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The estimated parameters accuracy of poly-phase induction motors is crucial for effective performance prediction
and/or control in various manufacturing applications. This study investigates hybrid algorithm between particle
swarm optimization and Jaya optimization algorithms for finding the optimal parameters estimation of poly-
phase induction motors. It is carried out using the manufacturer’s operation characteristics on two poly-phase
induction motors. Numerical results show the capability of the proposed hybrid optimization algorithm. The
proposed algorithm has competitive performance compared with conventional algorithms as well as with differ-
ential evolution and genetic algorithms. Experimental verifications are carried out on three-phase and six-phase
induction motors. Also, it emulates the closeness between experimental and estimated parameters with fast con-
vergence compared to other algorithms. Also, the results reflect the high robustness of the proposed algorithm
compared with other algorithms for varied iteration numbers, population size and convergence.

1. Introduction

The Poly-phase Induction Motors (PIMs) are the most used electrical
machines [1]. They contribute around 60% of electric power converted
to mechanical energy [2]. PIM are favored due to their ruggedness
and simplicity in the industry section as 90% of industrial motors are
IMs [3]. Examples of induction motors applications involve motor tools
equipped with induction motors, adjustable speed motors and pumps
[4]. To achieve the target performance of induction machines, the accu-
rate modelling is considered as crucial issue for PIMs [5]. These issues
involve the transient and steady-state behavior. The model expresses the
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stator and rotor windings voltage balance, flux linkages and currents,
the air-gap power, and the electromagnetic torques. Therefore, finding
the unknown parameters of these machines is a complicated nonlinear
non-smooth optimization problem [6]. It aims at achieving the highest
closeness degree between the estimated parameters and those of the ac-
tual ones. Therefore, the objective function of the considered parameter
estimation problem is the minimum deviation between estimated and
actual parameters with preserving these parameters within their permis-
sible operating boundaries. To satisfy the parameter identification pro-
cess, several optimization algorithms have been developed to guarantee
the accurate PIM models. In this regard, this paper proposes the hybrid
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Nomenclature

R, Per phase stator resistance, €2

R, Per phase rotor resistance, €2

X, Per phase stator reactance, Q.

X, Per phase rotor reactance, Q.

Xm Per phase magnetizing reactance, Q.
Von Per phase stator voltage, V

p number of pole pairs

Ty electromagnetic torque of the motor, N.m
s Induction motor slip

I, Per phase rotor current, A.

I Per phase stator current, A.

I starting current, A.

T starting torque of the motor, N.m

T nax maximum torque of the motor, N.m
T rated torque of the motor, N.m

ATy Normalized power factor

v velocity of the control variables

FEC“ personal best of control variables
gRbest global best of control variables
AF}*™t  worst suggested of possible solution
eTy Estimated developed torques

mT, . Measured maximum developed torques
eTmax Estimated maximum developed torques
mTy Measured starting developed torques
eTy Estimated starting developed torques
SmT Slip at maximum torque

AF objective function

Apf Normalized power factor

ATy Normalized power factor

AT pax Normalized power factor

pf Rated power factor

m Number of phases

epf Estimated power factors

mpf Measured power factors

mTy Measured developed torques

k Iteration number

¢, Cy, c3 The learning coefficients
rl, r2, r3 random numbers
Ttermax maximum number of iterations

algorithm between particle swarm optimization and Jaya optimization
algorithms HPJOA form finding the optimal unknown PIM parameters.

The modelling of induction motors is considered as vital issue in ac
drive systems. Accurate parameters identification of induction motor is
an urgent work in the viewpoint of control drives and operation aspects
[7,8]. It is necessary to find the IMs’ parameters at low implementation
costs at high degree of accuracy. The traditional methods applied for
finding the equivalent circuit parameters are dependent on no-load and
locked rotor tests as in IEEE Std 112-1991 and its modifications IEEE Std
112-2004 [9]. Added to that, the high cost of hardware that is needed
to implement. So, Due to these restrictions, many optimization methods
developers provide number of advanced methods to meet the target of
finding satisfactory level of the estimated parameters [10]. For achiev-
ing this target, several optimization methods are exploited to optimally
estimating the parameter of PIMs equivalent circuits [11-13]. In the lit-
erature, several methods have been carried out for finding the unknown
parameters of PIMs. References [14] review the various methods that
were developed for estimating the unknown parameters of PIMs. In this
line, the previous efforts are summarised as follows:

o Reference [15] developed the artificial immune system for extract-
ing the IM parameters to optimize the parameters of IMs from ex-
perimental tests and manufacturer data.
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Reference [16] presented the neural network as training mechanism
for finding the solution of parameter estimation problem.
References [17,18] presented the shuffled frog-leaping for extract
the equivalent circuit parameters of IMs from the manufacturer data.
Reference [19] presented a simplified model for parameter estima-
tion of the PIMs.

Reference [20] estimated the 6-phase IM parameters using modified
standard tests. This zero-sequence test is proceed using an improved
equivalent circuit to enhance the estimated parameter accuracy.
Reference [21] developed multi-objective PSO algorithm to mini-
mize the deviation between the manufacturer and estimated data.
Reference [22] developed differential evolution for finding the pa-
rameter estimation of three phase IMs.

The previous survey shows the application of various optimization
techniques for solving the parameter estimation problem. The field of
optimization is continuous and worth of interest. Many optimization al-
gorithms were developed for many real engineering problems as: moth-
flame [23], fruit fly [24], cat swarm [25], sunflower [26], wind driven
[27], and water cycle [28] optimization algorithms. Among the opti-
mization algorithm, PSO algorithm that mimics the main idea of fish or
birds looking for food was introduced in by Eberhart and Kennedy [29] .
Several real-world works are reported based on PSO algorithm and its
variants in the literature. Reference[30] presented an intelligent diag-
nosis method using, design of synchronous motor [30], optimization of
PID controller parameters adjustment [31], optimal costs of generation
production [32]. The main drawback of PSO is the need to adjust learn-
ing and inertia coefficients.

An efficient metaheuristic technique called PSO it was started
by Kennedy and Eberhart was presented in Ref.[33]. This algorithm
was taken from swarm attitude such as bird flow and education in na-
ture [30]. Particles that move inside the problem are used at high speeds
[34]. In every repetition, the velocities of the self-particles are randomly
preset related to the best position of the same particle and the best po-
sition of the near particle. The best particles and the best close ones
are selected according to the conditions set by the user. The transition
of all particles occurs normally to the best solution. The word "swarm"
originates from the unequal movement of particles in the problem area,
and now very much resembles a group of fish or birds [35]. The Jaya
algorithm [36] is one of the recent metaheuristic techniques which is
quickly finding many applications in different fields of engineering and
science. The JOA directed the solution towards the best value with the
progress of the optimization algorithm [37]. The main merits of JOA
are its simplicity and the benefits of no need for adopting and selecting
the specific control parameters that avoid the demerits of PSO algo-
rithm. JOA is very promising optimizer which is developed for many
real-world applications as: optimal sizing of capacitor-bank types in the
low voltage distribution networks [38], control of online load frequency
in wind power systems [39], solving economic/emission unit commit-
ment [40]. Added to the previous applications, JOAs is applied for har-
monic mitigation and employing reactive power compensation of three
phase induction motor that drives by photo-voltaic-based DSTATCOM
[41], automatic generation control of multi-area interconnected power
system [42], for optimal power flow [43], environment based allocation
of distributed energy resources in a micro-grid [44] for optimizing the
thermal performance of the underground power cable system [45], for
reactive power dispatch problem [46], and for design the digital FIR
filters in [47].

As mentioned, the problem is formulated as non-linear optimization
problem because the conventional optimization techniques fail to deal
exactly with the need of linearization that reduces the solution quality
and high dependency on the initial point of linearization. So, it must seek
other methods to solve the non-linear optimization problem avoiding
the previous drawbacks. The features of this paper are concluded as
follows:

¢ The steady state model of multi-phase induction motor is derived.
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Fig. 2. Thevenin equivalent circuit.

e The Hybrid PSO-Jaya optimization algorithm is proposed to extract
the optimal unknown parameters of PIM from the nameplate data.

e The performance of HPJOA is assessed compared with Jaya, GA, DE
and PSO optimization algorithms for three and six-phase induction
motors.

e The assessment study proves that the HPJOA has the fast response
compared with other competitive algorithms with actual parameters.

e Also, the results reflect the high robustness of the proposed HPJOA
compared with others.

