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Frequent pattern mining generates a lot of candidates, which requires a lot of memory usage and mining
time. In real applications, a small number of frequent patterns are used. Therefore, the mining of top-
rank-k frequent patterns, which limits the number of mined frequent patterns by ranking them in fre-
quency, has received increasing interest. This paper proposes the iNTK algorithm, which is an improved
version of the NTK algorithm, for mining top-rank-k frequent patterns. This algorithm employs an N-list
structure to represent patterns. The subsume concept is used to speed up the process of mining top-rank-
k patterns. The experiments are conducted to evaluate iNTK and NTK in terms of mining time and mem-
ory usage for eight datasets. The experimental results show that iNTK is more efficient and faster than
NTK.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

An expert system is an intelligent system that solves the com-
plex problems based on knowledge throughout inference proce-
dures. Generally, there are three components in an expert system
including knowledge base, inference engine and user interface
(Jackson, 1999). The central of expert systems is the knowledge
base, because it contains the problem solving knowledge of the
particular application (Ahmed, 2008). Therefore, the reduction of
this knowledge space plays a big role in the implemented perfor-
mance of expert systems. Association rules are important of the
knowledge (Daniel & Viorel, 2004; Guil, Bosch, Túnez, & Marín,
2003) which represent the relationships between items in a data-
set. To generate association rules, traditional approaches first mine
frequent patterns which are itemsets, subsequences, and substruc-
tures that appear in large transactions or relational datasets with a
frequency no less than a given threshold. After that, the system
uses these frequent patterns and the minimum confidence to find
all rules. Two above phrases require a lot of memory usage and
mining time. Therefore, the reduction of time to mine frequent pat-
terns is very useful to enhance expert systems.
Currently, there are many forms of patterns such as frequent,
subsequences, and substructure patterns. Mining frequent patterns
is an indispensable component in many data mining tasks such as
association rule mining (Agrawal, Imielinski, & Swami, 1993; Vo,
Hong, & Le, 2012, 2013; Vo, Coenen, Le, & Hong, 2013; Vo, Le,
Coenen, & Hong, 2014; Vo, Le, Hong, & Le, 2014a,b), sequential pat-
tern mining (Agrawal & Srikant, 1995; Pham, Luo, Hong, & Vo,
2014), and classification (Liu, Hsu, & Ma, 1998; Nguyen, Vo,
Hong, & Thanh, 2012; Nguyen, Vo, Hong, & Thanh, 2013). Since
the introduction of frequent pattern mining (Agrawal et al.,
1993), various algorithms (Agrawal & Srikant, 1994; Han, Dong,
& Yin, 1999; Han, Pei, & Yin, 1999; Zaki, 2000; Zaki & Gouda,
2003) have been proposed for efficiently performing the task.
These algorithms can be partitioned into two main categories:
using the traditional horizontal dataset format such as two impor-
tant algorithms, Apriori and FP-growth (Agrawal & Srikant, 1994;
Han, Dong et al., 1999; Han, Pei et al., 1999) and using the vertical
dataset format such as Eclat (Zaki, 2000).

In general, mining frequent patterns uses a minimum support
threshold (min_sup) to generate correctly and completely frequent
patterns. However, setting this threshold is an interesting problem.
Whether this threshold is too large or too small, it also influences
the number of generated frequent patterns in a dataset. In addition,
the number of produced frequent patterns is very large, while
applications such as expert systems, recommendation systems
and so on, only use a small number of frequent patterns. From
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Table 1
Example dataset (DBE).

