
A numerical and theoretical study on the seismic behaviour
of yielding cantilever walls
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This paper provides an interpretation of the dynamic behaviour of yielding cantilever walls, regarding
which open issues still remain about the applicability of the Mononobe–Okabe theory and the possible
occurrence of phase shift between the maximum soil thrust and the inertia forces into the system, which
both affect the seismic design of these structures. To this end, the predictions of a pseudostatic limit
equilibrium/analysis model are combined with the results of an extensive numerical study, with both
pseudostatic and dynamic analyses performed under real earthquakes and simple input motions.
Numerical outcomes show that the maximum soil thrust on the stem and the maximum bending
moment are always in phase and occur when the inertia forces are away from the backfill. The proposed
model provides a good prediction of the maximum internal forces induced by the earthquake. It is
shown that the possible activation of plastic mechanisms within the system, in the form of either sliding
or bearing failure, makes the critical acceleration a key ingredient for the seismic design of cantilever
walls, controlling both the maximum internal forces and the magnitude and trend of final
displacements. Numerical and theoretical findings are used to provide suggestions for the seismic
design of cantilever walls.
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INTRODUCTION
Reinforced concrete cantilever walls are widely used in design
practice as an alternative to gravity walls, combining
the flexural behaviour of the structural elements with the
stabilising action of the soil mass above the footing slab.
In contrast to other types of retaining structures, such as
basement walls or bridge abutments, yielding cantilever walls
do not have kinematic constraints and their movements
permit the development of active limit conditions in the
retained soil, both under static and dynamic conditions.
Field observations during recent earthquakes (Verdugo

et al., 2012; Wagner & Sitar, 2016) have shown that the
overall performance of retaining structures is generally
satisfactory and that the majority of failures involved either
waterfront structures, due to the onset of liquefaction
phenomena within the saturated backfill, or structures on
slopes. Moreover, observations on the behaviour of yielding
cantilever walls during the Kobe earthquake in 1995 have
revealed significant tilting of the walls, in addition to sliding,
reflecting the activation of a bearing capacity failure under
dynamic loading (Anderson et al., 2008).
Although the static behaviour of cantilever walls is nowa-

days well understood, both from an experimental and a
theoretical point of view, there are still open issues in the
scientific literature regarding their seismic behaviour.
Specifically, two topics are of major concern, namely:
(a) the applicability of the Mononobe–Okabe (MO) theory
in computing the dynamic soil thrust and (b) the possible
phase shift between the maximum value of the soil thrust and

the inertia forces into the wall–soil system, as this affects the
computed maximum internal forces in the structural
elements.
According to Psarropoulos et al. (2005), the MO method

provides a realistic interpretation of the behaviour exhibited
by yielding walls in small-scale tests. However, while many
authors agree that the dynamic pressure behind the wall
increases linearly with depth (Mikola et al., 2016), centrifuge
data have shown that the MO method can lead to a
significant over-prediction of the soil thrust acting on the
vertical stem, particularly for high values of free-field
accelerations (Koseki et al., 2003; Wagner & Sitar, 2016).
In particular, Koseki et al. (2003) noticed that this obser-
vation is associated with a substantial reduction of the
soil-wedge acceleration with respect to the input one.
An attempt to solve the apparent mismatch between
observations and MO predictions was recently proposed by
Brandenberg et al. (2015), who applied the general frame-
work of kinematic soil–structure interaction to the interpret-
ation of the dynamic behaviour of cantilever walls.
As far as the second issue is concerned, similarly to what is

observed for gravity retaining walls (Athanasopoulos-Zekkos
et al., 2013; Conti et al., 2013), Green et al. (2008) and
Kloukinas et al. (2015) claimed that the soil thrust maximis-
ing the internal forces on the vertical stem develops when
the wall is moving towards the backfill, causing the retained
soil to approach passive limit state conditions and the
earth pressure distribution to be different from, and certainly
larger than, the active limit value. However, based on the
results from centrifuge tests on small-scale cantilever walls,
Al Atik & Sitar (2010) concluded that the maximum
structural bending moments occur when the inertia forces
in the soil–wall system act in the active direction and the
earth pressure is close to its static value. While both these
observations suggest the possible occurrence of a phase shift
between maximum (active) inertia forces into the system,
maximum soil dynamic thrust and maximum bending
moments, a reliable interpretation of the actual physical
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phenomenon seems still to be lacking, thus leading to
controversial recommendations for the structural design of
such structures under seismic conditions (Aashto, 2012).

This work examines the dynamic behaviour of yielding
cantilever walls, combining a theoretical pseudostatic model
with the results of an extensive numerical parametric study.
Specifically, plane-strain analyses were carried out on a pair
of cantilever walls, considering different wall geometries and
soil profiles, subjected to real earthquakes. The input signals
were chosen to represent a significant range of dominant
frequencies (governing possible local amplification and
resonance phenomena) and peak accelerations (governing
non-linearity and irreversibility of soil behaviour).

