
Journal of Business Research 125 (2021) 39–44

Available online 13 December 2020
0148-2963/© 2020 Elsevier Inc. All rights reserved.

The harmful effect of null hypothesis significance testing on marketing 
research: An example 

David Trafimow a, Michael R. Hyman b,*, Alena Kostyk c, Cong Wang d, Tonghui Wang d 

a Distinguished Achievement Professor of Psychology, New Mexico State University, Department of Psychology, MSC 3452, Box 30001, Las Cruces, NM 88003, United 
States 
b Distinguished Achievement Professor of Marketing, New Mexico State University, College of Business, Box 30001, Dept. 5280, Las Cruces, NM 88003-8001, United 
States 
c University of Glasgow, Adam Smith Business School, University Avenue, Glasgow G12 8QQ, United Kingdom 
d New Mexico State University, Department of Mathematics, Las Cruces, NM 88003-8001, United States   

A R T I C L E  I N F O   

Keywords: 
Apriori procedure 
Excessive power 
Precision 
Confidence 
Sample size 

A B S T R A C T   

Null hypothesis significance testing (NHST) has had and continues to have an adverse effect on marketing 
research. The most recent American Statistical Association (ASA) statement recognized NHST’s invalidity and 
thus recommended abandoning it in 2019. Instead of revisiting the ASA’s reasoning, this research note focuses on 
NHST’s pernicious peripheral effect on marketing research. One example of this problem is the well-known and 
influential recommendation against excessive power in McQuitty (2004, 2018). Instead, researchers always 
should prefer larger sample sizes because they always engender more precision than smaller sample sizes, ceteris 
paribus.   

1. Introduction 

In an article published in the Journal of Business Research roughly 15 
years ago, McQuitty (2004) made recommendations about ideal sample 
sizes for structural-equation-model (SEM)-based studies. That article’s 
influence has been impressive. In the author’s words (2018, p. 273), 

I was pleased to hear from Journal of Global Scholars of Marketing 
Science (JGSMS) Editor-in-Chief Professor Arch Woodside that 
McQuitty (2004) is “ranked among the top 100 in all-time citation 
impact among JBR articles.” 

The quotation implies two notions. First, SEM-proficient marketing 
researchers value the article. (Collectively, we have cited McQuitty 
(2004) repeatedly in our SEM-based articles to justify the sample size.) 
Second, these researchers consider its recommendations sufficiently 
sound and influential for Arch Woodside (former Journal of Business 
Research editor) to solicit the author for a written commentary about it. 
Hence, McQuitty (2004) remains a persuasive article for marketing 
researchers. 

McQuitty (2004) discusses the importance of power analysis and 
argues that researchers should strive for neither ‘too little’ nor ‘too 

much’ power (i.e., a Goldilocks ideal). To quote from the abstract (p. 
175), 

Using articles from some leading business journals as examples, a 
survey finds that power tends to be either very low, implying that too 
many false models will not be rejected (Type II error), or extremely 
high, causing overrejection of tenable models (Type I error). 

The article subsequently recommends (p. 181), 

If it can be demonstrated that power is too high unless an unrea-
sonably small sample size is employed, it becomes necessary to 
permit greater latitude in the interpretation of fit statistics that are 
sensitive to sample size, while giving additional weight to those 
indices that are less sensitive to sample size. This remedy to the 
problem of excessive power is probably the most acceptable. 

From the perspective that researchers should test their models using 
null hypothesis significance testing (NHST), this recommendation seems 
sensible. If the sample size (n) is ‘too small’, then there is insufficient 
power to detect an incorrect model; but if the n is ‘too large’, then every 
model will be rejected. Thus, the recommendation for an intermediate 
n—neither ‘too small’ nor ‘too large’—appears sound. However, in light 
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of the recent debate related to using NHST, we contend this recom-
mendation is no longer valid. Hence, the two-fold goals here are (1) to 
question researchers’ use of NHST, and (2) to argue that a larger n is 
always better than a smaller n, ceteris paribus. If the argument is valid, 
then the intermediate n recommendation is unsound, which in turn 
exemplifies the main point: NHST induces faulty analytical thinking, 
and thus scholarly marketing journals should abandon it. 

