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a b s t r a c t 

The estimated parameters accuracy of poly-phase induction motors is crucial for effective performance prediction 
and/or control in various manufacturing applications. This study investigates hybrid algorithm between particle 
swarm optimization and Jaya optimization algorithms for finding the optimal parameters estimation of poly- 
phase induction motors. It is carried out using the manufacturer’s operation characteristics on two poly-phase 
induction motors. Numerical results show the capability of the proposed hybrid optimization algorithm. The 
proposed algorithm has competitive performance compared with conventional algorithms as well as with differ- 
ential evolution and genetic algorithms. Experimental verifications are carried out on three-phase and six-phase 
induction motors. Also, it emulates the closeness between experimental and estimated parameters with fast con- 
vergence compared to other algorithms. Also, the results reflect the high robustness of the proposed algorithm 

compared with other algorithms for varied iteration numbers, population size and convergence. 
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. Introduction 

The Poly-phase Induction Motors (PIMs) are the most used electrical
achines [1] . They contribute around 60% of electric power converted

o mechanical energy [2] . PIM are favored due to their ruggedness
nd simplicity in the industry section as 90% of industrial motors are
Ms [3] . Examples of induction motors applications involve motor tools
quipped with induction motors, adjustable speed motors and pumps
4] . To achieve the target performance of induction machines, the accu-
ate modelling is considered as crucial issue for PIMs [5] . These issues
nvolve the transient and steady-state behavior. The model expresses the
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E-mail address: mohamed.hamida@ec-nantes.fr (M.A. Hamida). 

ttps://doi.org/10.1016/j.egyai.2021.100083 
666-5468/© 2021 The Authors. Published by Elsevier Ltd. This is an open access ar
 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
tator and rotor windings voltage balance, flux linkages and currents,
he air-gap power, and the electromagnetic torques. Therefore, finding
he unknown parameters of these machines is a complicated nonlinear
on-smooth optimization problem [6] . It aims at achieving the highest
loseness degree between the estimated parameters and those of the ac-
ual ones. Therefore, the objective function of the considered parameter
stimation problem is the minimum deviation between estimated and
ctual parameters with preserving these parameters within their permis-
ible operating boundaries. To satisfy the parameter identification pro-
ess, several optimization algorithms have been developed to guarantee
he accurate PIM models. In this regard, this paper proposes the hybrid
ticle under the CC BY-NC-ND license 
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Nomenclature 

R s Per phase stator resistance, Ω 

R 2 Per phase rotor resistance, Ω 

X s Per phase stator reactance, Ω . 
X 2 Per phase rotor reactance, Ω . 
X m Per phase magnetizing reactance, Ω . 
V ph Per phase stator voltage, V 

p number of pole pairs 
T d electromagnetic torque of the motor, N.m 

s Induction motor slip 
I 2 Per phase rotor current, A. 
I s Per phase stator current, A. 
I st starting current, A. 
T st starting torque of the motor, N.m 

T max maximum torque of the motor, N.m 

T FL rated torque of the motor, N.m 

ΔT d Normalized power factor 
v velocity of the control variables 
F best k personal best of control variables 

gF best k global best of control variables 
ΔF worst 

𝑘 
worst suggested of possible solution 

e T d Estimated developed torques 
m T max Measured maximum developed torques 
e T max Estimated maximum developed torques 
m T st Measured starting developed torques 
e T st Estimated starting developed torques 
s mT Slip at maximum torque 
∆F objective function 
∆pf Normalized power factor 
∆T st Normalized power factor 
∆T max Normalized power factor 
pf Rated power factor 
m Number of phases 
epf Estimated power factors 
mpf Measured power factors 
m T d Measured developed torques 
k Iteration number 
c 1 , c 2 , c 3 The learning coefficients 
r1, r2, r3 random numbers 
It e r max maximum number of iterations 

lgorithm between particle swarm optimization and Jaya optimization
lgorithms HPJOA form finding the optimal unknown PIM parameters.

The modelling of induction motors is considered as vital issue in ac
rive systems. Accurate parameters identification of induction motor is
n urgent work in the viewpoint of control drives and operation aspects
7 , 8] . It is necessary to find the IMs’ parameters at low implementation
osts at high degree of accuracy. The traditional methods applied for
nding the equivalent circuit parameters are dependent on no-load and

ocked rotor tests as in IEEE Std 112-1991 and its modifications IEEE Std
12-2004 [9] . Added to that, the high cost of hardware that is needed
o implement. So, Due to these restrictions, many optimization methods
evelopers provide number of advanced methods to meet the target of
nding satisfactory level of the estimated parameters [10] . For achiev-

ng this target, several optimization methods are exploited to optimally
stimating the parameter of PIMs equivalent circuits [11–13] . In the lit-
rature, several methods have been carried out for finding the unknown
arameters of PIMs. References [14] review the various methods that
ere developed for estimating the unknown parameters of PIMs. In this

ine, the previous efforts are summarised as follows: 

• Reference [15] developed the artificial immune system for extract-
ing the IM parameters to optimize the parameters of IMs from ex-
perimental tests and manufacturer data. 
2 
• Reference [16] presented the neural network as training mechanism
for finding the solution of parameter estimation problem. 