TID Items

1 a, b
2 a, b, c, d
3 a, c, e
4 a, b, c, e
5 c, d, e, f
6 c, d
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above problems, Han, Wang, Lu, and Tzvetkov (2002) proposed
top-k frequent closed pattern mining, where k is the number of fre-
quent closed patterns to be mined. Then, the authors proposed the
TFP algorithm to solve this task. Unlike frequent patterns, frequent
closed patterns have length no less than the minimal length of each
pattern (min_l). Although TFP implements effectively its mission,
but like min_sup, set the value min_l is not a simple problem for
users. Therefore, a new direction of research was proposed, that
is the problem of top-rank-k frequent pattern mining. To solve this
problem, FAE (Deng & Fang, 2007) and VTK algorithms (Fang &
Deng, 2008) are proposed. A top-rank-k of frequent patterns is
selected based on rank order of frequency. Recently, Deng (2014)
proposed NTK algorithm for mining top-rank-k frequent patterns
based on the idea of PPC-tree (the Pre-order and Post-order Code
tree). NTK is efficient due to its patterns presentation based on
Node-list structure. The experimental results show that NTK is
more effective than FAE and VTK.

Considering carefully Node-list structure, we found that N-list
(Deng, Wang, & Jiang, 2012) better than Node-list because the
length of the Node-list of a pattern is greater than the length of
its N-list. Hence, the time required to join two Node-lists is longer
than that of N-lists. In addition, NTK must generate and test all
candidates in each loop of the algorithm. Therefore, this paper pre-
sents an efficient method for mining top-rank-k frequent patterns
called iNTK. Unlike NTK, iNTK uses N-list structure with an
improved N-list intersection function to reduce the run-time and
memory-consuming. Moreover, iNTK employs the subsume index
concept to directly mine frequent patterns without generating can-
didates in a number of cases.

The rest of this paper is organized as follows. Section 2 presents
the related work for mining top-rank-k frequent patterns. Section 3
introduces the basic concepts. The iNTK algorithm for mining top-
rank-k frequent patterns is described in Section 4. Section 5 com-
pares the performance of the iNTK and NTK algorithms. Section 6
summarizes the study and gives some topics for future research.

2. Related work

Since mining top-rank-k frequent patterns is proposed, a num-
ber of algorithms such as FAE, VTK and NTK were built to solve this
problem. Besides, mining top-rank-k erasable itemsets is also pro-
posed (Deng, 2013; Nguyen, Le, Vo, & Le, 2014).

FAE is the first algorithm (Deng & Fang, 2007) to solve the prob-
lem of mining top-rank-k frequent patterns. FAE is an acronym for
‘‘Filtering and Extending’’; it uses heuristic rules to reduce the
search space, filters undesired patterns and selects useful patterns
to generate the next patterns. Next, VTK (Fang & Deng, 2008) (Ver-
tical Mining of top-rank-k frequent patterns) is more efficient than
FAE because it does not need to scan the entire dataset to calculate
the support of frequent patterns.

Recently, NTK algorithm was built for mining top-rank-k fre-
quent patterns (Deng, 2014). This algorithm was proven to be more
effective than FAE and VTK because it uses Node-list, a data struc-
ture that has been effectively used in frequent pattern mining
(Deng & Wang, 2010). In NTK, first a tree construction algorithm
is used to build a PPC-tree. Then, Node-list structure associated
with frequent 1-patterns is generated. Unlike FP-tree-based
approaches, this approach does not build additional trees repeat-
edly; it mines frequent patterns directly using Node-list.

In 2010, Node-list is first proposed (Deng & Wang, 2010). After
that, N-list, like Node-list structure, has also been proposed (Deng
et al., 2012) to mine frequent patterns. Both of them are generated
from a PPC-tree and a list of nodes sorted in pre-order ascending
order. Besides, the Node-list and N-list of a pattern contains t items
can be produced from two patterns contains (t � 1) items. The dif-
ference between them is that Node-list is constructed by the suffix
nodes while N-list is constructed by prefix nodes, and the length of
Node-list of a pattern is greater than the length of N-list of a pat-
tern. Therefore, Node-list used in NTK requires a lot of time and
memory. In Vo, Coenen et al., 2013; Vo, Hong et al., 2013; Vo, Le,
Coenen et al., 2014; Vo, Le, Hong et al., 2014a,b, N-list and subsume
index (Song, Yang, & Xu, 2008) of frequent 1-pattern was used for
mining frequent itemsets effectively. NSFI algorithm was proven
more outperforms than the PrePost. In this paper, iNTK, an
improvement algorithm of NTK, is proposed. This algorithm uses
N-list structure and subsume index of 1-patterns to enhance the
mining time and the memory usage.