The rest sections are organized as follows: In section 2, the steady
state characteristics of poly-phase IM is presented based on equivalent
circuit. In Section 3, the parameter estimation problem is formulated
as an optimization problem that defines the objective and constraints.
The previous optimization algorithms are added to section 4. The design
procedure of HPJOA is presented in Section 5. In Section 6, the param-
eter estimation problem and its operation characteristic are applied on
two poly-phase IMs. Section 7 concludes the paper findings.

2. Steady state characteristics ofpoly-phase induction motor

The steady state operating characteristics are identified based on the
steady state equivalent circuit shown in Fig. 1. The equivalent circuit
shows the per phase steady state equivalent circuit of poly-phase induc-
tion motor without separate mutual leakage inductance of stator wind-
ing [20]. The stator and magnetizing impedance in poly-phase induc-
tion motor can be reduced to the Thevenin equivalent circuit as shown
in Fig. 2.The Thevenin voltage is computed through:

JXm

V= —2"  _y
TR+ X, +jX, ™

(1
The Thevenin equivalent circuit of poly phase induction mo-
tor(PIM)is shown in Fig. 2 as:

JX (R + jX,) _ R, X,
R, +jX,+jX,, X,+X,

o XX
X, + X,

Zip =Ry +jXip = @
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Fig. 1. Multi-phase induction motor equivalent circuit.

The current flow in the IM rotor circuit of induction motor can be
calculated as:

Vin Vin

b=z~ R ®
th ™ 22 (R,h+72>+j(Xr,,+X2)
The developed torque can be determined by Eq. (4) as:
R v, R
T,=2 22_2 - m th =2 )
(OB N @y

2
(R,h+ %) + (X,,,+X2)2 s

From the above equation the slip at maximum torque s, can be
calculate from
R
Sur = — - ®)
V(Ra) + (X + X,)
Substituting the slip at maximum torque from Eq. (5) into the elec-

tromagnetic torque in Eq. (4) the maximum torque can be calculated
from:

2
_m Vit ®)
max
Zws 2 2
[R,h + \/(R,h) + (X +X,)
The Starting torque can be calculated from
V2
m
Ty=o e TR ™
s (R + Ry)™ + (X + X5)
The input current power factor can be obtained from
X+ X
pf = cos|tan™! 'h—R2 )
Rp+ 32

3. Problem formulation

The fitness function aims at finding the lowest deviation level for
the starting, operating , maximum torques and the power factor. This
fitness function assures the capability of estimated parameters at differ-
ent operating conditions. Eq. (9) presents the combined fitness function
for finding the optimal parameter estimation of the tested induction mo-
tors. It aims at minimizing the deviation between the estimated and ex-
perimental data. The combined objective function, in Eq. (9), has four
normalized deviation components for the starting, rated and maximum
torques, and the full load power factor as:

AF = AT,? + AT, > + AT,> + Apf? ®

Computing the normalized components is carried out using
Egs. (10)-(13) as:

epf —mpf

Apf = (10)
mpf
Ty—mT
ATd=w an
mTy
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el . —mT,
ATmax — maxT max (12)
m max
eT,, — mT,
AT, = —’m T oz (13)

st

where AF is assumed as the required objective square error function of
full load, starting, and maximum torque, and rated power factor which
is to be minimized.

Eq. (9) is solved subject to the minimum and maximum limitations
of the stator and rotor sides’ motor parameters.

4. The developed optimization algorithms

In the following section, the GA, DE, PSO, and JAYA are described
in details as:

4.1. Differential evolution DE

Differential evolution DE is algorithm based on stochastic and pop-
ulation. The population is composed of pop individuals and every indi-
vidual in the population represents a solution that possible to minimize
the fitness function. DE operates in three sequential steps in all iteration
[22]:

e Mutation: pop mutated individuals are generated using some indi-

viduals of the population. A vector for the mutated solution is called

mutant vector. There are different strategies to create a mutant vec-

tor. Here only the three most common mutation methods are ex-

plained [48]. Other mutation strategies and their performance have

been discussed in.

