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The popularity of deep learning has increased tremendously in recent years due to its ability to
efficiently solve complex tasks in challenging areas such as computer vision and language processing.
Despite this success, low-level neural activity reproduced by Deep Neural Networks (DNNs) generates
extremely rich representations of the data. These representations are difficult to characterise and
cannot be directly used to understand the decision process. In this paper we build upon our exploratory
work where we introduced the concept of a co-activation graph and investigated the potential of graph
analysis for explaining deep representations. The co-activation graph encodes statistical correlations
between neurons’ activation values and therefore helps to characterise the relationship between
pairs of neurons in the hidden layers and output classes. To confirm the validity of our findings,
our experimental evaluation is extended to consider datasets and models with different levels of
complexity. For each of the considered datasets we explore the co-activation graph and use graph
analysis to detect similar classes, find central nodes and use graph visualisation to better interpret the
outcomes of the analysis. Our results show that graph analysis can reveal important insights into how
DNNs work and enable partial explainability of deep learning models.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Modern Deep Neural Networks (DNNs) can leverage large
mounts of data to be efficiently trained to perform hard tasks
uch as translating languages and identifying objects in an im-
ge [1,2]. DNNs have been shown to achieve good performance in
uch complex tasks where traditional machine learning methods
ay fail due to the high dimensionality of the data [3].
Despite this success the lack of interpretability and explain-

bility in understanding why a DNN makes a particular decision
s still a open challenge [4]. This can be crucial in situations where
he ability to explain decisions and misjudgements is key, like in
edical diagnosis, law enforcement, financial analysis and more.
ot only that but more insights on the inner working of deep
earning models can pave the way for better transfer learning
even with limited amount of available training data), debugging
nd engineering of complex deep architectures.
The desire to understand the black box inside which Artificial

eural Networks (ANNs) work is not new. There were already
ttempts to explain ANNs even when the quality and availability
f learning data and the lack of computational resources did not
et enable full exploitation of deep learning approaches [4–6].

∗ Corresponding authors.
E-mail address: vitor.araujocautierohorta2@mail.dcu.ie (V.A.C. Horta).
ttps://doi.org/10.1016/j.future.2021.02.009
167-739X/© 2021 The Authors. Published by Elsevier B.V. This is an open access ar
More recently the number of papers that tackle this prob-
lem has increased considerably [7] and strategies with different
perspectives have been developed to help understand the deci-
sion making process of DNNs. Although existing approaches have
made a considerable progress in explaining the high level be-
haviour of DNNs, there is no general mechanism that provides an
interpretation for the internal representation of DNNs while being
architecture agnostic. In other words, existing methods either
consider the DNN as a black box (e.g Pedagogical Rule Extraction
methods [8]) or are limited to specific architectures, such as
Decompositional Rule Extraction methods [9], which often work
only for fully-connected layers.

We aim to provide a general mechanism to interpret DNNs and
extract knowledge acquired by deep learning models. Our method
takes inspiration from recent studies in neuroscience [10,11]
that use network analysis and graph representations to interpret
brain structure. These studies have shown that analysing brain
networks, using graph theory methods and concepts like commu-
nities in graphs and node centrality, can give important insights
on the architecture, development, and evolution of brain net-
works. More specifically, researchers in neuroscience use func-
tional graphs to study the brain by representing and analysing
statistical dependencies among neuronal activities.

Inspired by these approaches the co-activation graph method
we introduced in [12] was developed to interpret DNNs by using
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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epresentations similar to functional graphs based on statistical
orrelations among artificial neural activities. In a co-activation
raph nodes represent neurons in a DNN and weighted relation-
hips indicate a statistical correlation between their activation
alues. This representation is general enough to represent con-
ections between pairs of neurons in any layer of the neural
etwork, including hidden (convolutional and dense) layers and
he output layer. Unlike previous approaches this makes it pos-
ible to study relationships between neurons in any layer of the
NN. The key hypothesis of our approach is that the knowledge
ncoded in the co-activation graph reflects the knowledge ac-
uired by the DNN in the training phase. As a result we can use
raph analysis tools on the co-activation graph to gain insights
n how the model works.
In our preliminary investigation [12] we introduced the gen-

ral idea of a co-activation graph and focused on two small
xperiments to assess its suitability to correctly represent the
orkings of the inner layers of a DNN. In this paper we extend
ur early work in three ways. First, we reproduce our previous ex-
eriments using a more complex architecture represented by the
tate-of-the-art model MobileNetV2 [13]. We use MobileNetV2
o show that our approach can be applied to deeper and more
omplex models with separable convolutions. Second, beyond
onsidering the MNIST-handwritten and MNIST-fashion datasets,
e conduct an experiment over a more complex dataset, CIFAR-
0 [14], to show that our approach can give interesting insights
n non-trivial datasets. Third, we explore the notion of node
entrality and study the association between central nodes and
heir respective neurons in the DNN for all three datasets.

