud
computing: Distributed internet computing for it and scientific research,”
IEEE Internet Comput., vol. 13, no. 5, pp. 10–13, Sep./Oct. 2009.

[33] R. Steinberg, “A geometric approach to the representations of the full
linear group over a galois field,” Trans. Amer. Math. Soc., vol. 71, no. 2,
pp. 274–282, 1951.

Tian Wang received the B.Sc. and M.Sc. degrees
in computer science from Central South University,
Changsha, China, in 2004 and 2007, respectively, and
the Ph.D. degree from City University of Hong Kong,
Hong Kong, in 2011. He is currently a Professor with
the National Huaqiao University of China, Quanzhou,
China. His research interests include wireless sensor
networks, fog computing, and mobile computing.

Jiyuan Zhou received the B.S. degree from Tianjin
Polytechnic University, Tianjin, China, in 2016. He
is currently working toward the Master’s degree from
Huaqiao University, Quanzhou, China. His research
interests include security in wireless networks, fog
computing, and security in cloud storage

Xinlei Chen received the Bachelor’s degree from
Huaqiao University, Xiamen, China, in 2017. His cur-
rent research interests include cloud computing and
cloud storage.

Guojun Wang received the B.Sc. degree in geo-
physics in 1992, the M.Sc. degree in computer science
in 1996, and the Ph.D. degree in computer science in
2002, all from Central South University, Changsha,
China. He is currently the Pearl River Scholarship
Distinguished Professor with Guangzhou University,
Guangzhou, China. He was a Professor with Cen-
tral South University, Changsha, China; a Visiting
Scholar at Temple University and Florida Atlantic
University, USA; a Visiting Researcher at the Univer-
sity of Aizu, Japan, and a Research Fellow at Hong

Kong Polytechnic University. His research interests include cloud computing,
trusted computing, and information security. He is a distinguished member of
the CCF, and a member of the ACM and IEICE.

Anfeng Liu received the M.Sc. and Ph.D degrees
from Central South University, Changsha, China,
2002 and 2005 respectively, both majored in com-
puter science. He is a Professor with the School of
Information Science and Engineering, Central South
University. His major research interests are cyber-
physical systems, service network, wireless sensor
network. He is a Member (E200012141M) of China
Computer Federation.

Yang Liu (M’14) received the B.E. degree in electri-
cal engineering and its automation and the M.E. de-
gree in control theory and control engineering from
Harbin Engineering University, Harbin, China, in
2008 and 2010, respectively, and the Ph.D. degree
in computer engineering from the Center for Ad-
vanced Computer Studies, University of Louisiana
at Lafayette, Lafayette, LA, USA, in 2014. He is
currently an Assistant Professor with Beijing Univer-
sity of Posts and Telecommunications. His current
research interests include wireless networking and

mobile computing. He is a member of the ACM.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