2. NHST 

The flaws of NHST, such as causing exaggerated effect sizes (Grice 
2017; Hyman 2017; Kline 2017; Locascio 2017a, 2017b; Marks 2017), 
are well-documented (see Hubbard 2016; Ziliak and McCloskey 2016 for 
highly cited reviews). In response, resistance to discontinuing its use is 
waning; for example, Basic and Applied Social Psychology banned it in 
2015 (Trafimow and Marks 2015). The 2019 special issue of The 
American Statistician, which contains 43 critical articles and an editorial 
statement by the American Statistical Association (ASA) recommending 
immediate abandonment of NHST, best exemplifies the attitudinal 
change toward NHST. That statement includes the following crucial 
paragraph. 

The [2016] ASA Statement on P-Values and Statistical Significance 
stopped just short of recommending that declarations of “statistical 
significance” be abandoned. We take that step here. We conclude, 
based on our review of the articles in this special issue and the 
broader literature, that it is time to stop using the term “statistically 
significant” entirely. Nor should variants such as “significantly 
different,” “p < 0.05,” and “nonsignificant” survive, whether 
expressed in words, by asterisks in a table, or in some other way 
(Wasserstein, Schirm, & Lazar, 2019, p. 1). 

Accordingly, medical journals such as the New England Journal of 
Medicine have changed their statistical policies. 

Despite the ASA’s recommendation, marketing journals have yet to 
adjust their statistical policies. If marketing scholars believe that stat-
isticians’ criticisms of NHST are esoteric, then rehashing these criticisms 
is pointless for motivating change. Hence, the goal here is to show how 
NHST-related thinking fosters poor thinking and deleterious conse-
quences for marketing research. In this vein, the suggestion that SEM- 
proficient researchers avoid large samples that cause “overrejection of 
tenable models (Type I errors)” is revisited (McQuitty 2004, p. 175). 

3. Sampling precision 

It is cliché among statisticians that the larger the sample, under 
typical assumptions about random and independent sampling, the more 
it resembles the population. In essence, larger samples make researchers 
more confident that relevant sample statistics approximate their corre-
sponding population parameters. Ceteris paribus, larger samples imply 
higher precision. 

Invoking Laplace’s omniscient Demon can dramatize precision’s 
importance. Suppose the Demon reported that the sample values used to 
estimate a structural equation model were unrelated to the population 
values. This discrepancy would discourage scholars from accepting that 
model, as high confidence in the correspondence between model values 
and population values is a ubiquitous assumption. In essence, SEM re-
searchers desire confidence in the precision of the values they calculate. 

Recently, Trafimow and his colleagues (e.g., Trafimow, 2017; Tra-
fimow & MacDonald, 2017; Trafimow, Wang, & Wang, 2019; see Tra-
fimow, 2019 for a review) developed the a priori procedure (APP), 
which is an inferential method that specifies the answers to two 
questions:  

• How closely do researchers want sample statistics and population 
parameters to correspond? (Precision) 

• With what probability do researchers want to fulfill a precision cri-
terion? (Confidence) 

For example, assume Dr. Smith specifies the desired levels of preci-
sion and confidence before collecting data and then applies an appro-
priate APP equation to calculate the n for meeting or exceeding those 
levels. In a simple case, Dr. Smith plans to draw a random and inde-
pendent sample from a normally distributed population. She wants a 
sample large enough to meet her precision and confidence specifications 
for the sample mean. Trafimow (2017) provides a derivation of Equation 
(1): 

n =

(
zc

f

)2

; (1)  

where  

• n is the sample size required to meet her specifications,  
• f is the fraction of a standard deviation she deemed sufficiently 

precise,  
• zc is the z-score that corresponds to her desired level of confidence (e. 

g., 1.96 for the conventional 95% confidence level). 

