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Abstract

We present a technique for automatically synthesizing walking and running controllers for 

physically-simulated 3D humanoid characters. The sagittal hip, knee, and ankle degrees-of-

freedom are actuated using a set of eight Hill-type musculotendon models in each leg, with 

biologically-motivated control laws. The parameters of these control laws are set by an 

optimization procedure that satisfies a number of locomotion task terms while minimizing a 

biological model of metabolic energy expenditure. We show that the use of biologically-based 

actuators and objectives measurably increases the realism of gaits generated by locomotion 

controllers that operate without the use of motion capture data, and that metabolic energy 

expenditure provides a simple and unifying measurement of effort that can be used for both 

walking and running control optimization.
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1 Introduction

The development of physics-based locomotion controllers de novo, independent from stock 

motion data, has been a long-standing objective in computer graphics research and has seen 

resurgence in recent years. Despite impressive progress, the gaits produced by existing 

controllers fall short of the natural appearance of human locomotion. For example, physics-

based walking controllers that do not rely on motion capture data commonly produce 

walking motion with exaggerated hip flexion which appears more crouched and less fluid 

than typical human walking.

One likely cause of these differences is the control force generation mechanism. Biological 

control systems output neural excitation signals, which then generate musculotendon forces 

that lead to joint torques. The mapping from excitation to torque is highly complex due to 

variable moment arms, biarticular muscles, and the dependence of musculotendon forces on 

fiber length and contraction velocity [Zajac 1989]. On the other hand, state-of-the-art 

bipedal locomotion control methods directly output joint torques, which ignore constraints 

and energetic costs imposed by muscle anatomy and physiology. Consequently, to 

accomplish a motion task, controllers often employ torque patterns that are inefficient or 
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even impossible for humans. These biologically implausible torque patterns diminish the 

naturalness of the resulting gaits.

The goal of our work is to enhance the realism of locomotion gaits exhibited by physically-

simulated humanoids without dependence on motion capture data. To this end, we augment 

the joint-actuated humanoid model with a set of Hill-type musculotendon units (MTUs). 

These musculotendon units generate torques for the most important degrees-of-freedom 

(DOFs) during locomotion—the sagittal plane hip, knee, and ankle DOFs. To actuate these 

muscles, we define biologically-motivated control functions that map the current state of the 

body (joint angles, muscle fiber lengths, etc.) to excitation signals. The parameters of these 

functions are optimized to yield gaits that move the character forward without falling down.

While many sets of parameters are capable of achieving this task, the quality of the resulting 

motion varies significantly among them. To produce gaits that have a high degree of 

realism, we employ an objective based on minimization of metabolic energy expenditure, 

thus choosing the most effortless gait that achieves the task [Alexander 2003]. In living 

humans and animals, metabolic energy expenditure can be estimated by oxygen 

consumption. In contrast, it is less clear how metabolic energy expenditure should be 

modeled for simulated characters. A common substitute is the sum of squared joint torques 

[Schultz and Mombaur 2010], which does not account for the different effort levels required 

to generate torques in different joints, directions, and body configurations. More nuanced 

objectives can be learned from inverse optimization [Liu et al. 2005], but are dependent on 

training data. Our use of biologically-based actuators enables the estimation of metabolic 

energy expenditure based on the internal state of the MTUs [Anderson 1999]. The result is a 

locomotion control optimization procedure that minimizes a physiologically-based objective 

within a parameter space restricted to biologically plausible torque patterns.

We demonstrate the presented approach by optimizing locomotion controllers for a wide 

range of speeds. For quantitative evaluation, we collected experimental ground truth data 

from 20 human subjects walking and running at eight speeds on an instrumented treadmill. 

Much like human locomotion, our controllers utilize significant ankle torque and generate 

smooth torque trajectories. The resulting gaits match human ground truth to a greater extent 

than state-of-the-art walking controllers that do not rely on motion capture data. 

Furthermore, we show that by simply changing the initialization and target velocity, the 

same optimization procedure leads to running controllers.

2 Related Work

Animation researchers have been interested in the control of locomotion for 3D humanoid 

characters for almost 20 years [Hodgins et al. 1995; Laszlo et al. 1996; Faloutsos et al. 

2001]. One important recent contribution is SIMBICON [Yin et al. 2007], a remarkably 

robust 3D humanoid locomotion controller based on the balance control of Raibert and 

Hodgins [1991]. A number of projects have since focused on expanding the controller 

repertoire for simulated bipeds [Jain et al. 2009; Coros et al. 2010; de Lasa et al. 2010] and 

on locomotion in complex environments [Mordatch et al. 2010; Wu and Popović 2010].
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At the same time, efforts have been made to make the synthesized motions more human-

like, or “natural.” As discussed by Wang et al. [2009], the original SIMBICON-style 

controllers tend to produce gaits lacking hip extension with a constant foot orientation. Knee 

angles lack flexion during swing, but lack extension at heel-strike. More recent controllers 

improve motions by designing better target trajectories in joint or feature space [Coros et al. 