3. Problem definition

3.1. Frequent patterns

Let I = {i1, i2, . . . , im} be a set of items, and DB = {T1,T2, . . . ,Tn} be a
set of transactions, where Ti (1 6 i 6 n) is a transaction that has a
unique identifier and contains a set of items. Given a pattern P
and a transaction T, it is said that T contains P if and only if P # T.

Definition 1 (support of a pattern). Given a DB and a pattern P
( # I), the support of pattern P (SUPP) in DB is the number of
transactions containing P.

A pattern P is a frequent pattern if support of P is no less than a
given min_sup.

3.2. Problem of mining top-rank-k frequent patterns

Deng and Fang (2007) described the problem of mining top-
rank-k patterns as follows.

Definition 2 (rank of a pattern). Given a DB and a pattern X ( # I),
the rank of X (RX) is defined as RX = |{SUPY|Y # I and SUPY P SUPX}|,
where |Y| is the number of items in Y.
Definition 3 (top-rank-k frequent patterns). Given a DB and a
threshold k, a pattern P ( # I) belongs to a top-rank-k frequent pat-
tern (TRk) if and only if RP 6 k.

Given a DB and a threshold k, top-rank-k frequent pattern mining is
the task of finding the set of frequent patterns whose ranks are no
greater than k. That means that TRk = {P|P # I and RP 6 k}.

Example 1. Dataset DBE in Table 1 is used throughout the article.
According to Definition 1, SUP{c} = 5 because five transactions,
namely 2, 3, 4, 5, and 6, contain c. Table 2 shows the ranks and
supports of all patterns in DBE. According to Table 2, SUP{c} is the
largest, and therefore R{c} = 1.
3.3. N-list structure

Deng et al. (2012) presented the PPC-tree, an FP-tree-like struc-
ture (Han, Dong et al., 1999; Han, Pei et al., 1999), the PPC-tree
construction algorithm, and the N-list structure as follows.



Table 2
Ranks and supports of all patterns for DBE.

Rank Support Patterns

1 5 {c}
2 4 {a}
3 3 {ca}, {ce}, {d}, {cd}, {b}, {ab}, {e}
4 2 {cea}, {ae}, {cb}, {cba}
5 1 {cdba}, {ceba}, {cda}, {cfed}, {ceb}, {cfe}, {dfe}, {ced}, {df},

{adb}, {cdb}, {cfd}, {de}, {ef}, {aeb}, {ad}, {bd}, {f}, {be}, {cf}

Table 3
DBE after being sorted in descending order of frequency.

TID Sorted items

1 a, b
2 c, a, b, d
3 c, a, e
4 c, a, b, e
5 c, d, e, f
6 c, d

f, 1

a, 3

(0, 11)

(1, 1) (3, 10)

)9,9()0,2(

(5,4) (8, 5) (10, 8)

(6, 2) (7, 3) (11, 7)

null

a, 1 c, 5

b, 1

e, 1b, 2 e, 1

d, 2

d, 1 e, 1

(4, 6)

Fig. 2. PPC-tree for DBE.
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Definition 4. PPC-tree is a tree structure where includes one root
and set of nodes. Each node N composed of five values: N.name,
N.child, N.count, N.preorder and N.postorder corresponding to name
of item in dataset, set of children node of N, frequency of N and
order when visiting PPC-tree by pre-order and post-order, respec-
tively. PPC-tree’s root names R has R.name = null and R.count = 0.

The PPC-tree construction algorithm (Deng & Wang, 2010;
Deng, 2014) is given in Fig. 1.