We can summarise the key contributions of this paper as fol-
ows: (i) we provide a formal definition of co-activation graphs so
hat we can identify properties and graph analytics processes for
xtracting meaningful knowledge from the deep learning model;
ii) we apply graph analysis beyond class similarity, for detecting
roups of neurons that work together to predict similar classes
n models and datasets at different levels of complexity; (iii) we
xplore and apply the notion of graph centrality to detect cen-
ral nodes that represent the most important neurons in hidden
ayers.

We demonstrate that by querying the co-activation graph it is
ossible to detect which neurons in the hidden layers are more
ikely to impact the prediction value of each output class. Graph
lgorithms are used on the co-activation graph to find groups
f classes that are more similar to each other from the point
f view of the DNN, and groups of neurons that are constantly
eing activated at the same time. An interesting insight we ob-
ained from our investigation is that classes with high numbers of
hared neurons (overlapping nodes in the graph) are responsible
or most of the mistakes in the DNN. This is an evidence that
verlapping nodes in the graph might indicate which neurons in
he DNN should be considered for a fine-tuning process to better
ifferentiate the overlapping classes. In addition, we show that
entral nodes in the co-activation graph might indicate important
eurons in the DNN. Finally, since explaining DNNs is a known
hallenge and many different methods are available in the litera-
ure, we suggest how our approach can be combined with other
echniques and how they can benefit from each other to explain
NNs.
The remainder of the paper is organised as follows. Section 2

iscusses related approaches to extract knowledge from neu-
al networks. Section 3 provides a formal definition of the co-
ctivation graph and recalls the technique to generate such graph.
n Section 4 we present our experiments on MNIST-handwritten,
NIST-fashion and CIFAR-10 datasets and we discuss how we can
xplain DNNs analysing community structure, node centrality and
raph visualisations on the co-activation graph. Section 5 sum-
arises our discussion and Section 6 presents our conclusions
nd future steps.
110
. Related work

The problem of understanding and explaining the decision
aking process of neural networks has been explored by re-
earchers since the 1990s when the models were still shallow
models with only a few hidden layers) and consisted of only
ully connected layers. Even with these simplifications compared
o Deep Neural Networks (DNNs), providing meaningful explana-
ions for such models proved to be a challenging task.

One of the first approaches proposed in [5] measured the
ontribution of input variables to the output layer to provide
xplanations for the model. This approach can be extended for
easuring the contribution of neurons in the hidden layer [6] but
ne limitation of the strategy used is that it cannot be applied to
odern architectures such as convolutional and recurrent neural
etworks.
After the development of more modern deep architectures,

ifferent strategies for explaining DNNs were also developed.
ne such strategy is based on rule extraction and the goal is
o extract sets of rules that explain the decisions of complex
lack box models. A comprehensive review of these methods
an be found in [15]. There are three main types of rule ex-
raction methods: decompositional, pedagogical and hybrid or
clectic strategy. Methods based on a decompositional strategy
xtract rules by examining activation and weights in the neural
etworks [9,16,17] but they cannot be applied to convolutional
ayers. The pedagogical strategy uses the decisions made by DNNs
o extract rules without exploring the model architecture [8].
nlike methods based on decompositional strategy, pure peda-
ogical methods can be applied to any neural network because
hey do not rely on the architecture. As a drawback, however,
hese methods are not able to explain the inner working of hidden
ayers as they use the DNN as a black box. It is also possible
o use a hybrid of these two approaches, which is the eclectic
trategy [18,19], but current works apply the technique only on
op of fully-connected layers.

Another approach that has been proposed more recently to
xplain DNNs is to use visualisation techniques [20–22]. This
pproach is based on providing rich visualisations that can help
nderstanding, for example, which parts of the input are more
elevant for the model’s predictions. With these methods it is
lso possible to understand the role of convolutional filters or
ntire convolutional layers by looking at the visual represen-
ations they provide when activated with some specific data.
xtensive surveys of visualisation methods are provided in the
iterature [23–25]. Despite visualisation techniques playing an
mportant role in understanding the behaviour of DNNs, most
isual analyses require human interpretation, which limits their
calability.
The approach proposed in this paper is based on the notion of

co-activation graph and it brings a novel perspective in address-
ng the explainability problem in DNNs. The methodology takes
nspiration from recent studies in neuroscience [10,11] that use
raph representations and concepts like communities in graphs
nd node centrality to analyse brain activity.
The notion of a co-activation graph introduced in [12] and

sed in this paper differs from existing works in two ways. First,
t can represent both convolutional and fully connected layers in
ny depth of DNNs. Second, it allows the use of automatic meth-
ds such as graph analysis tools to discover interesting patterns,
nteractions and properties of the internal workings of DNNs.