2009; Coros et al. 2010; de Lasa et al. 2010]. While more human-like ankle motions have 

been produced, differences in the hip and knee angles persist (Figure 6a). Perhaps more 

importantly, controllers relying on hand-tuned trajectories cannot be easily used to 

investigate how the control strategies change with respect to new constraints. For example, 

how would the character's motion style change given a physical disability? Can we 

synthesize appropriate gaits for older or younger characters?

Impressive results have also been achieved by controllers based on tracking motion capture 

data [da Silva et al. 2008; Muico et al. 2009; Kwon and Hodgins 2010; Lee et al. 2010; Ye 

and Liu 2010]. However, as with methods that tune joint trajectories or controller parameters 

by hand, motion capture driven controllers have a limited ability to predict changes in gait.

Alternatively, de novo controller optimization has been used to capture features of human 

walking [Wang et al. 2009; Wang et al. 2010]. While these methods were shown to produce 

gaits for a variety of characters and environmental conditions, they do not employ realistic 

effort measures or biologically-plausible control torques. The resulting torque patterns are 

highly unnatural (Figure 6b), leading to artifacts such as excessive plantarflexion and sharp 

changes in kinematics (Figure 6a). In contrast, our approach is to actuate key DOFs using 

Hill-type MTUs and to measure effort based on metabolic energy expenditure. We 

demonstrate significantly more human-like kinematic and torque trajectories and show that 

the same control parameterization and effort objective produce both walking and running.

While locomotion controllers discussed above all operate on joint-actuated models, 

musculoskeletal models have also been investigated in computer graphics. Such models 

have been used in facial animation [Waters 1987; Lee et al. 1995; Sifakis et al. 2005], 

simulation of the human hand [Sueda et al. 2008], neck [Lee and Terzopoulos 2006], torso 

[Zordan et al. 2006], and the complete upper body [Lee et al. 2009]. Hase et al. [2003] 

optimize a CPG-based (central pattern generator) locomotion controller [Taga 1995] for 3D 

musculoskeletal models without tendon or activation dynamics, but their results were not 

compared to human kinematic and dynamic gait patterns. Moreover, full musculoskeletal 

models are significantly more difficult to construct than joint-actuated models. Our work 

demonstrates that measurable increase in locomotion realism can be produced by employing 

musculotendon actuators for a small subset of the body DOFs.

In the biomechanics literature, abstract planar models have been used to study high-level 

principles of human locomotion. For example, energy minimization has been suggested as 

the criterion for humans in determining step length given walking speed [Kuo 2001], as well 

as in selecting between walking and running [Srinivasan and Ruina 2006]. The spring-

loaded inverted pendulum (SLIP) model [Blickhan 1989] has been used as a basis for 

predicting center-of-mass (COM) movements of human runners [Full and Koditschek 1999]. 

However, in the absence of knee joints, these models cannot be used to simulate accurate 
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gait patterns. Using a 2D model with knees and musculotendon actuators, Geyer and Herr 

[2010] showed that patterns of human walking can be generated by a set of simple control 

laws motivated by muscle reflexes, which inspired our work. We show how their basic ideas 

can be embedded in a 3D humanoid model and extended to running. Similar 2D models 

have been used for gait prediction [Ackermann and van den Bogert 2010], and to generate 

human-like responses to disturbances [Murai and Yamane 2011].

Simulation studies on detailed 3D musculoskeletal models have been employed to 

understand muscle functions during locomotion tasks [Anderson and Pandy 2001; Liu et al. 

2008; Hamner et al. 2010]. In particular, Anderson and Pandy [2001] showed that human-

like lower body motor patterns can be found by minimizing metabolic energy expenditure 

per distance travelled, and we adopt their proposed model of metabolic energy in our work. 

However, these biomechanical simulations only recovered muscle activation trajectories, 

and did not produce locomotion controllers that can function beyond the duration of input 

data.

Finally, our work is complementary of the recent work of Jain and Liu [2011], who showed 

that simulating soft tissue deformation at contact sites could lead to more robust and realistic 

character motion. We demonstrate how musculotendon actuators, biologically-motivated 

control laws, and a more realistic effort term can be used to produce more human-like 

locomotion gaits.

3 Humanoid Model

Our 3D humanoid model has 30 joint DOFs and mass distributions approximating a 180 cm, 

70 kg male [Wang et al. 2010]. From the original model, we adjust the lower-body joint 

locations and mass distributions to better match human data [Hamner et al. 2010]. We use 

cylinders to approximate the heel and ball of the foot, which allows for some amount of foot 

rolling after heel-strike. Unlike previous work, where the model is actuated by setting 

torques to all joints, we use a model that is partially actuated by Hill-type MTUs (Figure 1). 

Specifically, control torques for the hip, knee, and ankle joint DOFs in the sagittal plane—

key DOFs for gait analysis [Perry and Burnfield 2010]—are exclusively generated by eight 

MTUs in each leg. In addition, soft joint limit torques as defined by Geyer and Herr [2010] 

are applied to these DOFs.