Suppose Dr. Smith wants to be 95% confident that a sample mean 
will be within 0.1 of a standard deviation of the population mean. To 
calculate the minimum required n, she can use Equation (1) as follows: 

n =

(
1.96
0.1

)2
= 384.16 ≈ 385 participants. Thus, Dr. Smith must query 

385 people to meet her desired confidence and precision levels. Once 
Smith collects the data, she computes the descriptive statistics of inter-
est. Dr. Smith requires nothing additional, as she a priori designed her 
study to meet targeted precision and confidence levels. 

To show the importance of sample size for precision, suppose instead 
that n = 25. In that case, the precision is only 0.4, which differs 
dramatically from the case of n = 385 and a resulting precision is 0.1. 

Because researchers often create more sophisticated study designs, 
Trafimow and his colleagues created new APP equations. For example, 
they have published equations that can handle  

• k means (Trafimow and MacDonald 2017);  
• differences between means for matched or independent samples 

(Trafimow et al., 2019); 
• skew-normal, instead of more limited normal, distributions (Trafi-

mow et al., 2019; Wang, Wang, Trafimow, & Chen, 2019);  
• standard deviations (assuming normal distributions) and scales 

(assuming skew-normal distributions) (Wang, Wang, Trafimow, and 
Zhang 2019); and  

• estimating skewness (Wang, Wang, Trafimow, and Myüz 2019). 

Although there are no published APP equations for SEM analyses, 
there are APP equations for correlations, which under the typical 
bivariate normality assumption is sufficient here. In simple models, with 
a dependent variable that is a function of a single independent variable, 
path coefficients are identical to correlation coefficients. In complex 
models, correlation coefficients are readily convertible into path co-
efficients. For example, the path coefficients for a mediation model that 
involves three variables, where variable A is exogenous, variables B and 
C are endogenous, and paths AB, AC, and BC exist, are related to the 
correlation coefficients as follows: 
⎧
⎪⎪⎨

⎪⎪⎩

AB = rAB

AC = (rAC − rBC*rAB)/
(
1 − r2

AB

)

BC = (rBC − rAC*rAB)/
(
1 − r2

AB

)
(2) 

Now consider the relationship between the APP and power analysis. 
Although the APP and power analysis seem similar, as researchers could 
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use either one to determine n, they differ philosophically and mathe-
matically (Trafimow & Myüz, 2019). Philosophically, researchers use 
the APP to determine the n required to meet specified precision and 
confidence levels; in contrast, they use power analysis to determine the n 
needed for a good chance (e.g., 80%) of obtaining a statistically signif-
icant p-value. Mathematically, the desired precision level influences the 
APP but not power analysis, and the expected (or required) effect size 
influences power analysis but not the APP. If researchers abandon 
NHST, the power analysis is futile because its raison d’etre is to facilitate 
NHST. 

For example, suppose Dr. Smith wants to calculate a single mean 
from normally distributed data and to detect a medium effect size 
(Cohen’s d = 0.5) with 80% power at alpha = 0.05. A power analysis 
using these conventional values recommends n = 31. However, solving 
Equation (1) for precision with n = 31 implies an unimpressive f = 0.35 
(i.e., a 95% probability that the sample mean is within 0.35 standard 
deviations of the population mean). In contrast, precision at the more 
impressive f = 0.10 at 95% confidence would require 385 participants. 
Or for a typical two-condition experiment with random assignment of 
participants to either an experimental or control group, a power analysis 
indicates that 63 participants per group (n = 126) would meet con-
ventional specifications. Yet, precision is again an unimpressive f =

0.35, whereas 770 participants per condition (n = 1540) are needed to 
achieve precision at the more impressive level of f = 0.10 (see the 
calculator at https://app-normal.shinyapps.io/N_TwoSamples_Estima 
teMean/ and Li et al., 2020 for details). 

Now imagine a simple correlation case. Assume Dr. Smith believes 
that latent variables X and Y are canonically correlated, and their indi-
cator variables are normally distributed. The relevant coefficient is the 
correlation between X and Y, which rXY symbolizes at the sample level 
and ρXY symbolizes at the population level. The goal: rXY should be a 
sufficiently precise estimate of ρXY . The larger the sample size, the 
higher the sampling precision (see Fig. 1). Consider these three effects. 