In this sense a recent work [26] that proposes a graph rep-
esentation for embedding vectors is the most similar to the
o-activation graph idea. This approach, however, is more con-
erned about connecting input instances to neurons in the hidden
ayers, while our approach is focused on exploring relationships
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etween pairs of neurons in the hidden layers and the output
ayer. We believe there are some interesting synergies between
he two approaches that is worth exploring further. In Section 5
e briefly discuss how the two approaches could be potentially
ombined in future work.

. Co-activation graph: Definition and construction

The key idea behind the notion of the co-activation graph is
hat it can be used to extract and represent knowledge from
rained Deep Neural Networks (DNNs) and use it to better un-
erstand how the hidden part of the model works. Remember
hat the co-activation graph connects every pair of neurons of any
ype (fully connected or convolutional) and located in any layer
f the neural network. This section provides a formal definition
f the co-activation graph and recalls the general idea on how it
s constructed.

Nodes of the co-activation graph correspond to neurons in
he DNN and weighted edges represent a statistical correlation
etween them based on their activation values. We refer to this
raph as a co-activation graph, since the relationships between
ts nodes represent how their activation values are correlated.
he main idea of the co-activation graph is to create a relation
etween pairs of neurons in any depth of the hidden layers
nd neurons in the output classes, since the latter are more
omprehensible for humans.

efinition 3.1. A co-activation graph can be represented as an
ndirected graph G = (V , E) where V = {v0, v1, . . . , vn} is the
et of n nodes that represent the neurons in the DNN and E is
the set of weighted relationships (edges) eij = (vi, vj, w) between
pairs of neurons vi and vj with weight wij, considering 0 ≤ i < n
and 0 ≤ j < n. The weight wij represents a statistical correlation
between the activation values of vi and vj.

Given a data sample S, the first step to calculate wij is to
feed the DNN with S. Then extract the sets of activation values
A(vi, S) = {ai0, ai1, . . . , ain} and A(vj, S) = {aj0, aj1, . . . , ajn},
where ai0 is a single activation value of neuron vi for a single
data input s0 ∈ S. The weight wij is then obtained by applying a
statistical correlation on A(vi, S) and A(vj, S), as shown in Eq. (1):

wij = Spearman_corr(A(vi, S), A(vj, S)). (1)

We chose to use Spearman coefficient since we do not expect
linear relationships between neurons’ activation values. There-
fore, edge weights vary in the range of [−1,1]. To clarify this
process we recall the three steps below on how to generate a co-
activation graph for a given trained DNN. For this, consider a DNN
with n neurons and a data sample S = {s0, s1, . . . , sm}.

1. Extract activation values: The first step to build a co-
activation graph is to feed the given DNN with S. Then,
for each neuron vi and each data input sh ∈ S where 0 ≤

h < m, extract a single activation value aih. The result is the
set {A(v0, S), A(v1, S), . . . , A(vn, S)}, where A(vi, S) represent
all activation values of each neuron vi for the whole data
sample S.
For dense layers this process is straightforward because
each neuron outputs a single activation value. Filters in
convolutional layers will output multiple values since they
have different activation values for each region in the input.
To overcome this and make our approach work for con-
volutional layers, the average pooling technique is applied
to extract a single value for convolutional filters. Although
some spatial information is lost in this process, it allows the
extraction of a single activation value for each filter while
keeping the dimensionality low [27].
111
2. Define and calculate edge weights: After collecting the
activation values A(vi, S) for each neuron vi in the DNN,
the next step is to define the relationships between pairs
of neurons. For each pair of neurons vi and vj, Eq. (1)
is applied using the activation values A(vi, S) and A(vj, S)
to calculate a statistical correlation that will define the
relationship weights wij between each pair of neurons. The
result of this step is a matrix containing weights wij for
every neuron pair vi and vj that can be used to construct
the set of edges E.

3. Build and analyse the co-activation graph: Given the set
of edges E that describes the relationship between every
pair of neurons, the co-activation graph can be built and
analysed using any suitable computational tool for graph
structures. In this paper, we chose to represent the co-
activation graphs in the graph database Neo4j1 to facilitate
data persistence and enhance reproducibility. The result of
this final step is a graph where nodes represent neurons
of any layer in the DNN and weighted edges indicate the
correlation between their activation values. Our evaluation
in Section 4 demonstrates that this graph correctly encodes
the knowledge contained in the hidden layers of the DNN
and we can then explore the graph structure and use graph
analysis tools to understand relationships between neuron
pairs in hidden layers and output classes.