• References [17 , 18] presented the shuffled frog-leaping for extract
the equivalent circuit parameters of IMs from the manufacturer data.

• Reference [19] presented a simplified model for parameter estima-
tion of the PIMs. 

• Reference [20] estimated the 6-phase IM parameters using modified
standard tests. This zero-sequence test is proceed using an improved
equivalent circuit to enhance the estimated parameter accuracy. 

• Reference [21] developed multi-objective PSO algorithm to mini-
mize the deviation between the manufacturer and estimated data. 

• Reference [22] developed differential evolution for finding the pa-
rameter estimation of three phase IMs. 

The previous survey shows the application of various optimization
echniques for solving the parameter estimation problem. The field of
ptimization is continuous and worth of interest. Many optimization al-
orithms were developed for many real engineering problems as: moth-
ame [23] , fruit fly [24] , cat swarm [25] , sunflower [26] , wind driven
27] , and water cycle [28] optimization algorithms. Among the opti-
ization algorithm, PSO algorithm that mimics the main idea of fish or

irds looking for food was introduced in by Eberhart and Kennedy [29] .
everal real-world works are reported based on PSO algorithm and its
ariants in the literature. Reference[30] presented an intelligent diag-
osis method using, design of synchronous motor [30] , optimization of
ID controller parameters adjustment [31] , optimal costs of generation
roduction [32] . The main drawback of PSO is the need to adjust learn-
ng and inertia coefficients. 

An efficient metaheuristic technique called PSO it was started
y Kennedy and Eberhart was presented in Ref. [33] . This algorithm
as taken from swarm attitude such as bird flow and education in na-

ure [30] . Particles that move inside the problem are used at high speeds
34] . In every repetition, the velocities of the self-particles are randomly
reset related to the best position of the same particle and the best po-
ition of the near particle. The best particles and the best close ones
re selected according to the conditions set by the user. The transition
f all particles occurs normally to the best solution. The word "swarm"
riginates from the unequal movement of particles in the problem area,
nd now very much resembles a group of fish or birds [35] . The Jaya
lgorithm [36] is one of the recent metaheuristic techniques which is
uickly finding many applications in different fields of engineering and
cience. The JOA directed the solution towards the best value with the
rogress of the optimization algorithm [37] . The main merits of JOA
re its simplicity and the benefits of no need for adopting and selecting
he specific control parameters that avoid the demerits of PSO algo-
ithm. JOA is very promising optimizer which is developed for many
eal-world applications as: optimal sizing of capacitor-bank types in the
ow voltage distribution networks [38] , control of online load frequency
n wind power systems [39] , solving economic/emission unit commit-
ent [40] . Added to the previous applications, JOAs is applied for har-
onic mitigation and employing reactive power compensation of three
hase induction motor that drives by photo-voltaic-based DSTATCOM
41] , automatic generation control of multi-area interconnected power
ystem [42] , for optimal power flow [43] , environment based allocation
f distributed energy resources in a micro-grid [44] for optimizing the
hermal performance of the underground power cable system [45] , for
eactive power dispatch problem [46] , and for design the digital FIR
lters in [47] . 

As mentioned, the problem is formulated as non-linear optimization
roblem because the conventional optimization techniques fail to deal
xactly with the need of linearization that reduces the solution quality
nd high dependency on the initial point of linearization. So, it must seek
ther methods to solve the non-linear optimization problem avoiding
he previous drawbacks. The features of this paper are concluded as
ollows: 

• The steady state model of multi-phase induction motor is derived. 
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Fig. 1. Multi-phase induction motor equivalent circuit. 

Fig. 2. Thevenin equivalent circuit. 
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• The Hybrid PSO-Jaya optimization algorithm is proposed to extract
the optimal unknown parameters of PIM from the nameplate data. 

• The performance of HPJOA is assessed compared with Jaya, GA, DE
and PSO optimization algorithms for three and six-phase induction
motors. 

• The assessment study proves that the HPJOA has the fast response
compared with other competitive algorithms with actual parameters.

• Also, the results reflect the high robustness of the proposed HPJOA
compared with others. 

The rest sections are organized as follows: In section 2, the steady
tate characteristics of poly-phase IM is presented based on equivalent
ircuit. In Section 3, the parameter estimation problem is formulated
s an optimization problem that defines the objective and constraints.
he previous optimization algorithms are added to section 4. The design
rocedure of HPJOA is presented in Section 5. In Section 6, the param-
ter estimation problem and its operation characteristic are applied on
wo poly-phase IMs. Section 7 concludes the paper findings. 