Mutation strategy is random mutation strategy, in which three ran-

domly selected individuals from the population are used to generate

the mutant vector.

Mutation strategy uses the best individual from the population to

create the mutant vectors.

e The mutation strategy moves the current individual towards the best
individual in the population before being disturbed with a scaled
difference of two randomly selected individuals.

Crossover: we recombine the set of mutant vectors created in mu-
tation with the original population members to generate progeny solu-
tions.

Selection: In this last step, the progeny is compared with its origin,
and the best one will but the population for the next generation

4.2. Genetic algorithm GA

GA is an evolutionary optimizer that takes a sample of possible so-
lutions and employs mutation, crossover, and selection as the primary
operators for optimization. For the case of multi-phase induction motor
parameters estimation, there are five parameters being optimized for
the multi-phase induction motor parameters estimation [34].

The workability of GAs is based on Darwinian’s theory of survival
of the fittest. Genetic algorithms may contain a chromosome, a gene,
and set of population, fitness, fitness function, breeding, mutation and
selection. Genetic algorithms begin with a set of solutions represented
by chromosomes, called population [49]. Solutions from one population
are taken and used to form a new population, which is motivated by
the possibility that the new population will be better than the old one.
Further, solutions are selected according to their fitness to form new
solutions, that is, offspring’s.

The solution procedure of the parameters estimation problem can be
carried out using the proposed GA optimization algorithm as follows:

1 Start: Generate random population of chromosomes, that is, suitable
solutions for the problem.
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2 Fitness: Evaluate the fitness of each chromosome in the population.

3 New population: Create a new population by repeating following

steps until the new population is complete.

Selection: Select two parent chromosomes from a population accord-

ing to their fitness. Better the fitness, the bigger chance to be selected

to be the parent.

Crossover: With a crossover probability, cross over the parents to

form new offspring, that is, children. If no crossover was performed,

offspring is the exact copy of parents.

Mutation: With a mutation probability, mutate new offspring at each

locus.

iv Apply: Place new offspring in the new population.

4 Update: Use new generated population for a further run of the algo-
rithm.

5 Check: If the end condition is satisfied, stop, and return the best
solution in current population.

—-

=

i

=

ii

4.3. PSO algorithm

The Particle Swarm Optimization is configured with a set of random
results and seeks to improve by updating generations. In PSO, the possi-
ble solutions, called particles, flythrough the problem space by follow-
ing the current optimum particles [30]. In PSO, a set of randomly initial
swarm propagates in the design space towards the optimal solution over
a number of iterations based on large amount of information about the
design space that is assimilated and shared by all members of the swarm.
Modification of the swarm agent positions is realized by the position and
transition information. Each agent transition can be simulated by two
dimensional referred to the available information’s about self and group
experiences. The basic PSO version is based on the collected information
of self and group experiences according to the positions of agents.

The basic PSO is presented as in [33] as:

Ay = Vil Axy +op XX ()PS0 —xy ) ey X1y X (xS - xy ) (14)

Xiq1 = X + AXpy

where, X;, xﬁe“is the vector of control variables and personal best of

control variables at iteration k. xgEes‘ is the vector of global best of control
variables at iteration k, x, ;is the vector of control variables at iteration
k+1.

The velocity of the control variables updated at iteration k is:

v = U™ — (0™ — v‘,;“i“) X k/Iter™* (15)

Where v, ™ and v, ™" is a function of search space length in each di-
mension, Iter™* is the maximum number of iterations. The learning
coefficients ¢; and c, are the factors which PSO technique optimizes
different objective functions on the basis of personal and group experi-
ences and each agent tries to modify its position the updating formula
14).