It is easy to imagine how the result of this process is a very
ense graph where each possible pair of nodes is connected.
nalysing and visualising such a graph would be both difficult
nd computationally expensive. However, it is possible to de-
ine a threshold to remove relationships with small weights.
lthough we do not provide a systematic way for determining
he threshold, it is feasible to define it empirically given that
he relationship weights vary in a constrained range of [−1,1]
nd can be interpreted as statistical correlations. By doing this,
he resulting process will be a less dense graph where only
elationships with significant positive correlations are kept.

In Section 4 we validate our approach by conducting experi-
ments on models and datasets with different levels of complexity.

4. Evaluation: Explaining DNNs through co-activation graphs

The first step in our evaluation is to demonstrate whether the
co-activation graph encodes the same knowledge as the Deep
Neural Network (DNN) model. In order to do that we have con-
ducted experiments with community analysis and centrality anal-
ysis over three different models and datasets. We extend our
preliminary experiments from [12] in two ways. First, we perform
a community analysis over a deeper model on a more complex
dataset to see if the results are consistent in a more complex
environment. Second, a novel centrality analysis is conducted
over the three models to study the presence of central nodes
in co-activation graphs and understand the association between
node centrality and neuron importance in the DNN.

In what follows, we start by introducing the datasets, model
architectures and how to build a co-activation graph for each
model. Then, the community and centrality analysis are per-
formed to show how a graph algorithm applied to the
co-activation graph can help understand the underlying DNN
model.

1 https://neo4j.com

https://neo4j.com
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.1. Building the co-activation graph: Datasets and neural architec-
ures

Three well known datasets were used for the experiments:
NIST handwritten digits [28], MNIST fashion [29] and CIFAR-

10 [14]. For the MNIST variants, two shallow DNNs were trained
from scratch. For CIFAR-10, a state-of-the-art model was used, as
detailed below.

4.1.1. MNIST-handwritten and MNIST-fashion
The classes in handwritten digits dataset refer to digits from

0 to 9 and classes in fashion dataset are related to clothes. Both
datasets contain ten classes, with 60,000 training images and
10,000 testing images. The DNN used for handwritten digits con-
tains two convolutional layers and three fully connected layers
and the DNN used for the fashion dataset has three convolutional
layers and two fully connected layers. The Adam optimiser was
used with learning rate 0.002. After training for 10 epochs, these
models achieved an accuracy greater than 97%. Although it is
possible to obtain higher accuracy with different architectures,
we chose to use these models since we also want to analyse the
reason behind mispredictions.

The co-activation graph was built for each DNN following the
three steps discussed in Section 3. We first fed the DNNs with
data samples from the testing set to extract activation values
for each neuron. Then, we calculated the Spearman correlations
between those neurons and built a co-activation graph for each
DNN. In order to keep only relevant relationships in our graph,
we applied a threshold of 0.3 so that only neurons with some
significant correlation are connected. This threshold value was
chosen empirically aiming to maintain only connections with a
significant positive correlation and without partitioning the graph
into multiple components.

4.1.2. CIFAR-10
The CIFAR-10 dataset contains ten classes: Dog; Cat; Horse;

Frog; Bird; Deer; Airplane; Ship; Truck; Automobile. There are 50,000
training images and 10,000 testing images. The DNN used for
CIFAR-10 was the MobileNetV2 [13] that was designed to achieve
state-of-the-art results on the challenging ImageNet dataset.

The MobileNetV2 architecture contains an initial convolutional
layer, 19 residual bottleneck layers followed by another convolu-
tional layer and a fully connected layer. The model used in this
experiment achieved 94.43% accuracy on the CIFAR-10 dataset.

To build a co-activation graph for this model the first step was
to extract the activation values from each neuron in every layer.
For the convolutional and fully connected layers we extracted the
activation values using the same approach described in Section 3.
For the bottleneck layers we had to adapt our strategy as these
layers are formed by depthwise and pointwise convolutions. In
this case we collected the RELU activation values from the last
pointwise convolution, since this is the last transformation that
is performed on each bottleneck layer.

After collecting the activation values we calculated the Spear-
man correlation between each pair of neurons and connected
them to generate the co-activation graph. Finally, we applied the
same threshold of 0.3 to keep only relevant relationships in our
graph. With these settings the MobileNetV2 co-activation graph
for CIFAR-10 contains 4012 nodes and 184,144 edges.