Example 2. First, items in transactions are sorted in descending
order of frequency. The results are shown in Table 3.

Fig. 2 shows the PPC-tree generated for DBE. Each rectangle rep-
resents a node. A pairs of letter and number in each rectangle is the
name of the item and its support. The preorder and postorder of the
corresponding node are represented by a pair of numbers in each
bracket. For example, the node {c,5} has preorder = 3, postor-
der = 10, name = c, and count = 5.

Definition 5 (PP-code). In a PPC-tree, each node Ni has PP-codes,
PPi = h(Ni.preorder, Ni.postorder): Ni.counti.
Property 1 (ancestor-descendant relationship of PP-codes). Given
PPi and PPj are two PP-codes, PPi is an ancestor of PPj if and only
if PPi.preorder < PPj.preorder and PPi.postorder > PPj.postorder.
Example 3. Let PP1 = h(4,6):3i and PP2 = h(7,3):2i. Based on Prop-
erty 1, PP1 is an ancestor of PP2 because PP1.preorder = 4 < PP2.pre-
order = 7 and PP1.postorder = 6 > PP2.postorder = 3.
Definition 6 (N-list of a 1-pattern). Given a PPC-tree, N-list of a fre-
quent 1-pattern, A, is a sequence of all the PP-codes of nodes in the
PPC-tree whose name is A. In one N-list, PP-codes are arranged in
preorder ascending order.

Each PP-code in N-list is denoted by PP = h(preorder, postor-
der):counti. N-list of a frequent pattern is denoted by {PP1, PP2,
. . . ,PPl}, where PP1.preorder < PP2.preorder < � � � < PPl.preorder.
Function Construct-PPC-tree (DB)
1.  Scanning DB, inserting all items and their supports to I1.

2.  Sort I1 in support descending order. If the supports of some items are equal, the orders 
among them can be assigned arbitrarily. 

3.  Create the root of a PPC-tree, R, and name it as “null”.
4. For each transaction Tr in DB do 
5.  Sort all items in support descending order.  
6.  Call Insert_Tree(Tr, R).  
7. Visit the PPC-tree to generate the preorder and the postorder values of each node by pre-

order traverse and post-order traverse, respectively. To traverse the PPC-tree in pre-order, 
perform the following three operations: visit the root node, traverse all left sub-trees, and 
then traverse all right sub-trees. To traverse the PPC-tree in post-order, perform the 
following three operations: traverse all left sub-trees, traverse all right sub-trees, and then 
visit the root node. 

Function Insert_Tree(Tr, R)
1. t ← the first element in Tr, Tr = Tr \ t.
2. If R has a child node N such that N.name = t then N.count ++.
3. Else create a new node N with N.count = 1 and N.name = t, R.child = N
4.  If R not null then call Insert_Tree(Tr, N).

Fig. 1. PPC-tree construction algorithm.
Example 4. N-list of item b includes two PP-codes, namely
h(2,0):1i and h(5,4):2i. Fig. 3 shows the N-lists of all frequent
items in Example 1.
Definition 7 (N-list of a t-pattern). Let two t-patterns P1X and P2X
and their N-list NL1 = {PP11,PP12, . . . ,PP1m} and NL2 = {PP21,PP22,
. . . ,PP2n} respectively. The N-list of P1P2X is generated by the
following rules:

(i) "PPi 2 NL1 (1 6 i 6m) and PPj 2 NL2 (1 6 j 6 n), if PPi is the
ancestor of PPj then add the PP-code h(PPi.preorder, PPi.post-
order):PPj.counti to N-list of P1P2X.

(ii) Check all PP-codes of N-list of P1P2X, merge the PP-codes has
same preorder and postorder values.