The goal of this study is threefold: (a) to offer a physical
insight into the relevant factors affecting the seismic behav-
iour of yielding cantilever walls; (b) to introduce a new key to
interpretation of the observed behaviour, based on the
theoretical framework provided by the critical acceleration
concept (Conti et al., 2013); (c) to provide suggestions for the
seismic design, both geotechnical and structural, of these
structures.

The authors consider only dry cohesionless backfill and
ignore any possible reduction of soil strength due to softening
behaviour or pore pressure build-up.

THEORETICAL BACKGROUND AND
CRITICAL ACCELERATION

The seismic design of yielding cantilever walls is usually
carried out with a pseudostatic approach, that is converting
the seismic acceleration acting on the system to an equivalent
constant pseudostatic coefficient and computing the result-
ing soil thrust using either limit equilibrium methods or limit
analysis. Despite the simplifying assumption on the seismic
action, the pseudostatic approach has been proven to provide
valuable information on the behaviour of yielding retaining
structures during earthquakes, both for embedded

(Conti et al., 2012, 2014) and gravity (Conti et al., 2013;
Masini et al., 2015) walls, where the onset of plastic
mechanisms within the soil–structure system makes the
dynamic interaction problem a strength-driven rather than
a deformability-driven problem. Indeed, the elastic solutions
provided in the literature for the computation of the dynamic
soil thrust (Veletsos & Younan, 1997; Brandenberg et al.,
2015) are of little applicability in this context, as they do not
take into account the strength of the system.
Figure 1(a) shows the typical layout for a cantilever wall

(height H, base width B, heel width d, toe width a,
embedment depth D), retaining a cohesionless backfill
(unit weight γ, friction angle ϕ′) and resting on a cohesive-
frictional soil (unit weight γf, friction angle ϕ′f, cohesion c′f,
undrained shear strength cuf). Fig. 1(b) shows the forces
acting on the soil–wall system under the horizontal (ah = khg)
and vertical (av = kvg) pseudostatic accelerations, the latter
usually being neglected as of minor relevance in the seismic
design of gravity walls (Gazetas et al., 2009). Both the
dynamic active soil thrust acting on the vertical plane AV, SAV,
its inclination on the horizontal, δS, and the inclination of the
two failure surfaces, ωα and ωβ, were derived by Kloukinas &
Mylonakis (2011) and Evangelista et al. (2010), as a function
of the pseudostatic coefficient kh, in the realm of a rigorous
stress plasticity theory (see Appendix).
On the one hand, the external stability of the system

against the possible onset of plastic mechanisms (geotechni-
cal design) must be assessed under the outlined system of
external forces, giving rise to an inclined and eccentric
resultant at the foundation level (Fig. 1(c)). In this context,
the yield acceleration, ay, can be computed for any of the
possible collapse mechanisms of the wall (overturning,
ay,ROT; sliding over the base, ay,SLID; bearing capacity failure
of the foundation soil, ay,QLIM), as the value of the pseudo-
static acceleration corresponding to which the strength of the
system is fully mobilised or, equivalently, the driving actions
match the resisting ones. Therefore, defining the critical
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acceleration of thewall, ac, as the one corresponding towhich
a plastic mechanism is activated within the soil–structure
system and the wall starts to experience permanent displace-
ments, it follows that

ac ¼ min ay;SLID; ay;QLIM
� �

where ay,ROT has been omitted, as this is always significantly
larger than the others. ay,SLID can be computed using
the method proposed by Richards & Elms (1979), while
upper-bound solutions for the seismic bearing capacity of
shallow foundations can be used to compute ay,QLIM
(Conti, 2018).
On the other hand, when dealing with the internal stability

of the vertical stem (structural design), the soil thrust
effectively acting on its back (SE) must be taken into
account, resulting from the dynamic interaction (both
inertial and kinematic) between the soil volume above the
heel and the wall (Fig. 1(d)). Table 1 reports two possible
approximate solutions for SE,h, that will both be referred to in
the following interpretation of numerical results. In the first
case (S1), it is assumed that no shear stresses develop at the
contact between the heel and the soil above it (TE= 0), and
hence the soil thrust SAV and the inertia forces khWs are
entirely transferred to the vertical stem. The second solution
(S2), instead, implicitly assumes that even the soil volume
above the heel is in active limit state conditions and that the
presence of the horizontal stem does not alter the resulting
soil thrust. In this condition, SE can be computed using the
MO theory.

PROBLEM LAYOUTAND ANALYSIS PROCEDURE
Figure 2 shows the problem layouts analysed in this work.