4.2. Community structure analysis

The presence of community structure in graphs and networks
is a key aspect worth investigating to understand interesting
properties of the graph itself and the knowledge it represents. The
112
Table 1
Communities on MNIST-fashion.
Community Classes

C1 T-shirt/Top; Pullover; Coat; Shirt
C2 Trouser; Dress;
C3 Sandal; Sneaker; Bag; Ankle Boot

Table 2
Communities on MobileNetV2 for CIFAR-10 with default resolution.
Community Classes

C1 Deer; Dog; Horse
C2 Frog; Bird; Cat
C3 Airplane; Ship; Truck; Automobile
Modularity 0.489

results of our preliminary investigation in [12] already demon-
strated that community analysis over the co-activation graph can
help identify classes that are similar from the point of view of the
DNN. One interesting finding was the semantic alignment across
similar communities for the MNIST-fashion dataset. It is possible
to see from Table 1 that classes like shirt and t-shirt were put in
he same community while sandals and sneakers are grouped in
a different community, reflecting the semantic alignment among
classes grouped in the same community structure for that dataset.

In this section we extend and elaborate on the validity of
this result by analysing the community structure of a deeper
model (MobileNetV2) on a more complex dataset (CIFAR-10). As
described before the CIFAR-10 dataset contains ten classes: Dog;
Cat; Horse; Frog; Bird; Deer; Airplane; Ship; Truck; Automobile.
As humans, it would be reasonable to separate these classes in
two groups: Animals and Vehicles. To understand if MobileNetV2
also organises these classes into different, semantically aligned
groups, a community detection algorithm was run on the co-
activation graph generated from MobileNetV2 trained on CIFAR-
10 in the same way as in [12] for the MNIST datasets.

The Louvain community detection algorithm [30] was chosen
for this analysis because, besides being a well established algo-
rithm, this method also outputs a modularity coefficient that can
be used to check how the community structure differs from ran-
dom graphs. The value of modularity varies in the range of [−1,1],
where higher values indicate that connections between nodes
in the same community are stronger than nodes in different
communities. The only required parameter for the Louvain algo-
rithm is the resolution, which can be adjusted to detect a higher
number of smaller communities or a lower number of bigger
communities. For this experiment the resolution was set to the
default value 1.0. Since the Louvain algorithm is not deterministic,
ten multiple executions were conducted to check the stability
of found communities. For this experiment, communities proved
to be stable, meaning that all executions resulted in the same
community structure. Table 2 shows the detected communities.

As expected Animal and Vehicle classes were put in differ-
ent communities showing once more that classes in the same
communities are semantically aligned and confirming previous
experiments. However, this first result also shows that the model
separated Animal classes into two different groups, one contain-
ing {Deer; Dog; Horse} and the other containing {Frog; Bird;
Cat}.

To further study these communities we analysed the similarity
between them. In this case we can expect that C1 and C2 are
more similar between each other than they are with C3, since
the former contains only animals and the latter only vehicles.
To verify this, we increased the resolution parameter to achieve
fewer communities (i.e. bigger ones). We observed that when we

set the resolution parameter to 1.2, C1 and C2 are merged by the
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Table 3
Communities on MobileNetV2 for CIFAR-10 with increased resolution.
Community Classes

C1 Deer; Dog; Horse; Frog; Bird; Cat
C2 Airplane; Ship; Truck; Automobile
Modularity 0.489

Table 4
Communities for MNIST-fashion with increased resolution.
Community Classes

C1 T-shirt/Top; Pullover; Coat; Shirt; Trouser; Dress;
C2 Sandal; Sneaker; Bag; Ankle Boot
Modularity 0.474

Louvain algorithm into one single community, indicating that not
only classes in the same community have a semantic similarity
but also there is a semantic hierarchy reflected by the analysis
as these merged communities are semantically aligned, as shown
in Table 3. Interestingly, a similar behaviour happens when we
apply the Louvain algorithm with increased resolution for the
MNIST-fashion dataset. As shown in Table 4, the community con-
aining classes Trouser; Dress was merged with C1, which contains
-shirt/Top; Pullover; Coat; Shirt.
Detecting these groups and having the evidence that they

arry a semantic meaning is important for different reasons. First,
istakes are more likely to occur between classes that are seman-

ically similar and therefore belong to the same community, as we
ill further discuss in Section 4.3. This is also intuitive, since from
he human’s perspective misclassifications between two animals
r two vehicles should be more frequent than mistakes between
rog and Truck for example. Second, if we consider that neurons in
onvolutional layers work as feature extractors, it is plausible to
xpect that neurons for extracting animal parts are more likely to
e found in C1, while vehicle parts are in C2. This claim however
ould require a more rigorous evaluation that is beyond the
cope of this paper and will be considered in future work.
As a result of our investigation, we can say that this third com-

unity analysis has shown that results for the co-activation graph
enerated on deeper and more complex models are consistent
ith those in [12].

