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The structural behaviour of incrementally launched bridges in the construction stages depends on differ-
ent parameters involving deck, nose, supports and guide devices, because static schemes vary continu-
ously with the advance of the deck above the piers. For this reason temporary stresses in the deck,
during launching, are rather different from those occurring in service life. Horizontally curved launched
bridges also present the effects of torsion induced by geometric curvature. A parametric study is pre-
sented in order to analyse the influence of design parameters on the construction of these bridges. Anal-
yses were carried out by extending to curved beams a procedure based on the Transfer Matrix Method,
already known for straight continuous decks. Effects of curvature, nose–deck ratios of length and load,
bending and torsional stiffness ratio were taken into account. The results show that maximum torsion
values increase with the decrease in the curvature radius R and with the decrease in the ratio between
bending and torsional stiffness. Moreover, with variation in the nose length ratio, the value ln/l = 0.60
with respect to the span length, is confirmed as the optimal value, as happens for straight bridges. With
variation in the nose weight, a significant increase in bending moment and torsion can only be appreci-
ated in the cantilever stages of launching. Dimensionless diagrams and related expressions are given for
numerical evaluation of the maximum values of bending moment and torsion in the construction stages,
with variation in the stiffness ratio and the radius of curvature.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Incremental launching of bridges is nowadays a widespread
methodology for the construction of continuous bridge decks. It
can be applied both to concrete and steel bridge girders and it
has the advantage of eliminating the traditional scaffolding to sup-
port formwork. This technology requires low investments in spec-
ialised equipments such as a launching nose, conventional jacks,
launching jacks, temporary slide and guide devices. Deck segments
are built in a concentrated working area, placed behind one of the
abutments of the bridge, centralizing all concrete or steel construc-
tion activities. For concrete bridges, each segment is cast in contact
with the previously completed part of the structure, and assembled
to it through prestressing. By contrast, steel decks are directly
assembled by joining segments with bolted or welded connections.
The whole assembled girder is then advanced forward a distance
equal to the last segment already built, releasing the working area
for the construction of the new segment. The construction se-
quence is repetitive and may be organised to reach very efficient
and high-quality workmanship [1].
From the designer’s point of view, an incrementally launched
bridge presents different behaviour between the first phase of
the project (construction stages) and the second phase (service
life). It implies that temporary stresses during launching are differ-
ent from those occurring at the end of construction and after, when
moving loads are applied [2]. In the first phase, for every span
launched, a first portion of the deck advances as a cantilever and
a steel nose is generally applied to the front of the advancing deck
(Fig. 1). In this stage significant negative bending moments appear
in the cantilever deck portion, with upper fibres of the deck cross-
section in tension. By contrast, when the nose reaches the next
pier, positive moments appear in the same segments, advancing
as far as the centre of the last span. The nose length is strictly re-
lated to the span length and to the girder properties. Due to the dif-
ferent structural behaviour between each construction phase, it is
necessary to consider a large number of structural schemes for
every position of the deck above the piers during launching, till
the final position is achieved. For concrete bridges, the most com-
mon deck is composed of a straight single box concrete girder slid-
ing onto the bearings positioned over the piers and pushed from
behind. Single box sections are usually preferred in this construc-
tion technique because the entire section has a better mechanical
performance due to the geometric efficiency coefficient and to its
effectiveness in resisting torsion and warping [3]. So, due to the
rigidity of the concrete box sections, which are stiffened in the
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Fig. 1. Stages of incremental launching.
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internal corners in most cases, it is possible to assume that beam
members are prismatic and that the cross-section does not change
shape, neglecting distortion. Nowadays incremental launching is
often also used in the construction of I-shaped or box steel girders,
even though they require a more diffused system of transverse
stiffeners in order to assure the behaviour of a rigid section with-
out distortion [4].

In the case of straight bridges, torsional and bending analyses
are uncoupled and torsion is only considered in the second design
phase for eccentric moving loads applied in service life. Rosignoli
also considers torsion and cross-section distortion when misplace-
ments of launching bearings occur in construction stages [5]. Apart
from the case of misplacements, the final scheme of the bridge (in
Fig. 2. Curved bridge segment between two piers (segment JK).
service life) is a continuous beam with the assumption of stiff
transverse elements placed along the deck. By contrast, in the con-
struction phase the temporary static scheme is a shorter continu-
ous beam with a cantilever at the end, in which bending moment
is the main internal force and governs the structural behaviour.
The analysis requires a considerable amount of calculations related
to a wide number of support configurations. So it is necessary to
analyse the structure for each launching step, which is a tedious
and time-consuming process. Rosignoli used the Transfer Matrix
Method (TMM) for the analysis of continuous straight bridges dur-
ing construction, introducing a Reduced Transfer Matrix (RTM)
algorithm in the procedure. The method, based on the integration
of the elastic beam differential equations, uses a fast and repetitive
procedure that limits the risk of mistakes and can easily be imple-
mented in computer software [6].