Three different geometries were considered for the wall (W1,
W2, W3), varying only in the length, a, of the toe (H=5 m,
d=2·6 m, c=0·4 m, s=0·5 m, γcls = 25 kN/m3), while two
different soil deposits were chosen, including a cohesionless
(soil number 2: c′=0 kPa, ϕ′=30 kPa) and a cohesive (soil
number 3: cu = 80 kPa, ϕu = 0°) soil layer immediately
beneath the foundation, with drained (D) and undrained

(UD) behaviour, respectively. In both cases the cohesionless
backfill (soil number 1) has a friction angle of ϕ′=40°, the
total depth of the soil deposit is 30 m, and a uniform unit
weight of γ=20 kN/m3 was chosen for all of the layers. As far
as the mechanical properties of the interface between the wall
and its base are concerned, a pure frictional (ϕb = 30°) and a
pure adhesive (cw=50 kPa) contact was assumed in the
drained and undrained case, respectively.
For the six layouts outlined, Table 2 reports the static

global safety factors for the sliding (SFSLID) and bearing
failure (SFQLIM) mechanisms, together with the theoretical
values of the yield accelerations. In drained conditions the
critical mechanism is always the bearing capacity failure.
Moreover, the critical accelerations computed for the drained
case are significantly smaller than those corresponding to the
undrained behaviour of the supporting soil.

Numerical model
Plane-strain analyses were carried out on a pair of

cantilever walls, using the finite-difference code Flac v.5
(Itasca, 2005). Fig. 3 shows a detail of the mesh adopted in
the numerical analyses. PointsNTOP,NMID,NBOT,NB andNff
– respectively at the top, mid-height and bottom of the wall,
just outside the soil wedge and in free-field conditions – will
be considered in the discussion of results.
The retaining walls were modelled as elastic beams

(density ρ=2·55 Mg/m3, Young’s modulus E=40 GPa,
and Poisson ratio ν=0·15), connected to the grid nodes
using elastic–perfectly plastic interfaces with a very large
normal and tangential stiffness (kn = ks = 2� 107 kN/m).
Table 3 summarises the strength properties adopted for the
interfaces.
The soil was modelled as an elastic–perfectly plastic

material with a Mohr–Coulomb failure criterion and a
non-associated flow rule, with zero dilatancy. Table 4
summarises the main physical and mechanical properties
adopted in the numerical analyses. The small-strain shear
modulus, G0, is a function of the mean effective stress, p′,
with typical expressions for sands (soil number 1 and
number 2) and medium plasticity clays (soil number 3).
During the dynamic stage, a non-linear and dissipative

behaviour was introduced for stress paths within the yield
surface through a hysteretic model described in detail in

Table 2. Problem layouts: static safety factors and yield accelerations

Wall Static safety factors Yield
accelerations: g

Type Soil profile SFSLID SFQLIM ay,SLID ay,QLIM

W1 D 3·4 2·2 0·41 0·06
W2 D 3·4 4·3 0·41 0·15
W3 D 3·5 5·6 0·41 0·21
W1 UD 2·8 2·7 0·21 0·18
W2 UD 3·2 3·9 0·25 0·28
W3 UD 3·7 4·4 0·29 0·36
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Fig. 2. Problem layouts considered in the numerical study

Table 1. Approximate theoretical solutions for the horizontal force acting on the vertical stem

Solution SE,h Mmax σh(z)

S1(kh) SAE,h
KM (kh)þ khWs SKM

AE;h khð ÞH
3
þ kh Ww;stem þWs

� �H
2

KAE,h
KM γzþ khγd

S2(kh) SAE,h
MO (kh) SMO

AE;h khð ÞH
3
þ khWw;stem

H
2

KAE,h
MO γz
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Conti et al. (2014). Fig. 4 shows the modulus decay curves
and the equivalent damping ratio provided by the adopted
model for the three layers, together with those suggested by

Vucetic & Dobry (1991) and Seed & Sun (1989) for
cohesionless soils and clay, respectively.

Procedure for analysis
After initialising the geostatic stress state in the foundation

soil elements, the cantilever walls were installed and the
backfill elements were activated in five successive steps.
During this stage, standard boundary conditions were
applied to the model, that is: zero horizontal displacements
along the lateral boundaries and fixed nodes at the base of
the grid.
After the initial static stage, both pseudostatic and

dynamic analyses were carried out. In the pseudostatic
analyses, a uniform body force, defined as a fraction kh of
the gravitational acceleration, was applied in the horizontal
direction, and the pseudostatic coefficient kh was gradually
increased until static equilibrium became no longer possible
and a plastic mechanism appeared within the soil–wall
system (Masini et al., 2015).
In the dynamic analyses, the selected acceleration–time

histories were applied to the bottom nodes of the grid,
together with a zero velocity in the vertical direction, while
standard periodic constraints were applied to the nodes on
the lateral boundaries of the grid. A small Rayleigh viscous
damping (D=1% at f=2·5 Hz) was adopted to remove the
high-frequency noise deriving from the numerical inte-
gration, but not otherwise affecting the results.

Seismic input
Figure 5 shows the eight acceleration–time histories

applied in the dynamic analyses, all registered on rock
outcrop during real earthquakes, while Table 5 summarises
the corresponding ground motion parameters, that is: peak
ground acceleration (PGA), velocity (PGV) and displace-
ment (PGD); dominant frequency, fd; mean frequency, fm;
Arias intensity, Ia; and duration T5-95. All the recorded
signals were baseline-corrected and low-pass-filtered at
10 Hz for compatibility with the dimension of the grid
elements. Moreover, simple Morlet wavelet excitations were
applied, with a nominal frequency of 0·8 Hz, scaled at
maximum accelerations ranging from 0·05g to 0·35g.
Summarising, in total, 78 dynamic analyses were carried

out, taking into account different wall geometries (W1,
W2, W3), different soil conditions (D, UD) and different
seismic inputs. In the following, accelerations are positive
rightwards and the horizontal displacements of the walls are
positive if away from the backfill.