.3. Centrality analysis

In graph analysis the centrality of a node provides valuable
nsights on how important this node is in a graph. The notion of
mportance depends on both the graph domain and the chosen
entrality measure. In this experiment the graph domain refers
o neurons in a DNN and the objective is to discover whether
entrality measures can help reveal neurons that are more impor-
ant for the DNN. Therefore the third contribution of this paper
s to analyse the notion of node centrality in co-activation graphs
nd determine the association between central nodes and their
espective neurons in the DNN. For this consider that a specific
euron is redundant or less important if we can remove it from
he DNN without having a significant accuracy drop.

Two different centralities are used for this analysis: degree
entrality and PageRank centrality [31]. The degree centrality
f a node ni, which can be calculated using Eq. (2), indicates

the number of relationships ni has with other nodes. Since our
graph contains weighted relationships, to calculate the degree
centrality we simply sum the weights of the edges that connect
ni with other nodes. In Eq. (2), A is an adjacent matrix of size
N where Aij represents the weighted edge between nodes ni and
, considering 0 ≤ i < N and 0 ≤ j < N . In the case of a
j

113
co-activation graph, a node with a high degree corresponds to a
neuron that correlates strongly with many other neurons.

D(ni) =

N−1∑
j=0

Aij (2)

The PageRank centrality of a node indicates its importance
by leveraging not only its direct relationships but also the im-
portance of its neighbours. The PageRank of each node is first
initialised with value 1. Then it is iteratively updated using Eq. (3),
where N is the total number of nodes in the graph, Sni is a set
ontaining the neighbours of ni, Aij is the edge weight between
he two nodes, d is a damping factor that controls how often
ne randomly jumps to another node, and D(nj) is the degree of
ode nj as shown in Eq. (2). This iterative process ends when the
ageRank of each node from the previous iteration differs from
he current iteration by less than a predefined epsilon, which was
et to 0.001 in our experiments.

R(ni) =
1 − d
N

+ d
∑
nj∈Sni

Aij
PR(nj)
D(nj)

(3)

To check if there is an association between node centrality and
neuron importance, the following steps were performed:

1. Calculate node centrality in the co-activation graph
2. Pick the node with the highest (or lowest) centrality
3. Remove the respective neuron from the DNN and from the

co-activation graph
4. Check the accuracy loss
5. Repeat

Table 5 shows the result of the above procedure for both
degree and PageRank centralities for the three models: CIFAR-10,
MNIST-handwritten and MNIST-fashion. In the case of PageRank
centrality it is possible to see that there is an interesting correla-
tion between the PageRank centrality in the co-activation graph
and the neuron importance in the DNN. This can be observed
from the third column of Table 5 that shows when we remove
neurons ordered by higher PageRank there is a strong accuracy
loss in the DNN. In contrast if neurons with lower PageRank
are removed, the accuracy is stable for a longer period. This
behaviour is consistent through all three datasets and it indicates
that analysing PageRank centrality over co-activation graphs has
the potential to reveal important neurons in the respective DNN.

The same consistency cannot be observed for the degree cen-
trality. The second column of Table 5 shows that for CIFAR-10
nodes with high degree have a high impact when removed from
the DNN. However, for MNIST-fashion, the opposite behaviour
is observed. In addition, when analysing the impact of degree
centrality for the MNIST-handwritten dataset, removing neurons
for either lower or higher degree shows a similar behaviour,
indicating that degree centrality is not very informative for this
model.

It is important to note that a node with a low degree might
still have a high PageRank and thus these results are not con-
tradictory. Instead this can be considered as initial evidence that
a co-activation graph might be used as a strategy for pruning
algorithms on pre-trained models since removing a consider-
able amount of nodes with low PageRank caused only a minor
accuracy drop in all three DNNs in this experiment.

The centrality analysis shows that there is an association be-
tween node centrality in the co-activation graph and neuron
importance in the DNN. This represents further evidence that
the knowledge contained in the co-activation graph reflects the
knowledge encoded in the DNN. However, one current challenge
is to understand the role of central nodes. In Section 5 we discuss
possible strategies to investigate this issue as well as possible
limitations of the proposed method.
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4.4. Visualising co-activation graphs

Graph visualisations are useful to derive new insights from
ata and to formulate new hypotheses based on how the graph is
isually distributed. This section shows how graph visualisations
an help understand the results achieved by each of the graph
heory methods applied previously and provides a visual way to
xploit co-activation graphs to interpret the knowledge contained
n the DNN. For this the MNIST-fashion dataset is used as an
xample and visual representations are presented for the com-
unities and node centralities that were obtained and analysed

n Sections 4.2 and 4.3, respectively.
When visualising a co-activation graph it is useful to distin-

uish nodes in the hidden layers from nodes in the output layers
target classes), since the latter have a clear interpretation for hu-
ans. In Fig. 1 blue nodes represent neurons in the hidden layers

while yellow and labelled ones represent the output classes. After
distinguishing these nodes it is easier to visualise each step of the
previous analyses.