. Steady state characteristics ofpoly-phase induction motor 

The steady state operating characteristics are identified based on the
teady state equivalent circuit shown in Fig. 1 . The equivalent circuit
hows the per phase steady state equivalent circuit of poly-phase induc-
ion motor without separate mutual leakage inductance of stator wind-
ng [20] . The stator and magnetizing impedance in poly-phase induc-
ion motor can be reduced to the Thevenin equivalent circuit as shown
n Fig. 2. The Thevenin voltage is computed through: 

 𝑡ℎ = 

𝑗 𝑋 𝑚 

𝑅 𝑠 + 𝑗 𝑋 𝑠 + 𝑗 𝑋 𝑚 

𝑉 𝑝ℎ (1) 

The Thevenin equivalent circuit of poly phase induction mo-
or(PIM)is shown in Fig. 2 as: 

 𝑡ℎ = 𝑅 𝑡ℎ + 𝑗 𝑋 𝑡ℎ = 

𝑗 𝑋 𝑚 ( 𝑅 𝑠 + 𝑗 𝑋 𝑠 ) 
𝑅 𝑠 + 𝑗 𝑋 𝑠 + 𝑗 𝑋 𝑚 

= 

𝑅 𝑠 𝑋 𝑚 

𝑋 𝑠 + 𝑋 𝑚 

+ 𝑗 
𝑋 𝑚 𝑋 𝑠 

𝑋 𝑠 + 𝑋 𝑚 

(2)
3 
The current flow in the IM rotor circuit of induction motor can be
alculated as: 

 2 = 

𝑉 𝑡ℎ 

𝑍 𝑡ℎ + 𝑍 2 
= 

𝑉 𝑡ℎ (
𝑅 𝑡ℎ + 

𝑅 2 
𝑠 

)
+ 𝑗 

(
𝑋 𝑡ℎ + 𝑋 2 

) (3) 

The developed torque can be determined by Eq. (4) as: 

 𝑑 = 

𝑚 

𝜔 𝑠 

𝐼 2 2 
𝑅 2 
𝑠 

= 

𝑚 

𝜔 𝑠 

𝑉 2 
𝑡ℎ (

𝑅 𝑡ℎ + 

𝑅 2 
𝑠 

)2 
+ 

(
𝑋 𝑡ℎ + 𝑋 2 

)2 𝑅 2 
𝑠 

(4)

From the above equation the slip at maximum torque s mT can be
alculate from 

 𝑚𝑇 = 

𝑅 2 √ (
𝑅 𝑡ℎ 

)2 + 

(
𝑋 𝑡ℎ + 𝑋 2 

)2 (5) 

Substituting the slip at maximum torque from Eq. (5) into the elec-
romagnetic torque in Eq. (4) the maximum torque can be calculated
rom: 

 max = 

𝑚 

2 𝜔 𝑠 

𝑉 2 
𝑡ℎ [ 

𝑅 𝑡ℎ + 

√ (
𝑅 𝑡ℎ 

)2 + 

(
𝑋 𝑡ℎ + 𝑋 2 

)2 ] (6) 

The Starting torque can be calculated from 

 𝑠𝑡 = 

𝑚 

𝜔 𝑠 

𝑉 2 
𝑡ℎ (

𝑅 𝑡ℎ + 𝑅 2 
)2 + 

(
𝑋 𝑡ℎ + 𝑋 2 

)2 𝑅 2 (7) 

The input current power factor can be obtained from 

𝑓 = cos 
⎛ ⎜ ⎜ ⎝ tan 

−1 
⎛ ⎜ ⎜ ⎝ 
𝑋 𝑡ℎ + 𝑋 2 

𝑅 𝑡ℎ + 

𝑅 2 
𝑠 

⎞ ⎟ ⎟ ⎠ 
⎞ ⎟ ⎟ ⎠ (8) 

. Problem formulation 

The fitness function aims at finding the lowest deviation level for
he starting, operating , maximum torques and the power factor. This
tness function assures the capability of estimated parameters at differ-
nt operating conditions. Eq. (9) presents the combined fitness function
or finding the optimal parameter estimation of the tested induction mo-
ors. It aims at minimizing the deviation between the estimated and ex-
erimental data. The combined objective function, in Eq. (9 ), has four
ormalized deviation components for the starting, rated and maximum
orques, and the full load power factor as: 

𝐹 = Δ𝑇 𝑑 2 + Δ𝑇 max 
2 + Δ𝑇 𝑠𝑡 2 + Δ𝑝 𝑓 2 (9)

Computing the normalized components is carried out using
qs. (10) –(13) as: 

𝑝𝑓 = 

𝑒𝑝𝑓 − 𝑚𝑝𝑓 

𝑚𝑝𝑓 
(10) 

T d = 

e T d −m T d 
m T d 

(11) 
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𝑇 max = 

𝑒 𝑇 max − 𝑚 𝑇 max 
𝑚 𝑇 max 

(12) 

𝑇 𝑠𝑡 = 

𝑒 𝑇 𝑠𝑡 − 𝑚 𝑇 𝑠𝑡 

𝑚 𝑇 𝑠𝑡 
(13) 

here Δ𝐹 is assumed as the required objective square error function of
ull load, starting, and maximum torque, and rated power factor which
s to be minimized. 