Table 3. Strength parameters of the soil–wall interfaces

Interface Analysis Friction angle: degrees Cohesion: kPa

I1 D/UD 20 0
I2 D/UD 30 0
I3 D 30 0
I3 UD 0 50

Table 4. Parameters of soil constitutive models

Soil γ:
kN/m3

ϕ:
degrees

c:
kPa

ν G0: MPa

Number 1 20 40 0 0·2 10·0� ( p′)0·5

Number 2 20 30 0 0·2 10·0� ( p′)0·5

Number 3 20 0 80 0·2 1·0� ( p′)0·8
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5 
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Fig. 3. Detail of the finite-difference grid adopted in the numerical analyses
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PSEUDOSTATIC ANALYSES
Plastic mechanisms
The pseudostatic numerical analyses permit investigation

of both the shape of the plastic mechanism induced in the
soil–wall system by a uniform horizontal acceleration field
and the value of the critical pseudostatic coefficient, kc,
corresponding to which the mechanism is activated. Fig. 6
shows, for the six layouts considered in this study, the
contours of shear strains computed in critical conditions,
together with the critical failure mechanisms predicted by
theoretical methods (as pointed out by Masini et al. (2015)
the actual values of the shear strain are not relevant in
this case).
In drained conditions the plastic mechanism involves the

development of shear deformations within the supporting
soil, related to the bearing failure of the foundation,
eventually leading to both sliding and rotation of the wall.
In undrained conditions, instead, the critical mechanism
corresponds essentially to a pure sliding of the wall along its

base. For the sole L-shaped wall (W1), a very shallow failure
surface is observed, both numerically and theoretically,
indicating that in this case the driving moment affects the
plastic mechanism.
Numerical and theoretical results show some discrepancies

in terms of the shape of the slip surfaces, essentially due to
the non-associated flow rule assumed for the cohesionless
soils and to the combined effect of sliding and tilting of the
wall, the latter inducing a non-uniform deformation field
within the backfill. Nonetheless, the predicted values of kc
are in very good agreement, both in drained and undrained
conditions.
Figure 6 also indicates a progressive rotation of the

characteristic lines within the backfill with increasing the
critical pseudostatic coefficient, as predicted by the stress
plasticity theory. This observation confirms the assumption
that, moving from static to dynamic conditions, the wall
interface has a minor influence on the soil stress state at the
surface AV, at least for standard lengths of the internal heel,
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Table 5. Ground motion parameters of the input earthquakes

Earthquake PGA: g PGV: m/s PGD: m fd: Hz fm: Hz Ia: m/s T5-95: s

Northridge – USA (1994) 0·582 0·514 0·108 1·28 2·71 2·70 9·0
Loma Prieta – USA (1989) 0·372 0·443 0·183 0·72 3·29 1·26 10·4
Kobe – Japan (1995) 0·329 0·281 0·116 0·58 3·69 1·65 11·8
Imperial Valley – USA (1979) 0·330 0·307 0·162 7·15 3·80 1·21 8·4
Hollister – Usa (1961) 0·194 0·120 0·044 0·88 2·22 0·25 14·6
Chi Chi – Taiwan (1999) 0·214 0·198 0·180 0·74 3·19 0·26 11·7
Friuli – Italy (1976) 0·324 0·222 0·042 3·78 3·28 0·76 4·2
Kocaeli – Turkey (1999) 0·337 0·609 0·502 0·78 1·45 1·31 14·7

kc,num = 0·06
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kc,num = 0·15
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Fig. 6. Pseudostatic numerical analyses: contours of shear strains at the onset of critical conditions and comparison with the theoretical
predictions: for soil profile D – (a) W1-D, (b) W2-D and (c) W3-D; for soil profile UD – (d) W1-UD, (e) W2-UD and (f) W3-UD
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and then the generalised Rankine conditions apply
(Kloukinas & Mylonakis, 2011).

Pseudostatic stress distribution
Figure 7 shows the horizontal stresses immediately behind

the vertical stem and along the vertical plane AV (Figs 7(a)
and 7(c)), together with the resulting bending moment
distribution (Figs 7(b) and 7(d)), computed for the layouts
W3-D and W3-UD. The numerical results refer to three
values of the pseudostatic coefficient (kh = 0, 0·1, kc). The
corresponding theoretical distributions S2(kh) and SAE,h

KM (kh)
are also shown for comparison. Starting from the static
condition (kh = 0) and moving to the critical one (kh = kc),

the horizontal stresses increase linearly with depth, both
behind the stem and along the AV plane. Moreover, the fairly
good agreement between the numerical values and S2(kh)
indicates that, for both wall layouts, the soil behind the stem
is in the active limit state and the MO solution provides a
good estimate of the pseudostatic soil thrust. In other words,
up to the critical condition (kh� kc), the horizontal stem does
not alter substantially the stress distribution at the soil–wall
contact.