When these bridges are curved in plane or both in plane and
elevation [7], the deck curvature is generally kept constant. This
geometric characteristic implies construction complications be-
cause launching bearings, guide devices and pushing methods
strictly depend on geometric constraints and in this case radial
forces appear at the top of every pier. Moreover, the deck’s static
behaviour changes, involving torsion both in construction stages
and service life. Indeed, while during launching a straight bridge
deck only has flexural behaviour, a curved one has mainly flexural
behaviour associated with torsion. The general theory of curved
box girder bridges can be found in [8]. Engineering practice, for
curved bridges with high values of curvature radii, was limited to
the evaluation of temporary stresses during construction, curva-
ture being neglected and the equivalent straight bridge being con-
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sidered. Nowadays, with the use of Finite Element Method (FEM) it
is generally accepted that the bridge curved deck is modelled by a
number of straight elements, approximating the real curved geom-
etry. These simplifications can introduce errors in the evaluation of
internal forces because they do not adequately consider the role
played by torsion. This can have important effects: during launch-
ing tangential stresses due to torsion add to those due to shear,
while in service life the geometric curvature increases the effects
of moving loads.

In the second design phase, regarding service loads (additional
permanent and moving loads), final prestressing has to be consid-
ered for concrete bridges as well as possible changes of support
configuration over piers. Moreover, due to the different cast ages
of segments assembled during launching, rheological non-homo-
geneity occurs in concrete and composite bridges, affecting the
state of stress at time t1 (end of construction) and at time t1 (when
delayed deformations will have totally developed).

This paper only regards the first design phase with the effects of
dead load in the launching sequence. A parametric study of curved
incrementally launched bridges is presented (in the paper), based
on the Reduced Transfer Matrix (RTM) procedure, firstly applied
by Rosignoli to straight continuous beams and then extended to
curved concrete box girders by Arici and Granata [9]. Similar stud-
ies have been presented by some authors for straight bridges, start-
ing from the paper by Marchetti, who presented an extensive study
[1] in which specific design problems related to incrementally
launched bridges are considered. Evaluations of bending moments
during launching, nose and deck characteristics, applied loads and
prestressing requirements are given by this author. Rosignoli also
presented studies on nose–deck interaction in launched concrete
straight bridges [10] while Sasmal et al. [11] presented a paramet-
ric study in which different deck and nose characteristics and dif-
ferent nose/deck load ratios were taken into account for straight
launched bridges.

Recently, Fontan et al. [12] presented a study on optimisation of
the launching nose in prestressed concrete bridges, in which bend-
ing moments over the piers and stress evaluation for the deck
cross-section are evaluated in the different positions of the deck
during the launching steps.

Mapelli et al. [13] pointed out the effects of delayed deforma-
tions and rheological non-homogeneity in concrete bridges built
using the incremental launching technique. These authors imple-
mented a mathematical formulation for the evaluation of stresses
and deformations, introducing concrete creep into the constitutive
laws. They found that the multiple change in the static scheme
during launching can affect the final values of bending moments
in service life.

In the present study the RTM methodology, extended to hori-
zontally curved bridges, was used to perform parametric analyses.
Torsional effects due to the geometric curvature are taken into ac-
count, considering only Saint Venant torsion (primary torsion),
warping and cross-section distortion being neglected. For box sec-
tions, it has been shown [3,4] that effects of non-uniform torsion,
in terms of longitudinal stresses, are only present in limited re-
gions where the value of prevented warping is high, as occurs near
supports or for thick diaphragms. By contrast, along the beam
warping can be disregarded. In a successive study warping and dis-
tortion phenomena will be analysed for curved girders, as well as
rheological non-homogeneity in concrete and steel–concrete com-
posite bridges (through the AAEM method [14]), by implementing
them in the Transfer Matrix Method. The target of the present
study is to investigate how the main design parameters related
to the girder and to the nose, affect the values and distribution of
bending moments and torsion in construction stages. This is
important in the design phase for dimensioning the prestressing
values and the related tendon layout. Moreover, the evaluation of
tangential stresses strictly depends on the torsion values of
cross-sections, with the main aim of steel reinforcement being
dimensioning. The parameters considered in this study are the fol-
lowing: the radius of curvature, the ratio between flexural and tor-
sional stiffness of the deck, the nose length and the load ratio
between the nose and the deck. In this way a wide range of possi-
ble girder cross-sections is investigated. The results are given in the
form of graphs in order to simplify interpretation of data and to ap-
ply the parametric analysis to actual cases of engineering practice,
especially for the early design phases of curved launched bridge
conceptual design, when choices about bridge deck, nose and
launching technology have to be made by designers.