Figure 1b depicts locations of the uniarticular MTUs and the joints they actuate. The hip 

joint is extended by the gluteal muscles (GLU) and flexed by the hip flexor muscles (HFL), 

while the knee joint is extended by the vasti (VAS). The tibialis anterior (TA) and the soleus 

(SOL) generate dorsiflexion and plantarflexion torques at the ankle, respectively. The 

biarticular MTUs (Figure 1c) supply torques to two joints simultaneously. We include the 

hamstring (HAM), which extends the hip and flexes the knee, the rectus femoris (RF), which 

flexes the hip and extends the knee, and the gastrocnemius (GAS), which flexes the knee 

and plantarflexes the ankle. The choice of muscles is based on the planar model proposed by 

Geyer and Herr [2010]. We have added the rectus femoris since we found that it improves 

the walking knee flexion profile during swing when compared to human data.
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3.1 Musculotendon Model

We employ a Hill-type model [Zajac 1989], where each MTU consists of three elements: 

contractile, parallel-elastic, and serial-elastic. Conceptually, the contractile element (CE) 

models muscle fibers that can actively generate force (FCE) depending on the current 

activation level (a). The parallel-elastic element (PE) models passive forces (FPE) generated 

by the muscle fibers, while the serial-elastic element (SE) models the tendon.

In particular, given the length and velocity of CE (lCE, vCE), as well as the current muscle 

activation level (a), we can compute the MTU force (FMTU) as follows:

where l̃CE = lCE/lopt and ṽCE = vCE/lopt. F0 and lopt are muscle-specific maximum isometric 

force and optimal fiber length parameters. fl and fv are the force-length and force-velocity 

curves (Figure 3). The computation of FPE and the analytic forms of fl and fv are described 

in the supplemental material.

Intuitively, fl models the fact that muscles can generate force more efficiently near lopt, and 

fv captures how the muscle loses its ability to generate force as the contraction velocity 

increases [Zajac 1989]. As to be discussed in Section 4.1, the nonlinearity introduced by 

these relations is crucial for how simple control laws for muscle excitation can lead to 

complex force and torque trajectories.

Figure 2 illustrates how the musculotendon model interacts with the controller and the 

simulator. The controller outputs neural excitation signals (u), which are converted to 

muscle activations (a). The conversion does not occur instantaneously and is referred to as 

activation dynamics. The dynamics is modeled by a first-order differential equation [Zajac 

1989; Geyer et al. 2003], which can be integrated by at+1 = 100h(ut − at) + at, where h is the 

stepsize (1/2400 s) and at and ut are the muscle activation and excitation values at the t-th 

timestep. A step-response graph for the activation dynamics, as well as details on the lCE 

and vCE computations (contraction dynamics) are given in the supplemental material.

The joint torques generated by a given MTU is a function of the current body configuration. 

A simple variable moment arm model is assumed for MTUs attached to the knee or ankle: 

, where θ is the current knee or ankle angle in the sagittal plane, and 

rj is the maximum MTU-joint moment arm, which occurs at the joint angle . MTUs 

attached to the hip are assumed to have a constant moment arm: τ = rjFMTU.

The total lower extremity joint torques in the sagittal plane are obtained by summing over 

contributions from all relevant muscles:
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4 Control Parameterization

The main part of our control algorithm consists of functions that determine muscle 

excitation values for each of the lower body MTUs, which actuate the hip, knee, and ankle 

DOFs in the sagittal plane. For the upper body and the remaining DOFs in the lower body, 

we rely on a pose-graph controller [Yin et al. 2007].

4.1 Muscle Control

Our control laws for the actuators are based on the muscle-reflex controller introduced by 

Geyer and Herr [2010]. We will describe the basic formulation and our modifications in this 

section. Two different sets of control laws apply for each muscle, depending on whether the 

leg is in stance or swing phase (i.e., foot is on the ground or not). We further define a swing 

initiation state within the stance phase, and a stance preparation state within the swing 

phase, where control laws for a subset of MTUs are modified (Figure 4).

The control laws map time-delayed features of the body to muscle excitation signals. The 

time-delay (Δt) models the time for neural signal propagation, set to 5 ms for MTUs 

connected to the hip, 20 ms for MTUs connected to the ankle, 10 ms for the VAS and 

ground contact [Geyer and Herr 2010]. Body features include MTU force, fiber length, joint 

angle, and segment orientation. Depending on the input feature, three different mappings are 

defined: positive force feedback, positive length feedback, and muscle-driven proportional 

derivative (PD) control. These mappings serve as building blocks for the control laws, and 

we discuss each in turn in this section.

Positive force feedback—Given MTU m, the positive force feedback law is defined as

where  is the MTU force normalized by  with a time-delay of Δtm. The 

only free parameter is a positive gain constant Gm, which is different for each MTU. Note 

that  cannot increase indefinitely since the muscle's force generation capacity depends 

nonlinearly on the length and contraction velocity of the muscle fiber. As  starts to 

decrease due to muscle physiology,  starts to decrease as well. The force feedback is the 

main source of activation to the SOL, GAS, and VAS muscles during the stance phase. 