DYNAMIC ANALYSES
Based on approximate elastic solutions (Hatami &

Bathurst, 2000), a lower bound value for the fundamental
frequency of the wall–backfill system can be estimated as
f0 =VSm/H/2 (� 16 Hz), where VSm is the mean shear wave
velocity within the backfill. Comparing f0 with fm, no
resonance effects are expected to occur during the dynamic
inputs and essentially pseudostatic conditions apply (Nadim
& Whitman, 1983). This is in agreement also with the
experimental findings by Kloukinas et al. (2015).

Wavelet input signals
In order to clarify some aspects concerning the dynamic

behaviour of yielding cantilever walls, the focus will first be
placed on the simple case of a wavelet input acceleration
(amax = 0·25g). The wall W3 will be used as reference,
overlying both the D and UD soil profile, to highlight
possible differences between the sliding (W3-UD) and
bearing (W3-D) failure modes.
Figure 8 shows, for the right wall, the time histories of:

free-field and wall absolute horizontal accelerations
(Figs 8(a) and 8(b)); and horizontal displacements of the
wall (Figs 8(c) and 8(d)). The absolute accelerations of the
wall coincide with the free-field one as long as the critical
value, ac, is not exceeded. For larger values of the free-field
acceleration, the wall starts to move, by either a combination
of rotation and sliding (D) or pure sliding (UD). During
these time intervals, the accelerations at the top and at the
bottom of the stem can vary, if the wall rotates, but the
acceleration at mid-height of the stem remains approximately
constant and equal to ac. As expected, even though the
free-field accelerations in the two analyses are quite similar,
the permanent displacements experienced by the wall differ
significantly, both in magnitude and trend, as a result of the
different critical mechanism characterising the drained and
the undrained case.
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To highlight the physical significance of the critical
acceleration, Fig. 9 shows the temporal evolution of the
quantity (SE,hþTE�SAV,h)/Ws, computed numerically by
integrating the corresponding stresses over the soil elements
behind the stem (SE,h), above the heel (TE) and along the
virtual back AV (SAV,h). According to the force equilibrium
given in Fig. 1(d), this quantity corresponds to the average
normalised acceleration experienced by the soil mass above
the heel. In both analyses, the critical acceleration defines the
maximum (positive) acceleration that the soil–wall system

can ever experience during a dynamic event. Moreover, the
acceleration computed at mid-height of the stem provides a
good estimate of the average acceleration experienced by the
whole system.
Figure 10 shows, for the right wall, the time histories

of: free-field and wall absolute horizontal accelerations
(Figs 10(a) and 10(b)); the total horizontal force computed
in the soil elements immediately behind the vertical stem,
SE,h, and along the virtual face AV, SAV,h (Figs 10(c) and
10(d)); and the bending moment at the base of the stem
(Figs 10(e) and 10(f)). Fig. 10 also reports the horizontal soil
thrust (Figs 10(c) and 10(d)) and the maximum bending
moment (Figs 10(e) and 10(f)) predicted by the two
approximate solutions S1(kh=kc) and S2(kh=kc) (critical
condition). Finally, Figs 10(c) and 10(d) show the horizontal
soil thrust predicted by limit analysis for kh = kc, SAE,h

KM (kc).
The numerical results of SAV,h and SE,h exhibit a completely
different behaviour. On the one hand, SAV,h increases when
the inertia forces in the system are directed towards the
backfill and decreases when they are directed away from
the backfill, reaching its minimum in the time intervals when
the wall moves relative to the surrounding soil. The minimum
values of SAV,h, corresponding to an active limit condition
into the soil, are in good agreement with SAE,h

KM (kc). On the
other hand, SE,h reaches its maximum under positive
(rightwards) accelerations, that is when the inertia forces
into the soil–wall system are directed away from the backfill.
This result, in apparent contradiction of what has been
observed for gravity retaining walls (Athanasopoulos-Zekkos
et al., 2013; Conti et al., 2013), stems from the fact that SE,
being an internal force between the wall and the backfill,
depends on the massesWw/g andWs/g. It follows that, where
cantilever walls are concerned (Ww significantly smaller
than Ws), SE is always maximised when the backfill is
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‘pushing’ towards the wall (rightwards accelerations). The
maximum value of SE,h depends on the amount of shear
stress transferred through the internal heel, TE, which is
related to the shear deformations at the contact between the
heel and the soil above it andwhich could hardly be predicted
within a perfect plasticity framework.

Moving to the bending moments (Figs 10(e) and 10(f)),
their maximum value, Mmax, occurs together with the
maximum soil thrust behind the stem, that is when the
inertia forces are directed away from the backfill and the wall
is moving relative to the soil. Comparing the numerical
results with the approximate solutions S1(kc) and S2(kc), in
terms of both horizontal soil thrust and bending moment, it
is clear that S1(kc) provides always a physical upper bound
for their maximum values, whereas S2(kc) can lead to even a
gross underestimation. This observation implies that, when
the wall is moving, the presence of the horizontal heel does
affect the horizontal stress distribution behind the vertical
stem.