The minimum and maximum transition of the updating formula in
(14) for agent position as:

Ax™ < Axy < Ax™ (16)
where:
AxMax — [ max __ ,.min
{Axmin — ’;(Xk max Xk mi)n (17)
XM = — m(xk —x} )

4.4. JAYA optimization algorithm

The Jaya optimization algorithm (JOA) replaces the updating for-
mula in PSO algorithm by the following equation as [50,51]. The main
advantage of JOA is characterized with the high ability of movement in
the direction of the best solution and avoiding the possibility of trapping
into worst solutions. The combination of these two terms concentrates
on the best solution region [52]. Two global solutions, reflected in the
updating equation terms, the best and worst solution for the overall
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Fig. 3. Flowchart for hybrid PSO-Jaya based opti-
mization process.

moftor

Initialize the manufacture data of the

Insert the initial values of HPJOA limits

v

Generate first Population of N Particles

L 4

[ Compute the best and worst solutions

v

Calculate the modified solution based on
best and worst solutions of HPJOA equ. (19)

is global achieved

A 4

Replaced the previous
solution

Keep the previous
solution

I

Apply reduction strategy using Equations (20)-(21)

Stopping criteria

particles. But, JOA is not dependent on the self-experience of particle as
in PSO algorithm [53]. Then, the updating equation has two terms the
first enhances the closeness between the best solutions while the second
terms avoid the closeness to worst solution.

The updating equation is expressed as:

Xgq1 = X +17 X (XEeSl _ Axk) -1, X (Xgorsl _ Xk)

13

where, x]‘:es‘, x,*'are the value of the variable k for the best and worst
suggested member of a set of possible solution. r; and r, are two random
numbers in the range (0,1).

5. The proposed hybrid PSO -JAYA optimization algorithm
The proposed hybrid optimization algorithm combines the merits of

PSO and Jaya algorithms. It enhances the search space, forces the so-
lution to the global best solution and away from the worst solutions.

Eq. (19) presents the updating formula for the proposed HPJOA. It is
dependent on the global best, worst solution and taken into considera-
tion the impact of self-experience of the associated particles.

The proposed updating equation can be expressed as:

Xipt = VX + 0 X1 X (X2 = x ) — oy Xy X ()] = xy ) + 05 X13
gbest
XOE —x) (19)
where, xﬁbes‘ is the value of the variable k for the global member of a

set of possible solution. For the kth iteration in the range of (0, 1), 1y, ry
and rj are the three random numbers for the kth variable. c¢;, ¢, and c;
are learning coefficients, the first term shows the affinity of solution to
move nearer to the personal best solution, The second term shows the
affinity of solution to move nearer to the global best solution and the
last term is the tendency of the solution to avoid the worst solution.
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5.1. Proposed procedure steps

The proposed procedure of HPJOA can be carried out as follows:

—

Defining the motor manufacture data, parameters limits, constraints

and the HPJOA coefficients.

2 Initialize the control variables (estimation variables) within the pre-
defined boundaries.

3 Evaluate each particle of the initialized matrix by determining the
fitness function through solving the steady state equivalent circuit.

4 Identify the global, personal and worst solutions.

5 Update the control variables using Eq. (19).

6 Check the upper and lower boundaries and transition constraints
given in Egs. (16) and (17).

7 The reduction strategy to concentrate the search space and there for

enhance the solution quality. The factor « refers to the coefficient

applied for reduction strategy. In this strategy, the search space is

managed through adaptive variation of the upper and lower limits

according to the following two equations:

min v = min v + @ X (max v — min v) (20)

max v = max v — « X (max v — min v) 210

In this paper the factor « equals 0.08.
Repeat steps 3 to 4 until the maximum iteration as stopping criteria
are achieved. Fig. 3 shows the flow chart of HPJOA.

6. Applications
6.1. Experimental setup

The experimental tests- open, short circuit and DC tests- are carried
out on two poly-phase IM to obtain the equivalent circuit parameters.
Photograph of the experimental implementation located at Faculty of
Engineering; Kafrelshiekh University is provided in Fig. 4. The tests are
carried out according to the specifications of the IEEE Std 112™-2004
for tests procedure for PIM [6]. Table 1 represents the recorded measure-
ments for three-phase and six-phase IMs. By using the data recorded for
voltage, current, input power and the dc resistances from no load, short
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Fig. 4. Experimental setup at Faculty of En-
gineering, Kafrelsheikh University.

Table 1
Experimental tests of 1/3 HP three-phase and 3 HP six-phase IMs.