From Fig. 1, it is possible to see the impact of applying a
specific threshold to the co-activation graph. After applying a
threshold of 0.3 to the MNIST-fashion dataset, the density of the
raph is visibly reduced if compared to a fully-connected graph
ut the graph still consists of a single component. It can also be
een from this figure that the visualisation algorithm, ForceAtlas
[32], has placed some classes close to each other (e.g Sandal,
neaker and Ankle Boot) intuitively indicating that the graph has a
ommunity-like structure, which is shown in more detail in Fig. 2.
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In Fig. 2 the communities discovered in Section 4.2 are repre-
ented by different colours. From this community structure a first
bservation is that the node representing class Bag is quite close
o the red community although it belongs to the green one. This
ould be an indication that the Bag class is at the intersection of
hese two communities and probably should not be considered
s part of a single community. This behaviour could be captured
y community detection algorithms that consider overlapping
odes, such as [33,34], and we plan to investigate this further.
n addition, classes Dress and Trouser, although they belong to
he pink community were placed close to the red community
y the ForceAtlas2 visualisation algorithm. This means that they
re probably more similar to classes Coat, Pullover, Shirt and T-

shirt than to Sneaker, Ankle Boot, Sandal and Bag. In fact this
observation corroborates with the results presented in Section 4.2
which showed that the community containing Dress and Trouser
was merged with the red community when we increased the
resolution parameters for the Louvain algorithm.

As a third step in the visual analysis Fig. 3 illustrates nodes
according to their PageRank centrality represented by the size of
the nodes. We have already seen from Section 4.3 that central
nodes tend to be important neurons in the DNN. Now, according
to the visualisation, the nodes with high centrality seem to belong
to dense regions in the graph while less central nodes are either
peripheral nodes or nodes in less dense regions. This supports the
intuition that, by removing the most central nodes, the model will
suffer a considerable accuracy loss since large number of neurons
(dense region) can be impacted.
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Fig. 1. Visualisation for MNIST-fashion co-activation graph made on Gephi. Blue nodes represent neurons in hidden layers and yellow and labelled nodes represent
eurons in the last layer (output classes).
Fig. 2. Visualising the communities detected by the Louvain algorithm. Communities are represented by different colours.
The visualisations for the communities and central nodes also
uggest that if we combine the community structure with the
entrality analysis we might be able to automatically detect
hich neurons are more important for the prediction of classes
ithin each of the communities. For example, if we remove
entral nodes related to the green community (big green nodes),
his should result in higher impact on accuracy for classes in the
reen community (e.g Sandal) than classes in the red community
e.g. Coat). This is an intuition that should be further investigated.

We can see that by using visualisation techniques we can im-
rove our understanding of the results obtained by the different
raph analyses, like the community structure and the positioning
f central nodes. This can be considered as another advantage
f extracting knowledge from DNNs and representing it in co-
ctivation graphs since each analysis performed in the latter can
e evaluated and visualised in a transparent manner. In the next
ection, we present the limitations we have identified for the
urrent approach and discuss possible strategies to overcome
hem.
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5. Discussion and next steps

The evaluation conducted in Section 4 demonstrated that re-
sults obtained by our approach are consistent across datasets
and neural architectures of different complexity. However, in this
section we discuss some limitations of our approach that should
be taken into account and indicate possible ways to overcome
them. We will also discuss other interesting open issues worth
considering in the next steps of this research.

One limitation is that both the community and centrality anal-
ysis are biased by the chosen threshold. Choosing this threshold
is not a trivial task. A possible way around this would be to use a
deeper understanding of the graph distribution to help define it.

A second limitation is the strategy used to extract activation
values from convolutional layers. In our experiments we used
spatial pooling. This makes it easier to extract and represent
convolutional filters but it causes some information loss. One
possible strategy to overcome this is to use multiple nodes to
represent all possible slices covered by each convolutional filter.