2. Reduced transfer matrix method for curved continuous
beams

The theoretical approach to the elastic analysis of complex 3-D
prismatic curved structures, using the Transfer Matrix Method,
was formulated in [15,16]. The solving system was derived by exact
integration of the canonical Hamiltonian system of 12 differential
equations, governing the static behaviour in small displacement
field. The authors applied this formulation to the analysis of incre-
mentally launched curved box girders through the extended RTM
procedure. In the following sections, RTM is stated by writing the
fundamental equations in a more compact way than in [9], in order
to simplify comprehension of the approach followed.

For a horizontally curved beam whose axis lies on a horizontal
plane (See Fig. 2), in the generic section of curvilinear coordinate s,
with the local coordinate system given by the Frenet unit vectors
i1, i2, i3 placed in the cross-section centroid, the mixed state array
containing displacement components and internal forces can be
defined by

zðsÞ ¼
uðsÞ
Q ðsÞ

� �
¼

u2

u1

u3

V2

M1

M3

0
BBBBBBBB@

1
CCCCCCCCA

ð1Þ

where u2 is the vertical displacement, u1 the bending rotation, u3

the torsional rotation, V2 the shear force, M1 the bending moment
and M3 the torsion.

The relation between the state array in s = 0 and the one in the
generic section of abscissa s, is given by the transfer matrix C(s):
zðsÞ ¼ CðsÞzð0Þ þNðsÞ ð2Þ
where C(s) depends on the geometrical and mechanical characteris-
tics of the beam and N(s) expresses the effects of external actions
along the beam axis. For a horizontal plane curved beam the expres-
sion of the transfer matrix can be written:

ð3Þ

where Y and D are 3 � 3 sub-matrices of C, J is the skew symmetric
symplectic operator

J ¼
0 I
�I 0

� �
ð4Þ

while I is the 3 � 3 identity matrix and

ð5Þ
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Matrix C can be obtained numerically, as an exponential matrix,
using common mathematical software. In Eq. (5) B is the gradient
matrix of displacements (referred to the compatibility equations),
E�1 is the diagonal flexibility matrix, the inverse of the stiffness ma-
trix and valid for a beam having constant cross-section with an axis
of symmetry along i2, R is the constant curvature radius, A is the
cross-section area, E is the Young elastic modulus, G is the shear
modulus, v2 is the shear factor, J1 is the moment of inertia and J
is the torsional constant.

The effects of external actions (distributed loads and imposed
strains on the beam) can be taken into account by the array N(s)
with the following expression:

NðsÞ ¼
Z s

0
Cðs� gÞJdeðgÞdg ð6Þ

in which

deðsÞ ¼ f T
eðsÞ; qT

eðsÞ
� �T ð7Þ

fe(s) = (p2(s), m1(s), m3(s))T being the distributed external load array
and qe(s) = (q2(s), q1(s), q3(s))T the imposed strain array (e.g. im-
posed curvature induced by a thermal gradient).

Once the transfer matrix C(s) has been defined, it is possible to
expand it by adding one more column and one more row, in order
to include N(s), so in a more compact form the general expression
(2) becomes:

ð8Þ

where S(s) is the expanded state array and F(s) is the expanded
transfer matrix for the generic section s. The relations written above
are valid for each section s along the beam axis. Therefore, the rela-
tion between the state arrays of two subsequent sections J and K
can be expressed by the 7 � 7 matrix FK

J :

SK ¼ FK
J SJ ð9Þ

More details about transfer matrices of curved elements subjected
to different actions (distributed and concentrated loads, imposed
strains and displacements, temperature loads) are given in [9,16].

Let us consider a circular curved continuous beam on rigid ra-
dial supports with constant curvature radius R. In this case s = Rh
is the curvilinear coordinate of the generic section and L = Rx the
total beam length from 0 to 1 (Fig. 3), with several spans each of
length lJK = RcJK between two subsequent supports J and K.

In each support section a point matrix PK can be defined to take
into account concentrated discontinuities due to support reactions.
The 7th order matrix PK is composed of a 6th order identity matrix
and of a 7th order column containing the terms of concentrated
discontinuities:

PK ¼

1 0 0 0 0 0 Du2

0 1 0 0 0 0 Du1

0 0 1 0 0 0 Du3

0 0 0 1 0 0 DV2

0 0 0 0 1 0 DM1

0 0 0 0 0 1 DM3

0 0 0 0 0 0 1

2
666666666664

3
777777777775

ð10Þ

By considering discontinuities over supports, the state array at the
end section of the curved beam can be expressed by the recursive
formula:

S1 ¼ F1
0S0 ¼ F1

NPNFN
N�1PN�1 . . . FB

APAFA
0 S0 ð11Þ

Each matrix PKFK
J , obtained by the product of the support point ma-

trix PK and the span-by-span matrix FK
J , contains only two redun-

dant unknowns (support reaction discontinuities DV2 and DM3),
because the other concentrated discontinuities have null values.
Thus relation (11) contains all the redundant unknowns of the con-
tinuous beam. Without considering these unknowns, the solution is
given by a system of six equations with 12 unknowns. Six equations
can be found by imposing the boundary conditions in the state ar-
rays of the two end sections. Redundant unknowns require the def-
inition of an equal number of auxiliary conditions that can be found
by calculating the state arrays at the support sections, imposing in
them null values of vertical displacements and torsional rotations
(compatibility equations). The number of redundant reactions,
and consequently of auxiliary conditions, increases with the
advancing of the deck above new piers involved during launching.
In order to avoid this problem another pathway can be followed
by improving the TMM and only operating on the two continuous
elements of state arrays and transfer matrices (bending rotations
and bending moments), obtaining a reduced system, using the pro-
cedure which will now be described.

A partition of matrix FK
J can be performed by considering arrays

KJ ¼ ðu2/3Þ
T
J and KK ¼ ðu2/3Þ

T
K of known variables at support sec-

tions, arrays UJ ¼ ðV2M3ÞTJ and UK ¼ ðV2M3ÞTK of unknown variables

and arrays zRJ ¼ ð/1M1ÞTJ and zRK ¼ ð/1M1ÞTK of continuous vari-
ables upon each support. For continuous variables, the values at
the left and right sides of an internal support must be the same
for equilibrium and compatibility conditions. The transfer matrix
of a span J–K can be rearranged in the following way:

KK

UK

zRK

1

0
BBB@

1
CCCA ¼

F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

0T 0T 0T 1

2
6664

3
7775

KJ

UJ

zRJ

1

0
BBB@

1
CCCA ð12Þ

From the first row of Eq. (12), by solving with respect to the un-
known elements UJ,

UJ ¼ F�1
12 ðKK � F11KJ � F13zRJ � F14Þ ð13Þ

while, from the third row of Eq. (12), one obtains

zRK ¼ GK
J zRJ þ GK

NJ ð14Þ
in which

GK
J ¼ F33 � F32F�1

12 F13

GK
NJ ¼ F31KJ þ F32F�1

12 ðKK � F11KJ � F14Þ þ F34

ð15Þ

By inserting GK
NJ and GK

J into a reduced transfer matrix FK
RJ

FK
RJ ¼

GK
J GK

NJ

0T 1

" #
ð16Þ

and by considering the reduced state array SR = (u1 M1 1)T, a more
compact expression of Eq. (14) can be found, obtaining a reduced
system

SRK ¼ FK
RJSRJ ¼

FR11 FR12 FR13

FR21 FR22 FR23

0 0 1

2
64

3
75

K

J

u1

M1

1

0
B@

1
CA

J

ð17Þ

where FK
RJ is the 3 � 3 reduced transfer matrix of the JK segment be-

tween two subsequent supports. Eq. (15) show that elements of re-
duced transfer matrix FK

RJ are obtained directly as a combination of

those of transfer matrix FK
J . In this way, if the segment of the contin-

uous beam between A and N (Fig. 3) is considered, the reduced solv-
ing system is:

SRN ¼ FN
RASRA ¼ FN

RN�1FN�1
RN�2 . . . FB

RASRA ð18Þ

The reduced system of Eq. (11) for the whole continuous curved
beam can be solved by imposing the boundary conditions at joints



Fig. 3. Continuous curved beam during launching.
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A and N (known values of bending moments). After the reduced sys-
tem is solved, all bending moments and rotations for every support
can be found by means of relation (18).

By substituting the values of SRJ and SRK in Eq. (12) the contin-
uous beam can be finally solved by defining the complete system of
Eq. (11) and the state arrays SJ and SK can be found for each girder
segment.

3. Assumptions for the parametric study

A parametric study is presented, based on the results obtained
by the analyses of incrementally launched curved girders. A com-
puter program was developed on the basis of the RTM procedure
previously explained, in order to find the internal forces of the con-
tinuous deck in all construction stages. This procedure has been al-
ready validated through a numerical comparison with the Finite
Element Method [9], showing a better precision for torsion values
with respect to the curved geometry approximated by straight fi-
nite elements.