As shown by Fig. 3, NL{c} = {h(3,10):5i} and NL{f} = {(11,7):1i}.
According to Definition 7, NL{cf} can be built as follows. h(3,10):5i
is an ancestor of h(11,7):1i; therefore, PP-code h(3,10):1i is added
to NL{cf}. Because there are no other elements in NL{c}, the process-
ing is stopped. The final result is NL{cf} = h(3,10):1i (Fig. 4).
Fig. 3. N-lists of all 1-patterns in Example 1.



Fig. 4. N-list of {cf} in Example 1.
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Property 2. Let P is a t-pattern and its N-list NLP = {PP1,PP2,
. . . ,PPn}. The support of P is determined by
SUPP = PP1.count + PP2.count + ��� + PPn.count.
Example 5. The N-list of a is NL{a} = {h(1,1):1i, h(4,6):3i}. Hence,
SUP{a} = 1 + 3 = 4. To verify the support of a, scanning DBE can be
found that there are three transactions that contain a.
3.4. Subsume index of frequent 1-patterns

To reduce the search space, subsume index concept was pro-
posed by Song et al. (2008). It is based on the following function:

GX ¼ fT:ID 2 DBjX # Tg

where T.ID is the ID of transaction T, and GX is the set of IDs of the
transactions which include all items i 2 X.
Fig. 5. Improved N-list in

Fig. 6. Subsume index ge
Example 6. For the example dataset DBE, G{c} = {2,3,4,5,6} because
c exists in transactions 2, 3, 4, 5, and 6.
Definition 8 Song et al., 2008. Subsume index of a frequent 1-pat-
tern, A, denoted by SSA is defined as follows:

SSA ¼ fB 2 I1jGA # GBg
Example 7. G{e} = {3,4,5} and G{c} = {2,3,4,5,6}. c 2 SS{e} because
G{e} # G{c}.

Song et al. (2008) also presented the following property con-
cerning subsume index, which can be used to speed up the fre-
quent pattern mining process.

Property 3 Song et al., 2008. Let subsume index of pattern X be
{a1,a2, . . . ,am}. The support of the patterns generated by combining
X with each of the 2m � 1 nonempty subsets of {a1,a2, . . . ,am} is
equal to SUPX.
Example 8. According to Example 6, SS{e} = {c}. Therefore, the only
2m � 1 nonempty subset of SS{e} is {c}. Based on Property 3, the
support of 2m � 1 patterns, which are combined 2m � 1 nonempty
subsets of SS{e} with e, is equal to SUP{e}. In this case, SUP{ec} =
SUP{e} = 3. Besides, "X, SUPX[e is also equal to SUPX[ec. Therefore,
{ae} is a frequent pattern with SUP{ae} = 2 and {aec} is also a
frequent pattern and SUP{aec} = 2.
tersection function.

neration procedure.



Fig. 7. iNTK algorithm.

Table 4
Set of 1-patterns and their subsume indexes.

1-Pattern (X) {c} {a} {b} {d} {e} {f}

SSX {a} {c} {c} {d}, {e}, {c}

Table 5
Results of Tabk after Step 2.

k SUPX 1-Pattern 1-Pattern combined with subset of subsume

1 5 {c}
2 4 {a}
3 3 {b}, {d}, {e} {ba}, {dc}, {ec}
4 1 {f} {df}, {ef}, {cf}

Table 6
Set of 2-patterns candidates and their subsume indexes.

2-Pattern (X) {ae} {cb} {ca}

SSX {c} {c}

Table 7
Results of Tabk after step 3.

k SUPX Patterns

1 5 {c}
2 4 {a}
3 3 {b}, {d}, {e}, {ba}, {dc}, {ec}, {ca}
4 2 {ae}, {cb}, {cae}, {cab}

Table 8
Final results for Tabk.