Eq. (9 ) is solved subject to the minimum and maximum limitations
f the stator and rotor sides’ motor parameters. 

. The developed optimization algorithms 

In the following section, the GA, DE, PSO, and JAYA are described
n details as: 

.1. Differential evolution DE 

Differential evolution DE is algorithm based on stochastic and pop-
lation. The population is composed of pop individuals and every indi-
idual in the population represents a solution that possible to minimize
he fitness function. DE operates in three sequential steps in all iteration
22] : 

• Mutation: pop mutated individuals are generated using some indi-
viduals of the population. A vector for the mutated solution is called
mutant vector. There are different strategies to create a mutant vec-
tor. Here only the three most common mutation methods are ex-
plained [48] . Other mutation strategies and their performance have
been discussed in. 

• Mutation strategy is random mutation strategy, in which three ran-
domly selected individuals from the population are used to generate
the mutant vector. 

• Mutation strategy uses the best individual from the population to
create the mutant vectors. 

• The mutation strategy moves the current individual towards the best
individual in the population before being disturbed with a scaled
difference of two randomly selected individuals. 

Crossover: we recombine the set of mutant vectors created in mu-
ation with the original population members to generate progeny solu-
ions. 

Selection: In this last step, the progeny is compared with its origin,
nd the best one will but the population for the next generation 

.2. Genetic algorithm GA 

GA is an evolutionary optimizer that takes a sample of possible so-
utions and employs mutation, crossover, and selection as the primary
perators for optimization. For the case of multi-phase induction motor
arameters estimation, there are five parameters being optimized for
he multi-phase induction motor parameters estimation [34] . 

The workability of GAs is based on Darwinian’s theory of survival
f the fittest. Genetic algorithms may contain a chromosome, a gene,
nd set of population, fitness, fitness function, breeding, mutation and
election. Genetic algorithms begin with a set of solutions represented
y chromosomes, called population [49] . Solutions from one population
re taken and used to form a new population, which is motivated by
he possibility that the new population will be better than the old one.
urther, solutions are selected according to their fitness to form new
olutions, that is, offspring’s. 

The solution procedure of the parameters estimation problem can be
arried out using the proposed GA optimization algorithm as follows: 

1 Start: Generate random population of chromosomes, that is, suitable
solutions for the problem. 
4 
2 Fitness: Evaluate the fitness of each chromosome in the population. 
3 New population: Create a new population by repeating following

steps until the new population is complete. 
i Selection: Select two parent chromosomes from a population accord-

ing to their fitness. Better the fitness, the bigger chance to be selected
to be the parent. 

ii Crossover: With a crossover probability, cross over the parents to
form new offspring, that is, children. If no crossover was performed,
offspring is the exact copy of parents. 

iii Mutation: With a mutation probability, mutate new offspring at each
locus. 

iv Apply: Place new offspring in the new population. 
4 Update: Use new generated population for a further run of the algo-

rithm. 
5 Check: If the end condition is satisfied, stop, and return the best

solution in current population. 

.3. PSO algorithm 

The Particle Swarm Optimization is configured with a set of random
esults and seeks to improve by updating generations. In PSO, the possi-
le solutions, called particles, flythrough the problem space by follow-
ng the current optimum particles [30] . In PSO, a set of randomly initial
warm propagates in the design space towards the optimal solution over
 number of iterations based on large amount of information about the
esign space that is assimilated and shared by all members of the swarm.
odification of the swarm agent positions is realized by the position and

ransition information. Each agent transition can be simulated by two
imensional referred to the available information’s about self and group
xperiences. The basic PSO version is based on the collected information
f self and group experiences according to the positions of agents. 

The basic PSO is presented as in [33] as: 

x k+1 = v k . Δx k + c 1 × r 1 ×
(
x best k − x k 

)
+ c 2 × r 2 ×

(
xg best k − x k 

)
(14)

 k+1 = x k + Δx k+1 

here, X k , x best k is the vector of control variables and personal best of
ontrol variables at iteration k. xg best k is the vector of global best of control
ariables at iteration k, x k+1 is the vector of control variables at iteration
 + 1. 