In this parametric study, the effects of curvature, deck and
nose characteristics on bending moment and torsion are consid-
ered, in order to provide engineers with an efficient tool for the
conceptual design of these bridges. The basic layout on which
analyses are performed is given by a curved bridge 220 m long
(Fig. 4) with a variable curvature radius (when radius R ?1, a
curved bridge degenerates to a straight one with the same span
lengths). In its final configuration the bridge has five spans: the
central three of equal length (l = 48 m), and two side spans having
a length fixed as approximately 80% of the central one (l = 38 m).
This choice is related to the advantage of obtaining comparable
bending moment values in every span: the optimal ratio between
side spans and central ones for long continuous bridges with uni-
formly distributed loads is about 0.7–0.8 [3]. The bridge is only
subjected to dead load, which is assumed to be uniformly distrib-
uted both on the deck and on the nose. Evaluations of the effects
of other loads like temperature and bearing settlements are given
in [9], while effects of prestressing in concrete decks are consid-
ered by Sasmal and Ramanjaneyulu [17] and Rosignoli [2] for
straight bridges and by Calgaro and Virlogeux [3] and Manterola
Armisen [4] for curved bridges. Temporary concrete cracking of
upper slabs, delayed deformations due to creep and support mis-
placements are not considered in the curved bridge, for the first
phase of design analysed here. Effects of prestressing have to be
evaluated after the preliminary design phase, because a first
dimensioning of prestressing force is necessary, due to the bend-
ing moment diagram of permanent loads applied in the launching
stages. For the nose, which usually consists of a variable cross-
section, in the computational procedure average constant proper-
ties are assumed.

Because of the need to compensate bending moments on the
deck, during launching an auxiliary compensation span (20 m
long) is put behind the abutment from which the deck is pushed.
Hence during launching the total reference length of the deck is
Ltot = 240 m.

The parameters considered in the study are:

(1) The radius of curvature R, varying between R = 100 m and
R = 500 m.

(2) The ratio between bending stiffness and primary tor-
sional stiffness k = EJ1/GJ, varying from k = 1 to k = 100.
The values of k considered here are related to four
kinds of typical cross-sections, all stiffened by internal
rigid diaphragms, keeping the deck width of 10 m
constant:

– a single concrete box section (Fig. 4d) for which k can be

considered not very different than 1;
– a single steel box section with a concrete slab (Fig. 4e) for

which k is about 5;
– a double steel I girder with a concrete slab (Fig. 4f) for

which k is about 50;
– a double concrete T girder with a top slab (Fig. 4g) for

which k is about 100.

(3) The ratio between the nose length ln and the span length

(l = 48 m) varies from the value ln/l = 0.3 to the value
ln/l = 0.8.

(4) The ratio between the nose load qn and the deck load q,
varies from qn/q = 0.03 to qn/q = 0.2.

The results were obtained neglecting warping due to torsion
and cross-section distortion for all section typologies, though
the solution shows less precision in the cases of Fig. 4f and g, be-
cause only primary torsion is considered. All supports are fixed
both for vertical displacements and torsional rotations. The latter
assumption is the most realistic one, because during launching a
double support is generally placed on the pier, especially for
curved girders, in order correctly to guide deck advancement
and to avoid horizontal girder misplacements. A double support
at the pier section constitutes a torsional fixed restraint, but
the final pier support can be modified, becoming a single bearing
placed at the centre of the deck cross-section (Fig. 5). If, after
construction, the restraint conditions vary from the double bear-
ing to the single one on each pier, then torsion is only fixed
during launching and released for service loads [4,18]. In the
latter case torsion has to be considered a continuous variable
on supports in the reduced transfer matrix system of Eqs. (12)
and (18).

As previously stated about the service life, these possible
changes of support configuration have to be taken into account
as well as the effects of final prestressing, moving loads and
time-dependent phenomena, considering rheological non-homo-
geneity for the determination of internal forces at the two times
of analysis (t1 and t1).
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Fig. 4. Bridge launching and typical deck cross-sections. (a) EF span launching before the nose reaches the pier. (b) Launch completed over EF span. (c) Bridge in its final
configuration. (d) Concrete box. (e) Steel box with concrete slab. (f) Steel I girders with concrete slab. (g) Concrete T girders with top slab.

Fig. 5. Support conditions over pier: double bearing, single central bearing.
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4. Discussion of parametric study results

The RTM procedure was applied to the launching phases of the
reference bridge 4th span (from support E to F). The launching
course is analysed in two subsequent stages: the first one is the
phase with five supports until the nose reaches pier F, while the
second one is the phase with a new support until the joint section
between deck and nose reaches pier F (Fig. 4b).

In Fig. 6, the results for the entire launching course are shown in
terms of launching subsequent diagrams [6] for bending moment
and torsion. These diagrams are obtained by solving the continu-
ous beam during launching for every advancing step over piers
(with steps of 2 m) and presenting them with respect to the bridge
length at the end of the launching phase, shifting the diagrams in
the final position of the deck launched. Fig. 6 shows the superposi-
tion of bending moment diagrams and torsion diagrams for the en-
tire launch of the EF span until the joint section between deck and
nose reaches the pier.