Figure 5 shows the activation and fiber length of GAS during the stance phase. We can see 

that  produces a positive feedback during mid-stance, when the muscle activation does 

not produce a significant change in muscle fiber length, as the foot is planted on the ground. 
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As the heel loses ground contact in late stance, the same muscle activation rapidly shortens 

the fiber length, which reduces force output and the activation through .

Positive length feedback—Positive length feedback is defined as

where  is the length of the muscle fiber normalized by the  with a time-

delay of Δtm. Gm and Hm are free positive parameters and {}± means only positive or 

negative values (0 otherwise). The positive length feedback effectively models a stretch 

reflex, which activates the muscle when the fiber is stretched beyond a fixed length.  is 

most useful during the swing phase, as the TA must be activated to dorsiflex so that toe-

stubbing can be avoided. In addition, the HFL relies on length feedback to generate hip 

flexion torque during early swing, especially during running.

Muscle-driven PD control—We also define a muscle-driven PD control law with respect 

to an angular feature θ as

where Km, Dm, θm are free parameters of the PD-controller. The braces sign is positive if 

torque generated by m is in the opposing direction of θ—e.g., if m is the hip extensor and θ 

is the hip flexion angle—and negative otherwise. Much like the standard torque-based PD-

controller, the muscle-driven PD control aims to adjust θ towards the target angle θm while 

damping its velocity. However, unlike the standard PD-controller, muscles can only activate 

after a time-delay and each muscle can only generate forces to rotate the angular DOF in one 

direction. The PD-control laws are employed by the hip muscles during the stance phase to 

maintain the global upper body orientation, as well as during stance preparation to prepare 

for ground contact.

4.2 Stance Phase

Each muscle has an initial constant excitation, or pre-stimulation value pm. These values are 

initialized close to zero, but are then optimized. The SOL and GAS both rely on positive 

force feedback and are the main sources of torque during walking. The TA ensures foot 

clearance during swing using a length feedback ( ), but the activation is suppressed 

during stance in proportion to the current force generated from SOL. The suppression allows 

the generated TA activation patterns to better match human data during locomotion. The 

force feedback on the VAS creates a strong knee extension torque following ground contact, 

but excitation is suppressed when the knee flexion angle (θk) is extended below an offset 

( ) with an extension velocity (θ̇k < 0). The suppression prevents hyperextension of the 
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knee during mid-stance. Using muscle-driven PD control laws, the HAM, GLU, and HFL 

are responsible for maintaining the global orientation of the upper body (Θ), defined as the 

vector between the COM of the upper body and the COM of the pelvis projected onto the 

sagittal plane. During double stance, these control laws are only active for the leading leg, 

denoted as .

Specifically, control laws during the stance phase are as follows:

Towards the end of the stance phase, the controller enters into the swing initiation, which 

begins when either the signed horizontal distance between the COM and the ankle 

normalized by leg length exceeds a constant threshold d̃ > d̃
SI or if the opposing leg has 

entered into stance phase (double stance). During swing initiation, constant excitation values 

between 0 and 1 (set during optimization) are added and subtracted to the VAS, RF, GLU, 

and HFL:

The combination of HFL and GLU excitations creates a large hip flexion torque, while the 

VAS and RF excitations effectively allow the optimizer to adjust the initial knee swing 

angle and velocity.

Two main differences between our stance phase control laws compared to Geyer and Herr 

[2010] lie in how the swing initiation state functions. First, for running we found it 

necessary to enter into swing initiation using the d̃ > d̃
SI condition, rather than just wait for 

double stance. Second, we found it unnecessary to modulate the muscle-driven PD-control 

laws in the hip by ground reaction forces. Instead, the responsibility to maintain upper body 

orientation is always assigned to the lead leg.

4.3 Swing Phase

Much like in the stance phase, each muscle has an initial constant excitation value (qm). The 

leg motion relies significantly on passive dynamics during the swing phase [Collins et al. 

2005], as most muscles are only excited at low levels. The main exceptions are the TA, 
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which maintains the length feedback ( ) to avoid toe-stubbing, and the HAM, which is 

activated at late swing phase to prevent the knee from being overextended before landing. 

The HFL introduces a hip flexion torque through a length feedback, which is suppressed 

when the HAM is stretched in during late swing. The amount of excitation in the HFL also 

depends on the value of upper body lean at the beginning of the swing phase (Θlto): the 

further the upper body leans forward compared to the reference lean angle (Θd), the more 

excitation is supplied from the HFL during the swing phase. Note that Θd is the same as the 

target angle in .

Non-constant control laws during the swing phase are as follows:

The controller enters into the stance preparation when d̃ < d̃
SP, where the swing leg enters 

into a PD-control mode. The GLU, HFL, and VAS work to guide the hip and knee joints 

toward a desired pose to prepare for ground contact:

A single desired hip target angle (θh) is adjusted according to the SIMBICON balance 

feedback law [Yin et al. 2007] and is shared by both the GLU and HFL. We found the 

addition of the stance preparation state to be important for discovering running gaits. The 

balance feedback law allows robust control strategies to be found in difficult environments 

(e.g., being pushed by random forces).