A further representation of the observed behaviour is given
in Fig. 11, which shows, for the time instant corresponding to
which the bending moment attains its maximum value, the
spatial distribution of: horizontal stresses immediately
behind the vertical stem (Figs 11(a) and 11(d)); bending
moment in the structural element (Figs 11(b) and 11(e)); and
horizontal accelerations of the wall and in free-field con-
ditions (Figs 11(c) and 11(f)). Again, the theoretical
distributions provided by the two approximate solutions are
also reported for comparison. As far as the soil profile D is

concerned, the numerical distributions of both the contact
stresses and the bending moment are bounded between the
two theoretical solutions, thus suggesting that TE is partici-
pating in the overall equilibrium of the soil mass above the
heel. The (rightwards) accelerations on the wall are not
constant due to the ongoing rotation, but with an average
value approximately equal to the critical one, and are out of
phase with respect to the (leftwards) free-field accelerations.
As far as the soil profile UD is concerned, the same trend is
observed in terms of stress and bending moment distri-
butions. However, in this case the accelerations on the wall
are approximately constant and equal to ac, as a result of the
sliding mechanism, and no phase shift occurs with the
free-field accelerations.
In order to gain a more comprehensive insight into the

overall system’s behaviour, Fig. 12 summarises the most
relevant results also for the L-shaped walls (W1-D and
W1-UD), subjected to a wavelet acceleration with
amax = 0·15g. Specifically, Fig. 12 shows the time histories
of: horizontal free-field and wall accelerations (Figs 12(a)
and 12(b)); wall displacements (Figs 12(c) and 12(d));
horizontal soil thrusts SAV,h and SE,h (Figs 12(e) and 12(f));
and bending moments on the vertical stem (Figs 12(g)
and 12(h)). Being the most rotational-sensitive case, layout
W1-D experiences large rotations, corresponding to which
a marked phase shift is observed between free-field and wall
accelerations. However, the overall behaviour is qualitatively
similar to what is observed for the W3 layouts, thus
confirming that the ongoing plastic mechanism does not
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affect the dynamics of the system. Specifically, when the
wall moves, its average acceleration remains constant and
approximately equal to ac; the maximum soil thrust, SEh,max,
and the maximum bending moment occur when the inertia
forces into the system act in the active direction, that is away
from the backfill; during wall displacements, the maximum
internal forces are bounded by the two pseudostatic solutions
S1(kc) and S2(kc).

Real input earthquakes
For the sake of conciseness, the dynamic response of

cantilever walls during real earthquakes will be discussed in
terms of synthetic parameters, both kinematic (wall and
free-field accelerations, maximum wall displacement) and
static (maximum soil thrust, maximum bending moment),
usually adopted as performance indicators for the system.
Figure 13 reports the maximum acceleration computed at

mid-height of the stem (NMID) against the maximum free-
field acceleration (Nff), for the drained (Figs 13(a)) and the
undrained (Figs 13(b)) analyses, together with the theoretical
values of the critical acceleration. Maximum rightwards
(amax,MID, amax,ff) and leftwards (|amin,MID|, |amin,ff|) accel-
erations are considered for the right and the left wall,
respectively. As expected, once the critical threshold is
attained – that is as soon as a plastic mechanism develops

within the soil–wall system – the absolute acceleration of the
system remains approximately constant, starting to deviate
from the free-field excitation. Moreover, the theoretical
predictions of ac are in good agreement with the numerical
results.
Figure 14 shows the maximum normalised values of the

horizontal soil thrust, SEh,max/γH
2, and of the structural

bending moment, Mmax/γH
3, as a function of the maximum

free-field acceleration, for the drained (Figs 14(a) and 14(c))
and the undrained (Figs 14(b) and 14(d)) analyses, respect-
ively. The approximate solutions S1(kh), S1(kc) and S2(kh)
are also plotted for comparison. For a given layout, the
maximum soil thrust on the stem, and hence the maximum
bending moment, can increase even for amax,ff. ac, even
though the absolute acceleration of the system remains
constant, due to an internal redistribution of stresses
leading to a reduction of TE. Nonetheless, the solution
S1(kc), corresponding to TE= 0, always defines the upper
bound for SEh,max and Mmax. Moreover, as long as
this limiting condition is not achieved, the solution
S2(kh = amax,ff/g) provides a reasonable estimate of the
maximum internal forces in the stem, with a maximum
relative scatter of about 20%, in terms of bending moment,
with respect to the numerical values.
A key ingredient for the assessment of the seismic

performance of cantilever walls is the maximum horizontal
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displacement of the vertical stem, controlling the vertical
settlements in the backfill and hence the potential damage to
adjacent buildings. Fig. 15 shows the final horizontal
displacements of the top of the wall, u, both in dimensional
(Figs 15(a)) and non-dimensional (Figs 15(b) and 15(c))
form, as a function of the ratio ac/amax,ff between the
(theoretical) critical acceleration and the maximum free-field
acceleration. The normalised expressions