The velocity of the control variables updated at iteration k is: 

 𝑘 = 𝑣 max 
𝑘 

− ( 𝑣 max 
𝑘 

− 𝑣 min 
𝑘 

) × 𝑘 ∕ 𝐼𝑡𝑒 𝑟 max (15)

here v k 
max and v k 

min is a function of search space length in each di-
ension, Iter max is the maximum number of iterations. The learning

oefficients c 1 and c 2 are the factors which PSO technique optimizes
ifferent objective functions on the basis of personal and group experi-
nces and each agent tries to modify its position the updating formula
14). 

The minimum and maximum transition of the updating formula in
14) for agent position as: 

𝑥 min 
≤ Δ𝑥 𝑘 ≤ Δ𝑥 max (16) 

here: 
 

Δ𝑥 max = 𝑘 𝑚 ( 𝑥 max 
𝑘 

− 𝑥 min 
𝑘 

) 
Δ𝑥 min = − 𝑘 𝑚 ( 𝑥 max 

𝑘 
− 𝑥 min 

𝑘 
) (17) 

.4. JAYA optimization algorithm 

The Jaya optimization algorithm (JOA) replaces the updating for-
ula in PSO algorithm by the following equation as [50 , 51] . The main

dvantage of JOA is characterized with the high ability of movement in
he direction of the best solution and avoiding the possibility of trapping
nto worst solutions. The combination of these two terms concentrates
n the best solution region [52] . Two global solutions, reflected in the
pdating equation terms, the best and worst solution for the overall
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Fig. 3. Flowchart for hybrid PSO-Jaya based opti- 
mization process. 
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articles. But, JOA is not dependent on the self-experience of particle as
n PSO algorithm [53] . Then, the updating equation has two terms the
rst enhances the closeness between the best solutions while the second
erms avoid the closeness to worst solution. 

The updating equation is expressed as: 

 k+1 = x k + r 1 ×
(
x best k − Δx k 

)
− r 2 ×

(
x worst k − x k 

)
(18)

here, x best k , x worst k are the value of the variable k for the best and worst
uggested member of a set of possible solution. r 1 and r 2 are two random
umbers in the range (0,1). 

. The proposed hybrid PSO -JAYA optimization algorithm 

The proposed hybrid optimization algorithm combines the merits of
SO and Jaya algorithms. It enhances the search space, forces the so-
ution to the global best solution and away from the worst solutions.
5 
q. (19) presents the updating formula for the proposed HPJOA. It is
ependent on the global best, worst solution and taken into considera-
ion the impact of self-experience of the associated particles. 

The proposed updating equation can be expressed as: 

 k+1 = v k x k + c 1 × r 1 ×
(
x best k − x k 

)
− c 2 × r 2 ×

(
x worst k − x k 

)
+ c 3 × r 3 

×( x gbest k − x k ) (19) 

here, x gbest k is the value of the variable k for the global member of a
et of possible solution. For the k th iteration in the range of (0, 1), r 1 , r 2 
nd r 3 are the three random numbers for the k th variable. c 1 , c 2 and c 3 
re learning coefficients, the first term shows the affinity of solution to
ove nearer to the personal best solution, The second term shows the

ffinity of solution to move nearer to the global best solution and the
ast term is the tendency of the solution to avoid the worst solution. 
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Fig. 4. Experimental setup at Faculty of En- 
gineering, Kafrelsheikh University. 
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Table 1 

Experimental tests of 1/3 HP three-phase and 3 HP six-phase IMs. 

Variables 
Three phase IM (1/3 HP) Six phase IM (3 HP) 

No load test Short-circuit test No load test Short-circuit test 

Voltage, V 220 89.7 220 96.9 

Current, A 0.22 0.65 0.95 2.67 

Input power, W 9.5 25.6 104 159.37 

R dc Ω 21.25 12 
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.1. Proposed procedure steps 

The proposed procedure of HPJOA can be carried out as follows: 

1 Defining the motor manufacture data, parameters limits, constraints
and the HPJOA coefficients. 

2 Initialize the control variables (estimation variables) within the pre-
defined boundaries. 

3 Evaluate each particle of the initialized matrix by determining the
fitness function through solving the steady state equivalent circuit. 

4 Identify the global, personal and worst solutions. 
5 Update the control variables using Eq. (19) . 
6 Check the upper and lower boundaries and transition constraints

given in Eqs. (16) and (17) . 
7 The reduction strategy to concentrate the search space and there for

enhance the solution quality. The factor 𝛼 refers to the coefficient
applied for reduction strategy. In this strategy, the search space is
managed through adaptive variation of the upper and lower limits
according to the following two equations: 

min 𝑣 = min 𝑣 + 𝛼 × ( max 𝑣 − min 𝑣 ) (20)

max 𝑣 = max 𝑣 − 𝛼 × ( max 𝑣 − min 𝑣 ) (21)

In this paper the factor 𝛼 equals 0.08. 
Repeat steps 3 to 4 until the maximum iteration as stopping criteria

re achieved. Fig. 3 shows the flow chart of HPJOA. 