The envelope bending moment diagram (Fig. 7) is useful for cal-
culating prestressing forces for the launching phase. Prestressing
plays a fundamental role in conceptual design of concrete bridges
because it is rather different in this stage from that occurring in
service. In this connection, for different launching stages, when
the deck advances over piers, sections are alternatively subjected
to positive and negative moments. So it is common practice to
use temporary prestressing tendons in order to reduce stresses
by centred prestressing (uniform compression) and to accept lim-
ited temporary cracking of concrete in tension. Prestressing ten-
dons configuration can be modified, once the bridge is in its final
position, with the final tendons dimensioned for service life
[1,2,19].

Torsion shows its maximum and minimum values in the seg-
ments behind the nose and these values are very different from
those occurring in the rest of the beam. In this case an evalua-
tion of tangential stresses due to shear and torsion in concrete
box sections shows an increment with respect to the case of
the equivalent straight beam in which there is no torsion. This
increment is about 20% in the section with the maximum torsion
value while it is about 5–10% in the current sections of the
beam.
The evolution of load effects in particular cross-sections can be
considered through bending moment and torsion diagrams at sup-
port E section (over the pier) during the entire launching course
from E to F. This evaluation is useful in order to modify and opti-
mise nose characteristics through fast repetitive calculation of
internal forces in different hypotheses of nose length and mechan-
ical properties [10,12].

Fig. 7 shows the envelope diagrams with variation in the curva-
ture radius R, the other parameters being kept constant: k = 1 (typ-
ical of a box concrete cross-section, Fig. 4d), ln/l = 0.6 and
qn/q = 0.10. The diagrams show that, in this case, with variation
in the curvature radius, the bending moment can be considered
approximately the same. By contrast, the torsion varies signifi-
cantly, especially in the most advanced part of the deck due to
the influence of the cantilever segment of the beam. Naturally,
the higher the curvature radius R, the lower the torsion value in
every section of the deck, being null for R ?1. The increment in
torsion maximum value for R = 100 m with respect to the case of
R = 500 m is about fivefold. This result was found keeping the stiff-
ness ratio k = 1 constant. The fact is that in this case bending mo-
ment variation can be neglected but torsion increases can be
significant for a small curvature radius.

Fig. 8 shows the diagrams of bending moment and torsion over
pier E, during launching of the EF span. The trend is the same as
just seen: while in the bending moment diagram no variation is
evident, the torsion varies significantly. This happens in the canti-
lever stage before contact between the nose and pier F and also in
the continuous beam stage until the entire span has been launched.
When the nose reaches the pier, a big jump in torsion values can be
seen for small radii.

Fig. 9 shows the same diagrams as previously seen for a differ-
ent stiffness ratio (k = 100). Higher maximum bending moment
values can be noted than those seen in the previous case, against
smaller maximum torsion values. The same behaviour is shown
by the diagrams in Fig. 10, in which a variation in bending moment
values with radius R is observed over the support, after the nose
reaches the pier.

Fig. 11 shows the envelope diagrams with variation in the stiff-
ness ratio k = EJ1/GJ, the other parameters R = 100 m, ln/l = 0.6,
qn/q = 0.10 being kept constant.
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Fig. 6. Envelope bending moment and torsion diagrams for entire launching course over EF span.
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Fig. 7. Bending moment and torsion envelope diagrams, with variation in radius R, when k = 1, ln/l = 0.6 and qn/q = 0.10.

0 5 10 15 20 25 30 35 40 45 50
Length [m]

0 5 10 15 20 25 30 35 40 45 50
Length [m]

0

-10

-20

-30

-40

-50

-60

Be
nd

in
g 

m
om

en
t [

M
N

m
]

R = 100
R = 200
R = 300
R = 400
R = 500

-4

-3

-2

-1

0

1

2

3

4

To
rs

io
n 

[M
N

m
]

R = 100
R = 200
R = 300
R = 400
R = 500

Fig. 8. Bending moment and torsion over the pier, with variation in curvature radius R, when k = 1, ln/l = 0.6 and qn/q = 0.10.
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In this case the variation in bending moment diagrams is more
evident than in the previous ones, the increment in torsion for low-
er stiffness ratios also being significant. This behaviour shows that,
for higher values of k, the torsion diminishes but the bending mo-
ment increases. The same behaviour can be appreciated from
Fig. 12, which shows diagrams in the support section. While in
the cantilever stage, the bending moment does not change after
the nose reaches the pier, the bending moment increases and this
increment is higher for cross-sections with higher values of k (sec-
tion types of Fig. 4f and g). By contrast, the torsion varies before
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Fig. 9. Bending moment and torsion envelope diagrams, with variation in radius R, when k = 100, ln/l = 0.6 and qn/q = 0.10.
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Fig. 10. Bending moment and torsion over the pier, with variation in curvature radius R, when k = 100, ln/l = 0.6 and qn/q = 0.10.
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Fig. 11. Bending moment and torsion envelope diagrams, with variation in stiffness ratio k, for R = 100 m, ln/l = 0.6 and qn/q = 0.10.
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and after contact with the pier, but for high values of k its incre-
ment at the end of the launch is more significant.