K SUPX Patterns

1 5 {c}
2 4 {a}
3 3 {b}, {d}, {e}, {ba}, {dc}, {ec}, {ca}
4 2 {ae}, {cb}, {cae}, {cab}
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4. iNTK algorithm

4.1. N-list intersection function

Vo, Coenen et al. (2013), Vo, Hong et al. (2013), Vo, Le, Coenen
et al. (2014) and Vo, Le, Hong et al. (2014a,b) proposed an
improved N-list intersection function for determining the intersec-
tion process of two N-lists. Its complexity is O(n + m), where n and
m are the lengths of the first and second N-lists, respectively (the
function does not traverse the resulting N-list). The improved
N-list intersection function is presented in Fig. 5.
4.2. Subsume index associated with each frequent 1-pattern

Vo, Coenen et al. (2013), Vo, Hong et al. (2013), Vo, Le, Coenen
et al. (2014) and Vo, Le, Hong et al. (2014a,b) also presented prop-
erties of the subsume index associated with each frequent 1-pat-
tern based on N-list concept. These properties are summarized as
follows.

Property 4. Let A 2 I1 (the frequent 1-patterns). The subsume
index of A, SSA = {B 2 I1|"PPi 2 NLA, PPj 2 NLB and PPj is an ancestor
of PPi}.
Proof. This property can be proven as follows: all PP-codes in NLA

have a PP-code ancestor in NLB, which means that all transactions
that contain A also contain B. GA # GB, which implies that B 2 SSA.
Therefore, this property is proven. h



Table 9
Characteristics of experimental datasets.

Dataset # Of Trans # Of Items

Chess 3196 75
Mushroom 8124 119
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Example 9. We have NL{c} = {h(3,10):5i} and NL{e} = {h(7,3):1i,
h(8,5):1i, h(10,8):1i}. According to Property 4, h(7,3):1i, h(8,5):1i
and h(10,8):1i 2 NL{e} are descendants of h(3,10):5i 2 NL{c}. There-
fore, c 2 SS{e}.

Property 5. Let A, B, and C 2 I1. If A 2 SSB and B 2 SSC, then A 2 SSC.

Connect 67,557 129
T10I4D100K 10,000 870
Test990.99KD1 99,822 990
Test2K50KD1 50,000 2000
Pumsb 49,096 2113
Retail 88,162 16,470

1 Downloaded from http://fimi.ua.ac.be/data/.
2 Downloaded from http://cgi.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-Dat-

aGen/generator.html.
Proof. A 2 SSB and B 2 SSC; therefore, GB # GA and GC # GB)
GC # GA. This property is proven. h

The method generating the subsume indexes associated with
1-patterns is presented in Fig. 6.

4.3. The proposed algorithm

Subsume index is used to speed up the mining time of iNTK (see
Fig. 7). Besides, this concept also reduces memory usage because
iNTK does not determine and store the N-lists associated with a
number of frequent patterns to determine their supports.

iNTK employs t-patterns to explore (t + 1)-patterns. By using
N-lists, iNTK does not need to scan datasets repeatedly to get the
supports of (t + 1)-patterns. Furthermore, using subsume index
concept reduces the runtime of the candidate generation function
because fewer candidates’ information is determined. In addition,
using the subsume index concept also reduces the required storage
space of the N-lists of patterns that are in the top-rank-k patterns
and not used to create the next candidates. The processing proce-
dure is as follows.

(1) Scan the PPC-tree and generate N-lists of all 1-patterns.
(2) Find subsume indexes of all 1-patterns.
(3) Find the top-rank-k frequent 1-patterns and insert them into

the top-rank-k table. The top-rank-k table contains patterns
and their supports. Patterns with the same support are
stored in the same entry. The number of entries in the top-
rank-k table is not more than threshold k. For each 1-pattern
(X) inserted into the top-rank-k table, find subsets from the
subsume index of X, generate new patterns by associating
each with X and insert into the entry of X in top-rank-k.

(4) For each 1-pattern (X) in the top-rank-k table, the algorithm
finds all 2-pattern candidates by combining X with the other
1-patterns in the top-rank-k table. Note that only use the 1-
patterns which not belong to the subsume index of X. All the
2-pattern candidates which has their support is not less than
the smallest support of the top-rank-k table and the number
of entries in top-rank-k table is not more than k will be
inserted into the top-rank-k table.