• Regardless of the precision level, the required n is larger when re-
searchers desire greater confidence (e.g., 95% versus 90%).  

• The required n decreases (increases) as the precision level decreases 
(increases). Increasing n increases precision level, and increased 
precision level ensures that rXY provides a good estimate of ρXY .  

• Precision level and confidence interact. That is, the required n is very 
large at stringent precision and confidence levels, but becomes 

smaller quickly and in a non-additive manner as either specification 
becomes less stringent. 

For example, the difference in the necessary n between f = 0.1 and 
f = 0.2 is larger for a confidence level of 95% rather than 90%. If Dr. 
Smith insists on what Trafimow (2018) termed ‘excellent’ precision at 
the 95% confidence level, she needs an n of 802 despite her model’s 
simplicity. In contrast, a power analysis for a simple correlation coeffi-
cient implies an n of only 29 people (see https://www.masc.org.au/stat 
s/PowerCalculator/PowerCorrelation for the power calculator used 
here). If a researcher takes the scenario involving Laplace’s Demon 
seriously and wants the sample correlation coefficient to be a precise 
estimator of the corresponding population parameter, the power- 
analysis-recommended n is woefully small. To the present point, 802 
participants would qualify as representing ‘excessive power’ according 
to McQuitty (2004, p. 181), and yet Fig. 1 renders visible the precision 
advantage. 

4. Implications 

As the opening quote from McQuitty (2018) states, overestimating 
the influence of McQuitty (2004) would be difficult. To justify a modest 
n, many researchers have cited the admonition in McQuitty (2004) 
about excessive effect sizes. Nevertheless, whether this warning has 
benefitted or harmed subsequent marketing research is unknown. 

To answer this question, imagine Dr. Smith can collect data from 
human subjects without cost or effort. Given that precision is essential, 
and a larger n implies greater precision, she ought to draw a large 
sample. Nonetheless, if she follows the sample size advice in McQuitty 
(2004) to avoid “overrejection of tenable models” (McQuitty 2004, p. 
175), she compromises her study’s precision. In discussing MacCallum, 
Browne, and Sugawara (1996), McQuitty (2004, p.181) acknowledges 
this issue. 

An alternative approach to the problem of excessive power and small 
sample sizes is offered by MacCallum et al. (1996), who observe that 
‘‘…whereas a moderate N might be adequate for achieving a speci-
fied level of power for a test of overall fit, the same level of N may not 
necessarily be adequate for obtaining precise parameter estimates.’’ 
(p. 144). 

MacCallum, Browne, and Sugawara (1996) suggest that Dr. Smith 
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should first estimate and then test her model. If her initial estimation 
effort goes well, she should re-estimate her model but vary the n to 
achieve the desired power level. Although the input (covariance or 
correlation) matrix is the same in both cases, she should use a pre-
determined n to assess model fit during the second stage. 

Ponder this recommendation. Although parameter estimates should 
rely on all collected data, researchers should assess model fit with partial 
data only! This strange yet seemingly plausible recommendation illus-
trates how NHST yields lousy research advice, with a profound negative 
effect on knowledge development. Given the often non-negligible cost 
and effort related to the data collection and the scientific duty to present 
the most accurate evidence, disregarding portions of collected data 
when assessing a model seems ill-advised. 

5. Considering all assumptions, not only the null hypothesis 

Now consider the following fact about NHST that substantive re-
searchers often overlook. Specifically, NHST does not result in rejecting 
only the null hypothesis, but rather rejecting a broad set of auxiliary 
assumptions containing the null hypothesis. The set contains so many 
assumptions related to significance testing that some researchers have 
proposed that assumption taxonomies are needed (e.g., Bradley and 
Brand 2016; Trafimow 2019). Although such taxonomies are not 
applicable here, they suggest the following: it is unlikely that all the 
assumptions within a substantial set of assumptions will be true. For 
example, the present authors are unaware of a published social science 
study in which the underlying assumption of random and independent 
sampling was met (Berk and Freedman 2003). Similarly, Likert-type 
data used in much marketing research is known not to be continuous, 
nor to be distributed normally, despite the assumption of indicator 
variable continuity or normalcy in SEM (Bentler and Chou 1987; 
Westland 2010). Thus, one problem with NHST is that researchers use it 
to test a set of assumptions that is almost certainly wrong. 