. Applications 

.1. Experimental setup 

The experimental tests- open, short circuit and DC tests- are carried
ut on two poly-phase IM to obtain the equivalent circuit parameters.
hotograph of the experimental implementation located at Faculty of
ngineering; Kafrelshiekh University is provided in Fig. 4 . The tests are
arried out according to the specifications of the IEEE Std 112 TM -2004
or tests procedure for PIM [6] . Table 1 represents the recorded measure-
ents for three-phase and six-phase IMs. By using the data recorded for

oltage, current, input power and the dc resistances from no load, short
6 
ircuit and short circuit tests in Table 1 . These records are used to deter-
ine the three and six phase induction motor parameters by using the
roposed hybrid HPJOA and the competitive algorithms. 

.2. Settings of competitive optimization algorithms’ parameters 

The parameters setting for the competitive algorithms are described
s follows: 

Maximum iteration number is 100 and the population size is 60. 
For GA [34] , the parameters were set crossover length = 0.5, resolu-

ion = 3, and mutation probability = 0.12. For DE [22 , 48] , the param-
ters were set crossover probability = 0.7 and scaling factor = 0.5, mu-
ation probability = 0.5. Finally, for HPJOA, the parameters are c 1 = 1,
 2 = 2, c 3 = 1.5 and search space length were set 𝑣 max 

𝑘 
= 0 . 8 , 𝑎𝑛𝑑 𝑣 min 

𝑘 
= 0 . 8 .

Case 1: three phase induction motor parameter estimation 
The competitive algorithms are integrated to obtain the parameter

stimations of 1/3 HP three-phase induction motor. The experimental
arameters of the steady state equivalent circuit of the 3 phase induction
otor are shown in the second column of Table 2 . The estimated param-

ters of steady-state equivalent circuit of three phase induction motor
sing PSO, JOA, GA, DE and HPJOA methods are reported in the rest of
olumns of the Table 2 . The obtained results show that the parameters
y using the proposed HPJOA are closer to actual value of motor than
SO and JOA, GA and DE. In the viewpoint of operational indices, a
omparison is carried out between the estimated and the experimental
alues of the starting, maximum, full load torques, and full load power
actor. The HPJOA has the lower fitness function (1.71 × 10 -6 ) compared
ith Jaya method which equals (2.9 × 10 -5 ), with PSO method which

quals (9.25 × 10 -5 ), with GA method which equals (4.84 × 10 -5 ) and
ith DE method which equals (1.98 × 10 -4 ). It is cleared that, the pro-
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Fig. 5. Electromagnetic torque - slip characteristics of three phase IM (-measurement, ∗ PSO, × Jaya, o GA, DE, + HPJOA). 

Table 2 

Assessment of competitive algorithms for 3-phase induction motor. 

Parameters Experimental DE PSO GA Jaya HPJOA 

R s 21.25 19.46 21.53 20.21 21.33 21.177 

X s 61.95 63.42 60.40 60.62 61.87 61.01 

R r 39.32 40.08 39.379 39.93 39.42 39.352 

X r 61.95 62.74 63.78 64.99 62.03 63.07 

X m 999.52 1049.5 1012.1 1045 1005.3 1000.1 

T st 0.89 0.889 0.89 0.889 0.89 0.89 

T FL 0.987 0.981 0.988 0.985 0.992 0.988 

T max 1.435 1.44 1.433 1.43 1.439 1.436 

Pf 0.807 0.810 0.808 0.811 0.807 0.806 

ΔF ×10 -4 1.98 0.924 0.484 0.29 0.0171 

% reduction - 53.33% 25.56% 85.35% 91.36% 

Table 3 

Assessment of competitive algorithms for six-phase induction motor. 

Parameters Experimental PSO DE Jaya GA HPJOA 

R s 12 11.63 11.38 11.65 12.4 11.898 

X s 12.8426 13.86 12.74 13.78 12.65 13.095 

R r 8.0978 8.12 8.26 8.105 8.04 8.092 

X r 12.8426 12.14 13.69 12.13 12.65 12.66 

X m 266.68 273.55 268.41 274.29 268.27 263.66 

T st 3.34 3.348 3.35 3.36 3.348 3.34 

T FL 3.1785 3.17 3.16 3.18 3.183 3.18 

T max 5.36 5.377 5.38 5.386 5.339 5.36 

Pf 0.844 0.846 0.84 0.847 0.847 0.842 

ΔF ×10 -4 0.963 0.791 0.788 0.329 0.0208 

% reduction - 17.86% 18.18% 65.84% 97.84% 
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osed HPJOA achieves the hoiesht reduction of 91.36% improvement is
ccurred with the largest fitness function obtained with DE. 