Three phase IM (1/3 HP) Six phase IM (3 HP)

Variables . o
No load test Short-circuit test No load test Short-circuit test
Voltage, V 220 89.7 220 96.9
Current, A 0.22 0.65 0.95 2.67
Input power, W 9.5 25.6 104 159.37
Ry Q 21.25 12

circuit and short circuit tests in Table 1. These records are used to deter-
mine the three and six phase induction motor parameters by using the
proposed hybrid HPJOA and the competitive algorithms.

6.2. Settings of competitive optimization algorithms’ parameters

The parameters setting for the competitive algorithms are described
as follows:

Maximum iteration number is 100 and the population size is 60.

For GA [34], the parameters were set crossover length = 0.5, resolu-
tion = 3, and mutation probability = 0.12. For DE [22,48], the param-
eters were set crossover probability = 0.7 and scaling factor =0.5, mu-
tation probability = 0.5. Finally, for HPJOA, the parameters are c¢;=1,
€;=2, c3=1.5 and search space length were set v} = 0.8, and v;("i" =0.8.

Case 1: three phase induction motor parameter estimation

The competitive algorithms are integrated to obtain the parameter
estimations of 1/3 HP three-phase induction motor. The experimental
parameters of the steady state equivalent circuit of the 3 phase induction
motor are shown in the second column of Table 2. The estimated param-
eters of steady-state equivalent circuit of three phase induction motor
using PSO, JOA, GA, DE and HPJOA methods are reported in the rest of
columns of the Table 2. The obtained results show that the parameters
by using the proposed HPJOA are closer to actual value of motor than
PSO and JOA, GA and DE. In the viewpoint of operational indices, a
comparison is carried out between the estimated and the experimental
values of the starting, maximum, full load torques, and full load power
factor. The HPJOA has the lower fitness function (1.71 x 10®) compared
with Jaya method which equals (2.9 x 10-), with PSO method which
equals (9.25 x 10°), with GA method which equals (4.84 x 10-5) and
with DE method which equals (1.98 x 104). It is cleared that, the pro-
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Fig. 5. Electromagnetic torque - slip characteristics of three phase IM (-measurement,* PSO, x Jaya, o GA, DE, +HPJOA).

Table 2
Assessment of competitive algorithms for 3-phase induction motor.

Parameters Experimental DE PSO GA Jaya HPJOA
Ry 21.25 19.46 21.53 20.21 21.33 21.177
X 61.95 63.42 60.40 60.62 61.87 61.01
R; 39.32 40.08 39.379 39.93 39.42 39.352
X; 61.95 62.74 63.78 64.99 62.03 63.07
Xm 999.52 1049.5 1012.1 1045 1005.3 1000.1
Tg 0.89 0.889 0.89 0.889 0.89 0.89
Tr 0.987 0.981 0.988 0.985 0.992 0.988
Tmax 1.435 1.44 1.433 1.43 1.439 1.436
Pf 0.807 0.810 0.808 0.811 0.807 0.806
AF x10 1.98 0.924 0.484 0.29 0.0171
% reduction - 53.33% 25.56% 85.35% 91.36%
Table 3
Assessment of competitive algorithms for six-phase induction motor.

Parameters Experimental PSO DE Jaya GA HPJOA
R 12 11.63 11.38 11.65 124 11.898
) 12.8426 13.86 12.74 13.78 12.65 13.095
R; 8.0978 8.12 8.26 8.105 8.04 8.092
X, 12.8426 12.14 13.69 12.13 12.65 12.66
Xm 266.68 273.55 268.41 274.29 268.27 263.66
T 3.34 3.348 3.35 3.36 3.348 3.34
T 3.1785 3.17 3.16 3.18 3.183 3.18
Thax 5.36 5.377 5.38 5.386 5.339 5.36
Pf 0.844 0.846 0.84 0.847 0.847 0.842
AF x10 0.963 0.791 0.788 0.329 0.0208
% reduction - 17.86% 18.18% 65.84% 97.84%

posed HPJOA achieves the hoiesht reduction of 91.36% improvement is
occurred with the largest fitness function obtained with DE.