4.4 Out-of-Plane and Upperbody Control

The rest of the DOFs are controlled using standard joint-space PD-controllers with state-

dependent parameters. Following Wang et al. [2010], the target features for the ankle and 

hip joints in the coronal plane are the global foot and pelvis orientations, respectively. The 

coronal swing hip target angles follow the same feedback law as θh. Additionally, we set the 

toe joint to be a spring with spring constant of 30 Nm/rad, target angle 0, and no damping. 

Unlike in previous work, where a gait cycle is broken down into four states, only two are 

needed (triggered by left/right foot-strike) since DOFs with the most complex activities are 

actuated by muscles.

Our upper body control also largely follows Wang et al. [2010], with the exception that the 

target feature of our back joint in the coronal plane is the global orientation of the torso 

instead of the local joint angle between the torso and the pelvis. This global target allows our 
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model to better keep the head upright during locomotion. We fix the spring and damper 

constants for all arm joints to 30 Nm/rad and 3 Nms/rad, respectively, with target angles set 

to 0. We found that more human-like arm swing can be generated by relating the elbow and 

shoulder target angles as  and , where  and  are the 

shoulder angles in the sagittal and transverse planes, respectively;  and  are the current 

left and right sagittal hip angles;  is the desired elbow angle, β, γ are constants chosen 

based on human motion data (see supplemental material), and αarm is a scale constant that 

determines the magnitude of the arm swing. This formulation captures the tendency to rotate 

the shoulder backwards and inwards while bending the elbow. The scale constant and the 

desired elbow angle are among the parameters set by optimization, as described in the next 

section.

5 Optimization

The control algorithm specified in Section 4 has a large number of parameters, which we set 

by optimization [Wang et al. 2010]. More specifically, each of the , , and  laws have 

one, two, and three parameters, respectively. There are 56 parameters in total (30 stance, 26 

swing) for the MTU control laws. For the upper body and the non-sagittal DOFs in the lower 

body, we optimize the PD-control parameters (spring-damper constants, target angle, 

balance feedback) for all joints except for arms, where only a target elbow angle and a swing 

scale parameter are optimized (Section 4.4). When combined with 33 free parameters 

describing the initial state of the simulation, 124 parameters (w) fully define a simulated 

motion {s1 … sT} over T timesteps. We optimize control parameters and the initial state 

using Covariance Matrix Adaptation (CMA) [Hansen 2006], with stepsize σ = 0.005 and 50 

samples per iteration.

The optimization aims to maximize the following return function:

Here r is a scalar reward function of the current state st, Jeffort measures the effort of the 

synthesized motion, and we is set to 0.004 divided by the mass of the model, motivated by 

Wang et al. [2010].

The reward is defined as the negative sum of a number of task terms (i.e., r(st) = − Σi Ki(st)), 

which can be thought of as high-priority goals that the controller must satisfy while 

minimizing effort. In practice, these terms are weighed more heavily than the effort term. 

The tasks include moving the COM forward at a target velocity while not falling down for 

10 seconds, and maintaining head stability and upper body orientation. The task terms are 

based on Wang et al. [2010] and are defined in the supplemental material. Note that unlike 

in previous work, we did not need to include human-like speed to step-length ratio and 

minimal angular momentum about the COM as task terms.
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5.1 Effort Term

The main contribution to our effort measurement is the total rate of metabolic energy 

expenditure (Ė) over all MTUs. To quantify Ė, we implement a model described by 

Anderson [1999], which is later expanded by Bhargava et al. [2004]. The rate of metabolic 

energy expenditure for a given muscle can be modeled as the sum of heat released and 

mechanical work done by the muscle:

where Ȧ is the muscle activation heat rate, Ṁ is the muscle maintenance heat rate, Ṡ is the 

muscle shortening heat rate, and Ẇ is the positive mechanical work rate.

The muscle activation heat rate models the rate of energy that is converted to heat by a 

muscle given a certain level of activation, and is a function of both the mass of the muscle 

and the excitation signal. The maintenance heat rate similarly models the heat rate for the 

muscle to maintain contraction at a certain level, and depends additionally on the current 

fiber length. Specifically,

where mass is the muscle mass and l̃CE is the normalized muscle fiber length. The forms of 

fA, fM, and g are described in the supplemental material. The dependence on muscle mass 

captures the fact that while larger muscles are generally capable of generating more force, 

they are also more costly to use.

The muscle shortening heat rate models the heat generated by the shortening of muscle 

fibers and is proportional to the current force generated by the muscle and the shortening 

velocity:

Finally, the positive mechanical work rate is the mechanical power produced by the active 

element of the MTU during contraction:

Note that Ṡ is close to one-quarter of Ẇ. The difference is that FMTU is the net force (both 

active and passive) produced in the MTU, while FCE is only the active force.