When R diminishes, torsion becomes more important. When
the stiffness ratio changes, bending moment diagrams also change
and the torsion depends on curvature and stiffness. The stiffness
ratio has a great influence on axial and tangential stresses and gov-
erns the structural conception during launching phases: a bending
moment diagram allows designers to calculate prestressing forces
and tendon configuration, while torsion values are useful for web
thickness and stiffener dimensioning.
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Fig. 12. Bending moment and torsion over the pier, with variation in stiffness ratio k, for R = 100 m, ln/l = 0.6 and qn/q = 0.10.
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The previous evaluations strictly regard the deck and its charac-
teristics, the nose–deck interaction not being considered. For struc-
tural behaviour during launching, a fundamental role is played by
the characteristics of the nose with respect to the deck.

Fig. 13 shows the envelope diagrams with variation in the
length ratio ln/l, the other parameters R = 100 m, k = 1 and
qn/q = 0.10 being kept constant. In this case it is evident that a
shorter nose significantly increases the cantilever stage during
launching. Negative bending moments for the case ln/l = 0.30 can
become double with respect to the case ln/l = 0.60. Torsion in-
creases too, but this change is only evident in the cantilever part
of the deck during launching.

Fig. 14 shows the diagrams in the support section. For shorter
noses the jump and the maximum value increase both for bending
moment and torsion. The most adequate value appears to be
ln/l = 0.60, because internal forces before and after contact with
the pier show similar values. Many authors [1,10,11] indicate this
length ratio as the optimal one for straight bridges. The evaluation
of torsion effects in horizontally curved beams confirms the same
length ratio value. It is worth noting that for longer noses
(ln/l = 0.80), internal force values after contact with the pier are
higher than before contact. These values are not very different than
those found for ln/l = 0.60, though the maximum is related, in the
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Fig. 13. Bending moment and torsion envelope diagrams, with va
latter case, to the cantilever segment of the deck. This evaluation
can differ a lot when concrete decks for railway bridges are consid-
ered, because they are much heavier than road bridges with thicker
cross-section slabs, in some cases making an increased ln/l ratio
necessary, in order to reduce bending moments in cantilever
stages.

Fig. 15 shows the envelope diagrams with variation in the load
ratio qn/q, the other parameters being kept constant: R = 100 m,
k = 1 and ln/l = 0.60. Naturally, with an increase in the load acting
on the nose, the cantilever forces increase. This change is not very
evident in the envelope diagrams. It is more evident evaluating
Fig. 16, which instead shows greater significance for the support
internal forces: with an increase in the nose load, the cantilever
stage forces and the jump in the diagrams increase significantly.
Deck sections passing over the pier during advancing movements
are subjected to higher forces for higher nose loads.

This evaluation was made for a fixed value of stiffness ratio and
length ratio. It is to be noted that a reduction in nose dead load also
influences the bending and torsional stiffness of the nose. This can
give an additional effect on internal force distribution. Some
authors [1,11], varying the flexural stiffness of the nose together
with its load and length ratios, found optimal values of qn/q for
the bending moment in straight bridges.
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0 5 10 15 20 25 30 35 40 45 50
Length [m]

0 5 10 15 20 25 30 35 40 45 50
Length [m]

0

-10

-20

-30

-40

-50

-60

-70

-80

-90

-100
Be

nd
in

g 
m

om
en

t [
M

N
m

]

ln/l = 0.3
ln/l = 0.4
ln/l = 0.5
ln/l = 0.6
ln/l = 0.8

-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4

To
rs

io
n 

[M
N

m
]

ln/l = 0.3
ln/l = 0.4
ln/l = 0.5
ln/l = 0.6
ln/l = 0.8

Fig. 14. Bending moment and torsion over the pier, with variation in length ratio ln/l, for R = 100 m, k = 1 and qn/q = 0.10.

Fig. 15. Bending moment and torsion envelope diagrams, with variation in load ratio qn/q, for R = 100 m, k = 1 and ln/l = 0.60.
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Fig. 17 shows the dimensionless regression curves of bending
moment and torsion maximum values as functions of the stiffness
ratio k, for each case of curvature radius R investigated.

Fig. 17a shows that the bending moment remains almost con-
stant with radius R when k = 1 (concrete box section), but varies
with the radius of curvature when a different stiffness ratio is
investigated, confirming what is observed from Fig. 7. Moreover,
the maximum value of positive bending moment refers to the case
of k = 1. The largest variation in maximum bending moment can be
observed for the case of R = 100 m while the smallest variation is
recorded for R = 500 m, being null for the case of R ?1 (straight
girder). The minimum value of bending moment is constant for
each case examined, being the negative value occurring in the lon-
gest cantilever during construction.