Case 2: Six phase induction motor parameter estimation 
Table 3 shows the experimental tests are recorded for the 3 HP mod-

fied six-phase induction motor. To confirm the proposed HP JOA algo-
ithm is performed for parameter estimation. While the estimated pa-
7 
ameters of steady-state equivalent circuit of six phase induction motor
sing PSO, Jaya and Hybrid PSO-Jaya methods are recorded in Table 4 ,
eceptively. The comparison between the experimental and estimated
arameters concludes that the investigated estimation algorithms can
ccurately estimate the equivalent circuit parameter at acceptable lev-
ls of closeness. The estimated parameters obtained by using HPJOA
re closer to actual value of motor and it has smaller error than Jaya,
nd PSO. The Hybrid PSO-Jaya optimization algorithm has lower fit-
ess function (2.08 × 10 -6 ) compared with Jaya method which equals
7.88 × 10 -5 ), with PSO method which equals (9.63 × 10 -5 ), with GA
ethod which equals (3.29 × 10 -5 )and with DE method which equals

7.91 × 10 -5 ). It is cleared that, the proposed HPJOA achieves the high-
st reduction of 97.84% improvement is occurred with the largest fitness
unction obtained with PSO. 

Performance of operating characteristic with estimated parameters 
Fig. 5 shows the three-phase induction motor torque-slip characteris-

ic using parameters that was recorded from the measurements clearly,
hat the parameters estimated from optimization PSO, that the param-
ters estimated from optimization Jaya, that the parameters estimated
rom optimization GA, that the parameters estimated from optimization
E, and that the parameters estimated from the proposed HPJOA. Esti-
ated torque-slip characteristic, using parameters calculated by DE, has
 little difference compared to the measured torque-slip characteristic,
hile estimated curve using parameters obtained by the HPJOA is very

lose to real characteristic. 
The stator-slip and rotor current-slip characteristics using param-

ters estimated by the five algorithms are shown in Fig. 6 a, b. Esti-
ated stator and rotor current characteristics using parameters calcu-

ated by PSO has large difference compared to the measured characteris-
ics, while estimated characteristics using parameters calculated by the
PJOA is very close to the real characteristics. The magnetizing current-

lip and power factor-slip characteristics of three-phase induction mo-
or using parameters calculated by the PSO, Jaya, GA, DE and HPJOA
re shown in Fig. 6 c, d. Estimated magnetizing current and power fac-
or characteristics using parameters calculated by PSO, Jaya, GA and
E have big difference compared to the measured characteristics, while
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Fig. 6. Performance characteristics of three phase IM (- 
measurement, ∗ PSO, × Jaya, o GA, Δ DE, + HPJOA). 
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Fig. 7. Torque - slip characteristics of six phase (-measurement, ∗ PSO, × Jaya, o GA, Δ DE, + HPJOA). 
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stimated characteristics using parameters calculated by the HPJOA is
ery close to the real characteristics. 

Fig. 7 shows the six-phase induction motor parameters estimated
rom the measurements clearly, that the parameters estimated from op-
imization PSO, that the parameters estimated from optimization Jaya,
A, DE and that the parameters estimated from the proposed hybrid
lgorithm. Estimated torque-speed characteristic using parameters cal-
ulated by PSO, Jaya, GA and DE have little differences compared to
he measured torque speed characteristic, while estimated curve using
arameters obtained by the proposed algorithm is very close to real char-
cteristic. 

The stator and rotor current -slip characteristics of six-phase induc-
ion motor that are based on the parameters calculated by the PSO, Jaya
nd Hybrid PSO-Jaya are shown in Fig. 8 a and b. Estimated stator and
otor current characteristics using parameters, which are calculated by
SO and Jaya are compared to the measured characteristics, while es-
imated characteristics using parameters calculated by the Hybrid PSO-
aya is very close to the real characteristics. The magnetizing current
nd power factor-slip characteristics of six-phase induction motor using
arameters calculated by the PSO, Jaya and HPJOA algorithm are shown
n Fig. 8 c, d. Estimated magnetizing current and power factor charac-
eristics using parameters calculated by PSO and Jaya has difference
ompared to the measured characteristics, while estimated characteris-
ics using parameters calculated by the HPJOA is very close to the real
haracteristics. 
e

Table 4 

Statistical analysis of the competitive methods for th

index 
Competitive algorithms 

GA DE 

Mean 3.77 × 10 -5 6.33 × 10 -5 

Median 3.43 × 10 -5 4.92 × 10 -5 

Best 4.34 × 10 -6 6.86 × 10 -6 

Standard deviation 2.27 × 10 -5 4.49 × 10 -5 

Variance 5.13 × 10 -10 2.01 × 10 -9 

worst 1.26 × 10 -4 2.43 × 10 -4 

9 
.3. Competitive tools assessment 

.3.1. Statistical analysis 

Tables 4 and 5 present the statistical indices, mean, median, best,
orst, standard deviation and variance, of the competitive algorithms

hat are carried for 100 iterations and 60 populations, respectively. It
s concluded that the proposed HPJOA leads to the best values of the
ndices compared with PSO, GA, DE and JOA. 