Let Ėm, t denote the rate of metabolic energy expenditure computed for MTU m at timestep t. 

We define the average rate of metabolic expenditure due to MTUs as
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where Ḃ is the basal metabolic energy rate, set to 1.51 times body mass [Anderson 1999]. 

(ℳ) is the set of all sixteen muscles defined in the model.

Additionally, torques generated by the PD-controllers in the rest of the DOFs are penalized 

by the average sum of torque squared objective:

where r is the set of all joint DOFs except for the sagittal hips, knees, and ankles. We 

similarly define JL to penalize the average sum of squared soft joint limit torques for the hip, 

knee, and ankle joints, specified in Geyer and Herr [2010].

The overall effort of a particular motion is defined as Jeffort = wMJM + wRJR + wLJL, a 

weighted sum between the terms. We empirically set wM = 100, wR = 1, and wL = 0.5 for all 

experiments.

6 Experiments

The simulations were implemented using Open Dynamics Engine (ODE) with a frequency 

of 2400 Hz. We simulate for T = 24000 timesteps (10 s) in each evaluation. The 

optimization is terminated after 3000 iterations, which takes approximately 10 hours using 

50 compute cores on a cluster of Dell PowerEdge 1950 servers. An optimized controller can 

be simulated at interactive rates using standard hardware. We initialize walking parameters 

of the MTU control laws based on hand-tuned values for 2D walking from Geyer and Herr 

[2010]. For running, we double the initial gain parameters of GAS and SOL, and initialize 

to set the elbow in a bent position. The precise initialization values are provided in the 

supplemental material.

6.1 Ground Truth Data

Human joint moment (torque) curves during locomotion can be computed from motion 

capture and ground reaction force data. In this work we are particularly interested in 

comparing our results to the mean and standard deviation curves for the sagittal hip, knee, 

and ankle joints for multiple subjects over multiple walking and running speeds. While such 

data for walking is readily available [Perry and Burnfield 2010], only scattered data are 

available for running [Novacheck 1998; Yokozawa et al. 2007; Hamner et al. 2010]. Instead, 

we acquired our own ground truth data using an instrumented treadmill with 20 subjects. 

This data is available from http://graphics.stanford.edu/projects/bio-locomotion.

Wang et al. Page 12

ACM Trans Graph. Author manuscript; available in PMC 2015 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://graphics.stanford.edu/projects/bio-locomotion


We acquired kinematics and dynamics data for a range of walking and running speeds (from 

1.0 m/s to 5.0 m/s). The supplemental material includes angle and moment plots for all 

speeds, as well as details on our data collection. Comparing the mean curves for walking 

speeds from 1.0 m/s to 1.75 m/s, we found that the range of hip angles in our subjects during 

walking increased by approximately 10°, while the location of maximum ankle 

plantarflexion shifted slightly earlier in the gait cycle. More pronounced differences are 

present between running data at different speeds. The hip angle range and maximum knee 

flexion both increased by 30° as running speed increased from 2.0 m/s to 5.0 m/s, while 

locations of both the maximum hip extension and ankle plantarflexion shifted earlier by 5% 

and 10%, respectively. Both the hip and ankle torque outputs increased with speed, though 

the ankle torque curves did not differ significantly between 4.0 m/s and 5.0 m/s.

6.2 Walking Controllers

We first optimized for a normal walking controller (referred to below as nwalk) with a target 

velocity of 1.25 m/s, which is approximately the human self-selected walking speed. 

Initializing with the normal controller, we then optimized for a 1.0 m/s slow walk controller 

(swalk) and a 1.5 m/s fast walk controller (fwalk). A 1.75 m/s very fast walk controller 

(vfwalk) is optimized by initializing from fwalk.

Comparison to ground truth—Supplemental figures indicate that our kinematic 

patterns generally agree with data over a range of speeds and especially at lower speeds. 

Two main discrepancies are the timing of knee flexion during stance, and ankle dorsiflexion 

before heel-strike. For higher speeds, the maximum knee flexion angle is lower than human 

data, and the location of maximum ankle plantarflexion occurs earlier in the gait cycle. All 

angle and moment curves shown are averaged over multiple cycles. Note that we found 

time-delays to be important for generating human-like motion given our control model. 

Optimizing without activation dynamics and with Δtm = 0 for all MTUs results in a solution 

where ankle torques build up too quickly in the stance phase, leading to shorter step-lengths 

compared to human data.

Figure 6a shows the hip, knee, and ankle angles of walking data generated by our 1.0 m/s 

controller (swalk) compared to controllers of similar speeds presented by previous 

contributions [Coros et al. 2009; Mordatch et al. 2010; Wang et al. 2010], as well as human 

data at 1.0 m/s. A major artifact from all of the previous works is the lack of hip extension 

during mid-gait, which does not occur in our result. The feature-based controller of 

Mordatch et al. [2010] is robust and flexible, but their basic walking gait shows an obvious 

crouch. Our result also exhibits a range of knee motion more similar to humans compared to 

previous works. However, all four controllers show excessive dorsiflexion before heel-

strike.