Case 2: Six phase induction motor parameter estimation

Table 3 shows the experimental tests are recorded for the 3 HP mod-
ified six-phase induction motor. To confirm the proposed HP JOA algo-
rithm is performed for parameter estimation. While the estimated pa-

rameters of steady-state equivalent circuit of six phase induction motor
using PSO, Jaya and Hybrid PSO-Jaya methods are recorded in Table 4,
receptively. The comparison between the experimental and estimated
parameters concludes that the investigated estimation algorithms can
accurately estimate the equivalent circuit parameter at acceptable lev-
els of closeness. The estimated parameters obtained by using HPJOA
are closer to actual value of motor and it has smaller error than Jaya,
and PSO. The Hybrid PSO-Jaya optimization algorithm has lower fit-
ness function (2.08 x 10®) compared with Jaya method which equals
(7.88 x 10°), with PSO method which equals (9.63 x 107°), with GA
method which equals (3.29 x 10°)and with DE method which equals
(7.91 x10). It is cleared that, the proposed HPJOA achieves the high-
est reduction of 97.84% improvement is occurred with the largest fitness
function obtained with PSO.

Performance of operating characteristic with estimated parameters

Fig. 5 shows the three-phase induction motor torque-slip characteris-
tic using parameters that was recorded from the measurements clearly,
that the parameters estimated from optimization PSO, that the param-
eters estimated from optimization Jaya, that the parameters estimated
from optimization GA, that the parameters estimated from optimization
DE, and that the parameters estimated from the proposed HPJOA. Esti-
mated torque-slip characteristic, using parameters calculated by DE, has
a little difference compared to the measured torque-slip characteristic,
while estimated curve using parameters obtained by the HPJOA is very
close to real characteristic.

The stator-slip and rotor current-slip characteristics using param-
eters estimated by the five algorithms are shown in Fig. 6a, b. Esti-
mated stator and rotor current characteristics using parameters calcu-
lated by PSO has large difference compared to the measured characteris-
tics, while estimated characteristics using parameters calculated by the
HPJOA is very close to the real characteristics. The magnetizing current-
slip and power factor-slip characteristics of three-phase induction mo-
tor using parameters calculated by the PSO, Jaya, GA, DE and HPJOA
are shown in Fig. 6 ¢, d. Estimated magnetizing current and power fac-
tor characteristics using parameters calculated by PSO, Jaya, GA and
DE have big difference compared to the measured characteristics, while
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Fig. 6. Performance characteristics of three phase IM (-
measurement,” PSO, x Jaya, o GA, A DE, +HPJOA).
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Fig. 7. Torque - slip characteristics of six phase (-measurement,* PSO, x Jaya, o GA, A DE, +HPJOA).

estimated characteristics using parameters calculated by the HPJOA is
very close to the real characteristics.

Fig. 7 shows the six-phase induction motor parameters estimated
from the measurements clearly, that the parameters estimated from op-
timization PSO, that the parameters estimated from optimization Jaya,
GA, DE and that the parameters estimated from the proposed hybrid
algorithm. Estimated torque-speed characteristic using parameters cal-
culated by PSO, Jaya, GA and DE have little differences compared to
the measured torque speed characteristic, while estimated curve using
parameters obtained by the proposed algorithm is very close to real char-
acteristic.

The stator and rotor current -slip characteristics of six-phase induc-
tion motor that are based on the parameters calculated by the PSO, Jaya
and Hybrid PSO-Jaya are shown in Fig. 8a and b. Estimated stator and
rotor current characteristics using parameters, which are calculated by
PSO and Jaya are compared to the measured characteristics, while es-
timated characteristics using parameters calculated by the Hybrid PSO-
Jaya is very close to the real characteristics. The magnetizing current
and power factor-slip characteristics of six-phase induction motor using
parameters calculated by the PSO, Jaya and HPJOA algorithm are shown
in Fig. 8 ¢, d. Estimated magnetizing current and power factor charac-
teristics using parameters calculated by PSO and Jaya has difference
compared to the measured characteristics, while estimated characteris-
tics using parameters calculated by the HPJOA is very close to the real
characteristics.

Table 4

6.3. Competitive tools assessment

6.3.1. Statistical analysis

Tables 4 and 5 present the statistical indices, mean, median, best,
worst, standard deviation and variance, of the competitive algorithms
that are carried for 100 iterations and 60 populations, respectively. It
is concluded that the proposed HPJOA leads to the best values of the
indices compared with PSO, GA, DE and JOA.