ū ¼ uamax;ff

V 2
max;ff

and ū ¼ u
amax;ffTm;ffT5�95;ff

taking into account also the frequency content and the
duration of the free-field signal, have been derived from
Newmark (1965) and Ausilio et al. (2007), respectively, where
Vmax,ff is the maximum velocity, Tm,ff is the mean period and
T5-95,ff is the duration of the strong motion. Fig. 15 also
reports some of the interpolating functions proposed in the
literature, all derived from the application of the Newmark’s
sliding block procedure (Newmark, 1965; Richards & Elms,
1979; Whitman & Liao, 1985; Saygili & Rathje, 2008),

together with the best fit of the numerical results presented
herein, obtained using the same functional form for both u
and its dimensionless expressions. As expected, the computed
displacements reduce with increasing the ratio ac/amax,ff.
However, while the numerical results for the UD profile are
in satisfactory agreement with the equation proposed by
Richards & Elms (1979) for sliding walls, those correspond-
ing to the D profile are always above the predictive
relationships. This observation suggests that the available
equations, all derived from the analysis of a rigid block
sliding over a horizontal plane, can lead to non-conservative
results if applied to retaining walls for which the permanent
displacement stems from a combination of both sliding and
rotation.
A similar conclusion can be drawn by inspection of

Fig. 16, showing the final horizontal displacements com-
puted at three points along the vertical stem (NBOT, NMID,
NTOP) against the displacements provided by a Newmark’s
type calculation, carried out assuming as the base input the
numerical acceleration computed in free-field conditions
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(Nff). Incidentally, note that the same results have been
obtained also using the acceleration computed at node NB,
closer to the walls but still outside the active limit zone, thus
indicating that no appreciable amplifications occurred close
to the system. The displacements computed for the D profile
(Fig. 16(a)) are significantly larger than those corresponding
to the UD profile (Fig. 16(b)), and always associated to a
substantial rotation of the wall. Moreover, the Newmark’s
calculation always under-predicts the actual average displace-
ment for the D profile, while it is in satisfactory agreement
with the numerical results for the UD profile.

DISCUSSION OF RESULTS
The main results of the dynamic analyses can be

summarised as follows.

(a) Contrary to what is argued by other authors (Green
et al., 2008; Al Atik & Sitar, 2010; Kloukinas et al.,
2015), during a dynamic event, the maximum values
of SE,h and of the structural bending moment are always
in phase and occur when the inertia forces into the
system are directed away from the backfill. An opposite
trend is observed for SAV,h, whose maxima occur when
the inertia forces act towards the backfill. This latter
condition, however, has no relevance in the seismic
stability of the wall, either external (geotechnical design)
or internal (structural design).

(b) Possible phase shifts can occur between free-field and
wall accelerations, when the wall undergoes permanent
displacements. Moreover, the actual average
acceleration of the soil–wall system can differ
significantly from the free-field one, its physical upper
bound corresponding to the critical value ac.
Consistently, also, the maximum inertia force that the
system can ever experience during an earthquake is
bounded by its critical value. This observation is in
substantial agreement with the experimental findings by
Koseki et al. (2003).

(c) When the wall moves, the shear force TE contributes to
the equilibrium of the soil mass above the heel, thus
affecting the amount of inertia force effectively
transferred to the vertical stem. However, the
pseudostatic solution S1(kc) (corresponding to TE= 0)
always defines the ever possible upper bound for the
maximum internal forces on the wall. Moreover, from a
practical point of view, the solution S2(kh¼ amax,ff/g)
provides a reasonable prediction of both the maximum
soil thrust on the stem and the maximum bending
moment, provided the limiting value S1(kc) is not
achieved.

In the light of points (a) and (b) above, close attention must
be paid when interpreting the dynamic behaviour of yielding
cantilever walls using only the free-field acceleration as
reference, since the free-field motion does not necessarily
correspond to the acceleration actually experienced by the
system. This evidence makes it possible to explain the
apparent mismatch between the numerical results presented
so far and some of the experimental and field observations
reported in the literature (Mikola et al., 2016; Wagner &
Sitar, 2016) – leading to the main practical conclusion that
the MO solution overestimates significantly the dynamic soil
thrust at large free-field accelerations (amax,ff. 0·4g). Indeed,
for such large values of the free-field acceleration, it is likely
that the wall has already attained its critical condition.
In other words, when applying limit equilibrium or plasticity
solutions, the pseudostatic coefficient cannot be linked, in

principle, to the free-field acceleration, but rather to the
actual acceleration of the yielding system.
Consistently with the above results, a simple three-step

procedure for the structural design of yielding cantilever
retaining walls can be defined, taking into account, although
approximately, the possible contribution of the horizontal
stem to the overall dynamic equilibrium. As summarised in
Fig. 17: (a) compute the critical acceleration of the wall;
(b) use S1(kc) to compute the maximum internal forces that
the wall could ever experience during an earthquake;
(c) for a given design earthquake, corresponding to which
kh = amax,ff/g, use S2(kh) to compute the internal forces in the
wall, as long as S2(kh), S1(kc), otherwise use S1(kc).