An important advantage of optimization over hand-tuning is the ability to create controllers 

based on high-level objectives such as walking speed. As demonstrated in supplemental 

material, our controllers generate more human-like gaits compared to optimized controllers 

from Wang et al. [2010] at faster walking speeds (Wang10f, Wang10vf) as well. An obvious 
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artifact of all controllers from Wang et al. [2010] is the excessive plantarflexion in the early 

swing phase, which is not present in our result.1

Examining differences in torque generation, we can see that the controller presented by 

Coros et al. [2009] does not employ a human-like torque distribution between the joints 

(Figure 6b). In particular, as was the case in SIMBICON [Yin et al. 2007], the gait is largely 

hip-driven, as can be seen by the large hip torques and small ankle torques compared to 

human data. In turn, controllers from Wang et al. [2010] generated larger amounts of ankle 

torque by optimizing for a human-like torque ratio, but did not come close to matching the 

shapes of human torque data. Note that our work does not exhibit unnatural torque spikes 

due to state switching that are present in the previous works.

Table 1 shows quantitative comparisons between the controllers. We compute the mean 

standard score against human data over 100 evenly spaced points on the curves. Note that 

our results show the lowest average standard score for all speeds.

Evaluation of objective—We evaluate the metabolic energy expenditure objective 

described in Section 5 against the simple sum of squared torques objective, by redefining

where s is the set of sagittal hip, knee, and ankle DOFs (with wm = 5). Controllers 

optimized for each of the two objectives (nwalk, min_torque) are demonstrated in the 

accompanying video. For this comparison, we use a target speed of 1.25 m/s, which is the 

same as nwalk. The gait resulting from torque minimization exhibits too much knee flexion 

during the swing phase and too much dorsiflexion before heel-strike. Closer examination 

reveals that the TA muscle, responsible for dorsiflexion, is highly activated throughout the 

gait when only torque is being minimized. Since the foot is a relatively light link, the actual 

magnitude of the dorsiflexion torque is not large even when the TA is fully activated, 

therefore it does not incur a large penalty in the torque objective. In contrast, the metabolic 

energy objective captures the fact that activating and maintaining contraction of TA 

generates significant heat and should therefore be discouraged. Note that unlike dorsiflexion 

torques, large ankle plantarflexion torques can be generated with relative ease. Simply 

increasing the penalty on ankle torques does not account for the effort difference between 

generating torques in different directions.

A simple objective that could approximate effort given a musculoskeletal model is the sum 

of squared muscle activations, which is commonly used in static optimization—a technique 

for recovering activations given motion capture and force plate data [Anderson 1999]. 

However, as demonstrated in the accompanying video, this objective also does not lead to 

faithful walking kinematics. Here we define

1Wang et al. [2009; 2010] provided comparisons against the global thigh and foot orientation which, unlike the hip and angle ankles, 
do not capture the relative orientations of the body links.
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where ℳ is the set of MTUs, and am,t is the activation level of MTU m at timestep t (with 

wM = 60000). In the gait produced by the controller that minimizes this objective (min_act), 

activations from the GAS/SOL are significantly lowered, while activations from VAS are 

increased. While the total amount of activations is reduced, the resulting gait walks in a 

crouch and relies heavily on the knee.

Table 1 includes average standard score values compared against human data at 1.25 m/s. 

Controllers optimized using the torque and activation objectives both exhibit large errors 

compared to nwalk, especially at the ankle joint. While noticeable kinematic differences are 

seen in the gaits produced by different objectives, the torque curves are smooth due to the 

muscle model and the control parameterization.

Changing muscle properties—The plantarflexors (GAS and SOL) are largely 

responsible for forward propulsion in normal walking [Liu etal. 2008]. We found that 

weakening the GAS and SOL to a quarter of their original strength, while keeping all other 

objectives identical (target speed 1.25 m/s), results in a mild crouch gait characterized by 

excessive knee flexion (see accompanying video). Our result suggests that under the 

condition of weakened plantarflexors, the mild crouch gait may be metabolically efficient 

compared to other gait choices. The crouch gait is commonly found in cerebral palsy 

patients, and weakness in the plantarflexors is one of many factors thought to contribute to 

the gait abnormality [Steele etal. 2010].

Knee hyperextension, another common gait abnormality, causes patients to vault the body 

forward over the extended stance limb, and can result from hamstring lengthening surgery in 

cerebral palsy patients [Kay et al. 2002]. In the accompanying video, we show that our 

optimization indeed results in a mild hyperextension gait after weakening HAM to a quarter 

of its original strength, with a minimum knee flexion angle of 2°. Note that the same angle 

for the gait generated by nwalk is 9°. Another cause of knee hyperextension is weakened 

quadriceps, which can be simulated by weakening the VAS in our model. We found that 

weakening the VAS to one-tenth of its original strength leads to a motion similar to 

quadriceps avoidance gait, which is seen in patients with quadriceps weakness and anterior 

cruciate ligament (ACL) deficiency [Timoney et al. 1993].