The regression curves, for fixed values of ln/l = 0.6 and
qn/q = 0.10 can be expressed for bending moments by a second or-
der parabola, as a function of the stiffness ratio k:

Ml
EJ1
¼ ak2 þ bkþ c ð19Þ

in which M is the maximum value of bending moment, l the length
of the longest bridge span, and EJ1 the bending stiffness ratio of the
girder cross-section.
Values of coefficients a, b and c can be found by means of the
following expressions:

a ¼ 0:0059R�2:50; b ¼ �0:0390R�1:73; c ¼ 0:00502 with R in ½m�
ð20Þ

For concrete box sections Eq. (19) becomes M = (a + b + c)EJ1/l.
Fig. 17b shows that torsion values vary significantly with the

stiffness ratio k and the curvature R. The diagrams give the maxi-
mum negative torsion values, the maximum positive value being
almost constant and referring to the longest cantilever stage. The
largest variation refers to the case of R = 100 m, as happens for
bending moments. The highest torsion value is found for the case
of concrete box sections with R = 100 m.

The torsion regression curves can be expressed as power
functions:

Mtl
EJ1
¼ akb ð21Þ

in which Mt is the maximum torsion value. The values of coeffi-
cients a and b can be found using the following expressions:

a ¼ 0:113R�1; b ¼ �0:5R�0:17 with R in ½m� ð22Þ

For concrete box sections Eq. (21) becomes Mt = 0.113 EJ1/(Rl).



Fig. 16. Bending moment and torsion over the pier, with variation in load ratio qn/q, for R = 100 m, k = 1 and ln/l = 0.60.
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Fig. 17. Variation of maximum values of bending moment and torsion with stiffness ratio k, for fixed values of curvature radius R when ln/l = 0.6 and qn/q = 0.10.
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The dimensionless curves in Fig. 17 can be useful for design pur-
poses, because they give the maximum values of bending moment
and torsion by entering the graph with the values of k and R.

5. Conclusions

A parametric study for the construction sequence of curved
incrementally launched bridges was carried out. The procedure fol-
lowed was based on the reduced transfer matrix method, already
known in the literature for straight bridges and extended by the
authors to curved continuous beams.

From this parametric study, indications for the conceptual de-
sign of curved incrementally bridges can be obtained.

(1) Torsion shows its maximum and minimum values in the
span just behind the nose and these values are very different
from those occurring in the rest of the beam. An evaluation
of tangential stresses due to shear and torsion, in concrete
box sections, shows an increment of about 15–20% with
respect to the case of the equivalent straight beam in which
there is no torsion. This occurs in the span behind the nose,
while the increment in tangential stresses is from 5% to 10%
in the current sections of the beam. The highest torsion val-
ues are found with shorter lengths of launching nose.

(2) With variation in curvature radius R, when the stiffness
ratio k = EJ1/GJ is not very different than 1 (box concrete
bridges), the bending moment diagram is not affected by
the curvature variation. By contrast, torsion varies signifi-
cantly, especially for small values of R. Simplified solutions
found by straightening the curved box bridge can only be
used for bending moment evaluations. For a fixed value of
k > 1, when R decreases the maximum value of bending
moment decreases too, while the torsion increases. For a
fixed value of curvature radius R, when k increases, both
maximum values of bending moment and torsion
decrease.
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(3) With variation in stiffness ratio k = EJ1/GJ, keeping R con-
stant, both bending moment and torsion diagrams change,
and for smaller values of k (box sections) torsion increases
significantly. For higher values of k (open sections with T
or I girders) bending moments increase considerably over
the pier. In the support section, internal force values can dif-
fer a lot, especially at the end of span launching.

(4) With variation in nose length ratio ln/l, keeping the other
parameters constant, the value ln/l = 0.60, indicated as the
optimal value for straight bridges, is also confirmed for the
torsion effects in curved bridges. Shorter noses show a big
increment in bending moment and torsion. For longer noses,
forces at the end of launching in the last span are higher than
the cantilever ones and the nose length proves not to be
advantageous economically.

(5) With variation in the load ratio qn/q, a significant change
can only be appreciated in the first cantilever stage of the
span launch, with higher force values for heavier noses.
More precise evaluations can be made considering that
nose load variations affect its flexural and torsional stiff-
ness, because nose stiffness influences the internal force
distribution.

(6) The dimensionless curves of bending moment and torsion
maximum values, plotted in the diagrams with variation
in both the stiffness ratio k and the curvature radius R,
show that the highest values of internal forces are regis-
tered in the case of concrete box sections with
R = 100 m. Moreover, the largest variation in maximum
values with the stiffness ratio k is shown by the curve
referring to R = 100 m. The dimensionless curves provided
in this study can be useful for design purposes related to
prestressing (axial stresses due to bending moments) and
steel reinforcements (tangential stresses due to shear and
torsion).
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