(5) For each 2-pattern (Y) inserted into the top-rank-k table, the
algorithm uses Property 5 to find 2m � 1 subsets from its
subsume index and generates new patterns by combining
the 2m � 1 subsets with Y. This new patterns will be inserted
into same entry of Y in top-rank-k table because their sup-
ports are equal to the support of Y. After each insertion,
the top-rank-k table is checked to ensure that the number
of entries is not more than k. If the number of entries is lar-
ger than k, the entries whose support is less than the k-th
minimum support are deleted from the top-rank-k table.

(6) Repeat steps 4 and 5 using t-patterns (produced by the Can-
didate_gen function) in the top-rank-k table to generate can-
didate (t + 1)-patterns until no new candidate patterns can
be generated.

4.4. An illustrative example

Given k = 4, process of mining top-rank-k frequent patterns
from the dataset in Table 1 is as follow.
Step 1. Find 1-patterns and their subsume indexes (Table 4).
Step 2. Insert 1-patterns and patterns generated from their sub-

sume indexes into Tabk (Table 5).
Step 3. iNTK finds 2-pattern candidates which are {de}, {be}, {ae},

{bd}, {ad}, {cb}, {ca} with their N-list {h(9,9):1i}, {h(5,4):1i},
{h(4,6):2i}, {h(5,4):1i}, {h(4,6):1i}, {h(3,10):2i}, {h(3,10):3i}
repeatedly. There are three candidates with their subsume
indexes (Table 6) and two patterns generated from their
subsume indexes including {ca}, {ae}, {cb}, {cae}, {cab} is
inserted into Tabk. Table 7 shows the results. The patterns
with the support equal 1 are deleted from Tabk.

Step 4. Find 3-pattern candidates and no 3-pattern candidates are
generated. The process is stopped. The final Tabk is shown
in Table 8.

5. Experimental results

This section compares iNTK to NTK algorithms in terms of mining
time and memory usage for six datasets1 such as Chess, Connect,
Mushroom, Pumsb, Retail, T10I4D100K and two synthetic datasets
(generated by the LUCS-KDD data generator2). To generate
Test990.99KD1, the number of items and transactions are set to 990
and 99,822 respectively and to generate Test2K50KD1, the number
of items and transactions are set to 2000 and 50,000, respectively.
Table 9 shows the characteristics of these datasets. All the experi-
ments were performed on a personal computer with an Intel Core2
Duo 2.66-GHz CPU and 2 GB of RAM. The operating system was Micro-
soft Windows 7. All the programs were coded in MS/Visual C#.
5.1. Mining time

Input data for NTK and iNTK are slightly different. Input data for
NTK are Node-lists converted from the original datasets. Input data
for iNTK includes N-list and subsume indexes of 1-patterns.
Although the time required to create input data for iNTK is longer
than that for NTK, this does not significantly affect the efficiency of
iNTK because this procedure done only once. Table 10 shows the
time required for converting the datasets.

Figs. 8–15 show mining times of iNTK and NTK for the experi-
mental datasets with various values of k. The results show that
iNTK outperforms NTK for large values of k or dense data. This is
explained as follows. Generating subsume index requires a cost
of time and memory usage. In the case of sparse datasets, such
as Retail, the number of subsume indexes of a frequent 1-pattern
is usually small. Besides, if value of k is small, the 1-patterns with
small support usually have a little chance to insert into the top-
rank-k table. However, these patterns have many elements in their

http://fimi.ua.ac.be/data/
http://cgi.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DataGen/generator.html
http://cgi.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DataGen/generator.html


Table 10
Dataset conversion times.