Is it sensible to avoid collecting large samples to avoid overrejecting 
tenable models? What does McQuitty (2004) mean by ’tenable’? 
McQuitty (2004, 2018) suggest a reasonable synonym is ‘correct’. 
However, the many substantive and statistical assumptions that re-
searchers make when testing their models suggest that at least one of 
their assumptions is false (i.e., the whole model cannot be correct). If all 
models are at least partially wrong, then they cannot be overrejected. 

6. Box and Draper quotation 

A counter-argument could focus on replacing the word ‘tenable’ (i.e., 
correct) with a phrase like ‘good enough’, ‘not too bad’, or ‘useful.’ In 
this context, a famous quotation by Box and Draper (1987) is worth 
considering: “Essentially, all models are wrong, but some are useful” (p. 
424). Perhaps McQuitty (2004) should have argued that a large n can 
cause overrejection of useful models. 

However, this argument also is problematic, as low p-values provide 
disconfirming evidence for a null model, but high p-values do not pro-
vide confirming evidence. For example, suppose the p-value is a very 
high 0.99. Its correct interpretation is ‘strong evidence against the model 
is lacking’ rather than ‘strong evidence for the model exists’. In essence, 
a valid conclusion is precluded rather than the model is correct or useful. 
Because many excellent researchers have misunderstood this point, 
Greenland (2017) recommended converting p-values to an index of 
contrary information about a model. Based on the information theory 
developed in Shannon (1948), Equation (3) allows researchers to enact 
Greenland’s recommendation. 

bits of information against the null model = − log2(p) (3) 

Fig. 2 shows the implications of transforming p-values into bits of 
information against the null model. When the p-value is low, such as 
0.001, it represents 9.57 bits of information against the null model. 
When the p-value is at the conventional significance level (0.05), it 
represents 4.32 bits of information against the null model. Finally, when 
the p-value is the largest possible (1.00), it represents zero bits of in-
formation against the null model. Zero bits of information against the 
null model is not translatable validly into a positive statement about 
model correctness, sufficiency, or usefulness. 

Typical fit indexes, based on p-values or statistics that can yield p- 
values, often perform poorly and lead to nonsensical results. Imagine 
another Demon scenario in which the Demon claims that the population 
mean in an experiment is 10.00, and the population standard deviation 
is 8.00. Researcher A queries ten people and obtains a mean of 9.93, 
whereas Researcher B queries 1,000,000 people and obtains a mean of 
9.95. Researcher B’s sample mean provides a better population mean 
estimate than Researcher A’s sample mean. However, the calculation of 
a p-value, a t-value, or any other test statistic would suggest the opposite. 

Like skilled writers, excellent researchers know when to flout 
convention. For example, researchers typically assume the 
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trustworthiness of fit indexes based on statistics that can yield p-values. 
However, such statistics become suspect when they depend on a su-
perabundance of assumptions that practically guarantee at least one is 
incorrect, thus rendering the model ‘incorrect’ (i.e., provides evidence 
that can refute but not support the complete model). 