6.3.2. Convergence rates

The convergence rate of the fitness function of the competitive op-
timization algorithms are shown in Fig. 9 a and b, respectively. It can
be seen that from this figure that the proposed HPJOA has better con-
verges rates as the early reaching to final solution provides a proof for
fast response compared with other optimization algorithms

6.3.3. Robustness

To verify the robustness of the competitive algorithms, 100 sepa-
rate runs are applied on the tested motors. Fig. 10 a and b illustrate the
robustness of the five algorithms. It is clear that, the proposed HPJOA
has the highest robustness compared with PSO, GA, DE and Jaya algo-
rithms. To confirm the fair comparison between the competitive algo-
rithms, we consider the effects of population and maximum iteration
variation. Figs. 11 and 12 clear that, the proposed HPJOA has the high-
est robustness, compared with PSO, GA, DE and Jaya algorithm.

Statistical analysis of the competitive methods for the three-phase IM.

Competitive algorithms

index
GA DE PSO Jaya HPJOA

Mean 3.77 x 10”° 6.33 x 107 3.2 x 107 4.23 x 10 3.09 x 106
Median 3.43 x 107 492 x 107 2.82 x 107 3.74 x 107 2.20 x 106
Best 434 x 10 6.86 x 106 1.47 x 106 2.07 x 10 3.59 x 107
Standard deviation ~ 2.27 x 10° 4.49 x 10 2.28 x 107 2.85 x 107 2.43 x 106
Variance 5.13 x 10710 2.01 x 107 5.19 x 10710 8.15 x 10710 5.91 x 10712
worst 1.26 x 104 2.43 x 104 1.22 x 104 1.73 x 104 1.16 x 10
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Table 5

Statistical analysis of the competitive methods for the six-phase IM.

Competitive algorithms

index
GA DE PSO Jaya HPJOA

Mean 3.44 x 107 7.57 x 10 1.87 x 107 1.52 x 10* 521 x 10
Median 3.04 x 10~ 6.49 x 100 8.93 x 106 1.22 x 104 2.57 x 10
Best 5.82 x 106 4.07 x 107 489 x 107 974 x 106 230 x 107
Standard deviation 1.96 x 107 5.78 x 10 3.73 x 10 1.19 x 10* 8.18 x 10
Variance 3.84 x 10710 3.34 x 1011 1.39 x 10 1.42 x 108 6.69 x 10711
worst 9.47 x 107 2.79 x 107 2.89 x 10 5.77 x 10 4.88 x 10
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Fig. 8. Performance characteristics of six phase IM (-measurement,*

PSO, x Jaya, o GA, A DE, +HPJOA).
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Fig. 8. Continued
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7. Conclusions

This study has presented the parameters estimations of poly-phase
induction motors. The HPJOA, Jaya, and PSO algorithm have been used
to estimate the parameters of the electrical model of the poly-phase in-
duction motors. The benefits of the proposed HPJOA algorithm have
been compared with PSO, JOA, GA and DE for two poly-phase induc-
tion motors. The parameters estimation of the competitive algorithms is
assessed together the performance of the poly-phase induction motors.
Also, the estimated parameters have been compared with the experi-
mental tests. The results indicate the validation and reliability of the
suggested hybrid optimization algorithm for efficient extraction of the
optimal parameters of three- and six poly phase induction machines. Sta-
tistical analyses are provided to assess the competitive algorithms. The
robustness of the proposed HPJOA is proved against other competitive
algorithms and for varied iteration numbers and population sizes. In ad-
dition, the proposed HPJOA realizes fast, stable, and smooth operation
characteristic at acceptable convergence rates compared with PSO and
Jaya. The proposed HPJOA achieves the highest reduction of 91.38%
and 97.84% that are occurred with the largest fitness function obtained

14

with the competitive algorithms, DE and PSO, for three and six phase
motors, respectively. The statistical indices involve best agreements be-
tween the estimated and experimental values for the three optimization
algorithms. It can be concluded that the HPJOA is most simple, stable,
and global out performance optimization algorithm. The use of HPJOA
leads to decrease the deviation of estimated parameters compared to
PSO and Jaya. Also, the use of HPJOA also enhances the operating per-
formances of the tested PIMs.
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