Dataset Time required for
creating Node-list
(s)

Time required for creating N-list and
finding subsume index values (s)

Chess 0.274 0.391
Mushroom 0.275 0.392
Connect 3.439 5.748
T10I4D100K 83.011 114.236
Test990.99KD1 71.509 133.023
Test2K50KD1 158.524 280.208
Pumsb 313.710 521.534
Retail 2715.031 3893.403

Fig. 8. Mining time of iNTK and NTK for Chess dataset.

Fig. 9. Mining time of iNTK and NTK for Mushroom.

Fig. 10. Mining time of iNTK and NTK for Connect dataset.

Fig. 11. Mining time of iNTK and NTK for T10I4D100K dataset.

Fig. 12. Mining time of iNTK and NTK for Test990.99KD1 dataset.

Fig. 13. Mining time of iNTK and NTK for T2K50K1D dataset.

Fig. 14. Mining time of iNTK and NTK for Pumsb dataset.
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subsume indexes. Therefore, iNTK is not effective for the sparse
datasets or the small value of k.

5.2. Memory usage

Using subsume index does not only reduce the mining time but
also reduce the memory usage. Table 11 shows the memory
required to store the user input data of the NTK and iNTK algo-
rithms. The memory usage of iNTK is slightly greater than that of
NTK.
Figs. 16–23 show maximum amounts of memory used by NTK
and iNTK for various k values. According to these charts, iNTK uses
less memory. For dense datasets such as Mushroom and the large k
values, subsume index significantly reduces memory usage due to
a large number of candidates has not determine its information by
using subsume index concept. Therefore, iNTK do not stored N-list
of these candidates. Besides, iNTK uses N-list instead of Node-list
for reducing memory usage because N-list saves the shorter
sequence PP-codes.



Fig. 15. Mining time of iNTK and NTK for Retail dataset.

Table 11
Memory usage of iNTK and NTK.

Dataset NTK (kB) iNTK (kB)

Chess 1972.105 1982.203
Mushroom 1.412 1.434
Connect 18.446 16.469
T10I4D100K 83.011 114.236
Test990.99KD1 41249.050 41304.150
Test2K50KD1 46579.808 46666.322
Pumsb 57.429 58.089
Retail 39.289 40.788

Fig. 16. Memory usage of iNTK and NTK for Chess dataset.

Fig. 17. Memory usage iNTK and NTK for Mushroom dataset.

Fig. 18. Memory usage of iNTK and NTK for Connect dataset.

Fig. 19. Memory usage iNTK and NTK for T10I4D100K dataset.

Fig. 20. Memory usage iNTK and NTK for T990.99822.1 dataset.

Fig. 21. Memory usage iNTK and NTK for T2K50K1D dataset.

Fig. 22. Memory usage iNTK and NTK for Pumsb dataset.

Fig. 23. Memory usage iNTK and NTK for Retail dataset.
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6. Conclusion and future work

This paper presents an efficient improvement algorithm called
iNTK to mine top-rank-k frequent patterns. The advantage of iNTK
lies in that it uses N-list and subsume index of 1-patterns. N-list
store information shorter than Node-list and subsume index help
iNTK directly mining in case of patterns belonged to top-rank-k
table contain other 1-patterns in their subsume set. This causes
that iNTK consume less memory and runtime. Extensive experi-
ments show that iNTK outperforms NTK for various datasets.

The proposed method may still generate a huge number of pat-
terns for top-rank-k frequent pattern mining. Therefore, the exten-
sion of iNTK to mine top-rank-k compressed frequent patterns,
such as maximal frequent patterns (Bayardo, 1998; Burdick,
Calimlim, Flannick, Gehrke, & Yiu, 2005) or closed frequent pat-
terns (Lee, Wang, Weng, Chen, & Wu, 2008; Wang, Han, & Pei,
2003) is an interesting topic for future research. Moreover, as big
data become more and more popular in practice, the parallel/dis-
tributed implementation of iNTK to mine frequent patterns from
huge dataset is also an interesting work.
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