CONCLUSIONS
The numerical results presented in this paper made it

possible both to gain valuable information on the seismic
behaviour of yielding cantilever walls, in terms of expected
permanent displacements and maximum internal forces, and
to validate the predictions of a simple pseudostatic model,
based on limit equilibrium/analysis methods.
As already observed for other types of yielding retaining

structures (Conti et al., 2013, 2014), the dynamic behaviour
of cantilever walls is primarily governed by the strength of
the system, while the wall flexibility and the soil stiffness
play a minor role. A direct consequence of this observation
is that the critical acceleration turns out to be the key
ingredient for their seismic design, controlling both the
maximum structural internal forces and the final
displacement.
The critical acceleration and the magnitude and trend of

the final displacements depend on the plastic mechanism
actually activated during the earthquake. Sliding and bearing
failure are both ductile mechanisms for the system, inducing
a progressive accumulation of permanent displacements
during shaking. As a matter of fact, contrary to a pure
overturning failure mechanism, the temporary mobilisation
of the soil shear resistance beneath the foundation would not
lead to a fragile collapse of the system, provided that an
excessive wall tilting is prevented. A performance-based (and
more economic) design of cantilever walls should then
contemplate the possible activation of both mechanisms,
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depending on the particular wall geometry and soil con-
dition, instead of excluding a priori the expected rotation.
On the other hand, the results of the current study have

shown that a direct application of Newmark’s sliding block
procedure to critical mechanisms involving a bearing failure
of the foundation can lead to a significant under-prediction
of the final displacement. Further research is therefore
required to develop reliable theoretical models, capable of
handling combined tilting and sliding failure modes.
As far as the structural design of the wall is concerned,

numerical results have pointed out, on the one hand, that no
phase shift occurs between the maximum soil thrust on the
vertical stem, its maximum bending moment and the inertia
forces into the wall–backfill system. On the other hand, when
the wall is moving, the presence of the horizontal heel can
affect the inertia force effectively transferred to the vertical
stem, leading to a possible increase of bending moment
under a constant absolute acceleration. In this case, an
approximate procedure to handle the structural design of the
wall has been proposed, combining the predictions of two
simple pseudostatic plasticity solutions.
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APPENDIX
Using the lower bound theorem of limit analysis, Kloukinas &

Mylonakis (2011) and Evangelista et al. (2010) derived the
expression for the dynamic active soil thrust acting on the vertical
plane AV (see Fig. 1)

SAE ¼ 1
2
γKAEH2 ð1Þ

where the dynamic active earth pressure coefficient, KAE, is given by

KAE ¼ cos ε cos εþ ψð Þ
cos δS cosψ

1� sin ϕ cos Δ1e � εþ ψð Þ
1þ sin ϕ cos Δ1e þ εþ ψð Þ

� �
ð2Þ

in which

ψ ¼ atan
ah

1� av

� 	
; sinΔ1e ¼ sin εþ ψð Þ

sin ϕ

ε is the slope of the backfill and δS is the inclination of the soil thrust
on the horizontal

δS ¼ atan
sin ϕ sin Δ1e � εþ ψð Þ

1þ sin ϕ cos Δ1e � εþ ψð Þ
� �

ð3Þ

Finally, the angles of inclination of the two failure surfaces on the
vertical direction are given by

ωβ ¼ π

4
� ϕ

2
� Δ1e � εð Þ

2
� ψ

2
; ωα ¼ π

2
� ϕ� ωβ ð4Þ

NOTATION
ac critical acceleration
ah horizontal acceleration

amax,ff maximum free-field acceleration
av vertical acceleration

ay,SLID yielding acceleration for sliding over the base
ay,QLIM yielding acceleration for bearing capacity failure of the

foundation soil
d width of wall heel
H wall height

KAE,h
KM earth pressure coefficient (generalised Rankine solution)

KAE,h
MO earth pressure coefficient (MO solution)
kh horizontal pseudostatic coefficient

Mmax maximum bending moment
SAE,h
KM horizontal soil thrust (generalised Rankine solution)

SAE,h
MO horizontal soil thrust (MO solution)
SE,h horizontal soil thrust on the vertical stem

SFQLIM static global safety factor for bearing capacity failure of
the foundation soil

SFSLID static global safety factor for sliding over the base
u horizontal displacement

Ws weight of the soil volume above the wall heel
Ww,stem weight of the wall stem

z depth
γ unit weight of the backfill
δs inclination of the soil thrust on the horizontal

(generalised Rankine solution)
ε slope of the backfill

σh horizontal stress
ϕ′ soil friction angle
ωα inclination of the α-characteristic (generalised Rankine

solution)
ωβ inclination of the β-characteristic (generalised Rankine

solution)
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