How can Dr. Smith determine if the data fit her model well? She 
could base the model on strong prior theorizing. Consider again the 
theory that X causes Y, which then yields an empirical hypothesis that 
there is a canonical correlation between X and Y, both operationalized as 
a set of indicator variables. Although simple, this theory is vague. How 
much should X correlate with Y? Assume a more robust theory from 
which Dr. Smith could predict that the correlation between X and Y is 
0.40. In the latter case, it is easier to determine model fit. To the extent 
that the sample correlation is close to 0.40, the fit is good, whereas to the 
extent that the sample correlation is far from 0.40, the fit is poor. Note 
that more study participants are preferred because a larger n increases 
the precision with which the sample correlation coefficient estimates the 
population correlation coefficient. When NHST-induced thinking does 
not cloud the model-fitting process, it becomes much more straightfor-
ward, and there is no need to excise some data to determine model fit. 
Dr. Smith should use all collected data to determine the sample corre-
lation coefficient as an estimate of the population correlation coefficient, 
and to determine the model fit. The more similar the sample correlation 
coefficient is to the population correlation coefficient, the better the data 
test the theoretical prediction. If the sample correlation coefficient is far 
from its theory-suggested value, then Dr. Smith should revisit either the 
theory or her derived model if the n is sufficient to engender good pre-
cision. Dr. Smith also might collect additional data to test if the sample 
correlation coefficient is reliable. 

In summary, the Box and Draper (1987) quotation stands, but not 
within an NHST context. Nor did Box and Draper argue that it should. 
However, marketing researchers are so accustomed to NHST that they 
fail to recognize that the statistics used to perform NHST and associated 
thinking are problematic, and might offer a false sense of providing 
useful insights (see Trafimow, Hyman, and Kostyk, 2020). 

7. Is NHST never useful in SEM contexts? 

We thank an anonymous reviewer for suggesting the possibility that 
NHST may be appropriate for simple SEM models, with assumptions 
more likely to be correct, than for complex models, with assumptions 
less likely to be correct. Although a reasonable possibility, the entire set 
of assumptions for a simple SEM model is partly incorrect. For example, 
the ubiquitous assumption of random and independent sampling is 
incorrect because all random selection procedures are imperfect. If even 
one assumption in the statistical model is partly incorrect, it follows that 
the statistical model is wrong. In turn, if the statistical model is wrong, 
then performing NHST to reject it is redundant. 

Relative to simple models, more complex models rely on numerically 
more problematic assumptions, ceteris paribus. Because all models lack 
complete rightness, they are wrong a priori and not due to significance 
test results. NHST cannot indicate a model’s proximity to truth, which is 
a matter for expert judgment. 

8. The big picture 

Although the latest ASA statement has repudiated NHST, and 
respected scholarly journals are beginning to desk-reject manuscripts 
that include it, the problem extends beyond using an invalid procedure 
for testing models. NHST contaminates statistical thought by encour-
aging dichotomous thinking: a finding either exists or does not exist 
based on NHST results (Greenland 2017). Of course, the finding always 
exists in the sense that the effect size never equals zero. Thus, the issue is 
whether the n is sufficient for obtaining a satisfactory estimate of the 
population effect size. The larger the n, the more the obtained effect size 
is trustworthy as an estimate of the population effect size. Ceteris 

paribus, a larger n is better. Unfortunately, this commonsensical 
conclusion becomes questionable after researchers accept a flawed 
procedure such as NHST and its associated ‘lousy thinking’. 

The argument presented here—that a logically valid conclusion can 
derive from a false premise—is not limited to McQuitty (2004, 2018). 
Any conclusion derived from an argument with a false premise or con-
flicting premises is untrustworthy (Skipper and Hyman 1987). If NHST 
were sound, then the recommendation in McQuitty (2004) would be 
logical and valid. Unfortunately, NHST is problematic, thereby 
rendering this recommendation unsound despite its logical validity. 

In closing, consider this waggish argument.  

• Major premise: If the moon has gravity, then all people have ten 
arms.  

• Minor premise: The moon has gravity.  
• Conclusion: All people have ten arms. 

Despite human experience indicating otherwise, the conclusion fol-
lows logically from the major premise. Similarly, NHST represents a 
false major premise. Empirical social science research is only as trust-
worthy as its weakest aspect (Hyman and Sierra 2012), and a false initial 
premise often yields an untrustworthy conclusion. The ‘large n’ admo-
nition in McQuitty (2004, 2018) is one such conclusion. If marketing 
researchers should eschew the NHST-related thinking that produces 
problematic conclusions, then marketing journals should encourage 
them by banning NHST and NHST-inspired thinking from its future 
articles. 
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