When comparing with alternative approaches it is important
to note that the method proposed in this paper aims to ex-
plain Deep Neural Networks (DNNs) from a novel perspective
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Fig. 3. Visualising nodes according to their PageRank centrality. Bigger nodes represent the most central ones.
nd thus a direct and quantitative comparison is not possible
t the moment. However, we believe that both community and
entrality analysis could be combined with other explanation
echniques to generate mutual benefits for better understanding
f DNNs. For example, visualisation techniques might use infor-
ation about communities and node centrality to decide which
eurons are more important and therefore should be analysed.
isualisation techniques might also help in understanding why
ommunities were formed in this particular way as well as the
ole of central nodes. By combining the method proposed in
his work with existing approaches to enhancing explainability
such as visualisation techniques) we expect to achieve richer and
omplementary explanations that may improve understanding of
ow our approach compares to existing ones such as [22,35].
The observation that the detected communities contain classes

ith a similar semantic meaning is also first evidence that our
pproach might be used to integrate the knowledge acquired by
NNs with external knowledge. In this regard an interesting av-
nue for investigation is to use information from knowledge bases
uch as ConceptNet or DBpedia to identify properties shared
mong classes in a community. In our experiments, for example,
ven though our datasets contain a small number of classes, it
ould be possible to formalise that C1 is related to dbo:Animal
hile C2 is related to dbc:Transport. While this is a trivial ex-
mple, we plan to look into using richer datasets such as CIFAR-
00 [36] or ImageNet [37] to explore this knowledge linkage as
hese might lead to a more valuable community structure with
otential for a richer semantic interpretation.
Finally, to include more semantic information in our approach

e are considering the addition of connections between the input
ayer and the co-activation graph. This is important particularly
ue to the existence of datasets with contextualised images, such
s CoCo [38] and ImageNet, and could potentially be done based
n recent work in feature extraction [26,27].

. Conclusion

In this paper we formalise and experiment on a novel ap-
roach to analyse and explain the inner workings of deep learning
116
models. The proposed methodology relies on the notion of co-
activation graph introduced in [12] and formalised in Section 3
to extract and represent knowledge from a trained Deep Neural
Network (DNN). In the co-activation graph nodes represent neu-
rons in a DNN and weighted relationships indicate a statistical
correlation between their activation values. This representation
connects neurons in any layer of the neural network, including
hidden (convolutional and dense) layers, with the output layer.

The extensive evaluation conducted across models and
datasets at different levels of complexity corroborates initial
results showing that the co-activation graph representation is
compatible with the knowledge encoded in the DNN. We started
the evaluation process by reproducing the community analy-
sis, previously performed in [12], with a more complex dataset
(CIFAR-10) using the state-of-the-art model MobileNetV2. The
new results are compatible with the ones in [12], since the com-
munities detected for MobileNetV2 reflect groups of semantically
aligned classes. An important aspect of this result is that the DNN
not only has a good accuracy for the dataset but it also seems
to be distinguishing groups of classes in an intelligent manner.
In this case, for the CIFAR-10 dataset, the community analysis
showed that the model learned how to separate classes related
to animals from vehicle classes.

A step further in our analysis focuses on exploring the notion
of centrality. Our evaluation showed that there is an associa-
tion between central nodes in a co-activation graph and their
respective neurons in the DNN. It was demonstrated that the DNN
drastically loses accuracy if neurons with high PageRank cen-
trality are removed from the model, while the accuracy remains
stable if neurons with low PageRank centrality are removed.
This indicates that central nodes in the co-activation graph may
represent important neurons in the DNN and that our approach
might be considered for pruning the DNN. This is of interest,
for example, in applications where dimensionality reduction is
crucial.

It was also shown that graph visualisation techniques can be
used to clarify the result of each analysis performed over co-
activation graphs adding a level of transparency. Unlike black box
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odels we showed that by visualising co-activation graphs it is
ossible to better understand why a certain algorithm produced
he resulting community structure and what it is expected when
hanging certain parameters in the algorithm. Graph visualisa-
ions can also help interpret why central nodes in co-activation
raphs tend to be important nodes in DNNs since they are visually
onnected to dense regions and thus can impact many other
eurons.
Our next steps include an investigation into how co-activation

raphs can be combined with other sources of knowledge. As
first step, since communities detected in co-activation graphs
lready proved to group together classes with high semantic simi-
arity, it would be interesting to conduct this analysis over richer
atasets. On CIFAR-100, for example, it is reasonable to expect
hat communities would match the given superclasses. For other
atasets, like ImageNet, we might be able to use information from
ordNet to see if there is any relation between communities and

he WordNet hierarchy. By doing this, we expect to have a seman-
ic interpretation for which parts of the DNN are responsible for
ifferent patterns in the dataset.
Finally, we want to explore the potential of combining our ap-

roach with methods such as visualisation techniques to achieve
ore robust explanations for DNNs. Such combinations would
lso potentially help discover the meaning of different node cen-
rality notions as well as when and why central nodes are more
mportant in the DNN.
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