.3.2. Convergence rates 

The convergence rate of the fitness function of the competitive op-
imization algorithms are shown in Fig. 9 a and b, respectively. It can
e seen that from this figure that the proposed HPJOA has better con-
erges rates as the early reaching to final solution provides a proof for
ast response compared with other optimization algorithms 

.3.3. Robustness 

To verify the robustness of the competitive algorithms, 100 sepa-
ate runs are applied on the tested motors. Fig. 10 a and b illustrate the
obustness of the five algorithms. It is clear that, the proposed HPJOA
as the highest robustness compared with PSO, GA, DE and Jaya algo-
ithms. To confirm the fair comparison between the competitive algo-
ithms, we consider the effects of population and maximum iteration
ariation. Figs. 11 and 12 clear that, the proposed HPJOA has the high-
st robustness, compared with PSO, GA, DE and Jaya algorithm. 
e three-phase IM. 

PSO Jaya HPJOA 

3.2 × 10 -5 4.23 × 10 -5 3.09 × 10 -6 

2.82 × 10 -5 3.74 × 10 -5 2.20 × 10 -6 

1.47 × 10 -6 2.07 × 10 -6 3.59 × 10 -7 

2.28 × 10 -5 2.85 × 10 -5 2.43 × 10 -6 

5.19 × 10 -10 8.15 × 10 -10 5.91 × 10 -12 

1.22 × 10 -4 1.73 × 10 -4 1.16 × 10 -5 
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Table 5 

Statistical analysis of the competitive methods for the six-phase IM. 

index 
Competitive algorithms 

GA DE PSO Jaya HPJOA 

Mean 3.44 × 10 -5 7.57 × 10 -6 1.87 × 10 -5 1.52 × 10 -4 5.21 × 10 -6 

Median 3.04 × 10 -5 6.49 × 10 -9 8.93 × 10 -6 1.22 × 10 -4 2.57 × 10 -6 

Best 5.82 × 10 -6 4.07 × 10 -7 4.89 × 10 -7 9.74 × 10 -6 2.30 × 10 -7 

Standard deviation 1.96 × 10 -5 5.78 × 10 -6 3.73 × 10 -5 1.19 × 10 -4 8.18 × 10 -6 

Variance 3.84 × 10 -10 3.34 × 10 -11 1.39 × 10 -9 1.42 × 10 -8 6.69 × 10 -11 

worst 9.47 × 10 -5 2.79 × 10 -5 2.89 × 10 -4 5.77 × 10 -4 4.88 × 10 -5 

Fig. 8. Performance characteristics of six phase IM (-measurement, ∗ 

PSO, × Jaya, o GA, Δ DE, + HPJOA). 
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Fig. 8. Continued 
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Fig. 9. Convergence rates of competi- 
tive algorithms (PSO, Jaya, GA, DE and 
HPJOA). 
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Fig. 10. Robustness of competitive algorithms (PSO, Jaya, DE, GA and HPJOA). 
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Fig. 11. Fitting of competitive algorithms of three phase induction motor. 

Fig. 12. Fitting of competitive algorithms of six phase induction motor. 
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. Conclusions 

This study has presented the parameters estimations of poly-phase
nduction motors. The HPJOA, Jaya, and PSO algorithm have been used
o estimate the parameters of the electrical model of the poly-phase in-
uction motors. The benefits of the proposed HPJOA algorithm have
een compared with PSO, JOA, GA and DE for two poly-phase induc-
ion motors. The parameters estimation of the competitive algorithms is
ssessed together the performance of the poly-phase induction motors.
lso, the estimated parameters have been compared with the experi-
ental tests. The results indicate the validation and reliability of the

uggested hybrid optimization algorithm for efficient extraction of the
ptimal parameters of three- and six poly phase induction machines. Sta-
istical analyses are provided to assess the competitive algorithms. The
obustness of the proposed HPJOA is proved against other competitive
lgorithms and for varied iteration numbers and population sizes. In ad-
ition, the proposed HPJOA realizes fast, stable, and smooth operation
haracteristic at acceptable convergence rates compared with PSO and
aya. The proposed HPJOA achieves the highest reduction of 91.38%
nd 97.84% that are occurred with the largest fitness function obtained
14 
ith the competitive algorithms, DE and PSO, for three and six phase
otors, respectively. The statistical indices involve best agreements be-

ween the estimated and experimental values for the three optimization
lgorithms. It can be concluded that the HPJOA is most simple, stable,
nd global out performance optimization algorithm. The use of HPJOA
eads to decrease the deviation of estimated parameters compared to
SO and Jaya. Also, the use of HPJOA also enhances the operating per-
ormances of the tested PIMs. 
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