6.3 Running Controllers

Our controller architecture and objective function is not limited or specific to walking alone. 

By simply changing the target velocity and initialization (changing the initial velocity from 

1.3 m/s to 3.05 m/s, doubling the initial force feedback gains for GAS and SOL, and 

bending the elbow), the same procedure yields running controllers, without any 

modifications to the control parameterization. In contrast, previous optimization-based 

control synthesis methods required including torque ratios specific to walking as part of the 

objective [Wang et al. 2009] or adding spring elements for running [Wu and Popović 2010]. 

Our unified approach to both walking and running is consistent with the view that humans 
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select between walking and running by minimizing energy at different speeds [Srinivasan 

and Ruina 2006].

We compare running motions generated by our controller at 4.0 m/s with human running 

data in Figure 7. Our running kinematic results do not match human data as well as walking, 

though the basic features of the curves are still present. A main discrepancy is that our hip 

and knee joints both reach maximum extension earlier than human running data. Similar to 

our walking results, our knee joint flexes less during the stance phase compared to humans. 

Our maximum knee flexion is also lower than human data.

Figure 7b reveals possible causes for the kinematic differences. Our knee extension torque 

reaches maximum earlier than human data, which can cause the knee to extend too quickly 

during the stance phase. On the other hand, our plantarflexion torques have a lower peak 

than human data, resulting in a strategy that relies on the knees more than the ankles. In the 

supplemental material and the video, we include results for running at speeds ranging from 

3.0 m/s to 5.0 m/s. The faster running results are optimized sequentially in 0.5 m/s 

increments (e.g., 4.0 m/s initialized from 3.5 m/s). As the target velocity increases, finding a 

satisfactory local minimum appears more difficult. We use 100 samples per iteration and a 

0.25 m/s optimization increment for speeds over 4.0 m/s.

6.4 Robustness

In this work, we have chosen to focus on reproducing humanlike kinematics and torque 

trajectories. Likely due to our modeling of human-like torque generation and activation 

delays, our controllers cannot tolerate nearly as much external force as recently developed 

controllers for purely joint-actuated characters [Mordatch et al. 2010; Wang et al. 2010]. 

However, we can still follow Wang et al. [2010] and optimize explicitly for controllers that 

can deal with external forces. In particular, we optimized controllers that can tolerate 100 N, 

0.4 s pushes to the torso. These controllers chose to walk in a stiff crouch gait, with lowered 

COM and a constantly dorsiflexed ankle to ensure foot clearance (see accompanying video). 

Note that 100 N is approximately the weight of a 10 kg object, a significant push to a 

human. Comparatively, the corresponding 100 N controller presented by Wang et al. [2010], 

who did not model biological torque generation constraints, did not employ a gait that is 

significantly different from the undisturbed baseline controller. We also optimized for a 4.0 

m/s running controller tolerant of 50 N, 0.4 s pushes, as shown in the video.

7 Discussion

We have presented a biologically-motivated control parameterization that can be used to 

automatically generate 3D human-like walking and running controllers of different speeds. 

Controllers are optimized to satisfy a set of high-level task terms while minimizing an effort 

term based on modeling the rate of metabolic energy expenditure. Notably, walking and 

running emerge from the same optimization process simply by changing the target velocity 

and initialization. Through comparisons to kinematic and torque data of human walking, we 

show that our results adopt a human-like torque generation strategy while producing 

kinematic data significantly closer to humans than previous work. Our work demonstrates 

the importance of modeling constraints on torque generation due to muscle physiology, both 
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in restricting the space of possible torque trajectories and in providing a realistic model of 

effort.

We chose to focus on generating human-like locomotion in a straight line and on flat 

ground. A natural extension is to investigate whether our control parameterization and effort 

term can be combined with the popular task-space controllers [Coros et al. 2010; de Lasa et 

al. 2010; Wu and Popović 2010] and higher-level planning [Coros et al. 2009; Mordatch et 

al. 2010] to create humanlike motions on uneven terrains [Wu and Popović 2010] or 

obstacle courses [Mordatch et al. 2010; Ye and Liu 2010]—scenarios that have only been 

addressed using purely joint-actuated characters.

Finally, an exciting area for future work is to automatically synthesize locomotion 

controllers for more detailed, fully muscle-actuated human models [Weinstein et al. 2008; 

Lee et al. 2009]. As we have touched on in Section 6.2, our approach can be used to develop 

predictive biomechanical models to investigate the effects of muscle and control properties 

on gait. However, more scientific validation of our simulation results is needed before we 

can conclude that our results apply to real humans. One clear aspect for improvement is to 

adopt a more physically-accurate simulation engine [Sherman et al. 2011], as ODE 

“emphasizes speed and stability over physical accuracy” [Smith 2006]. More accurate 

simulations and detailed models present additional computational challenges both in 

simulation speed and in parameter optimization, but are crucial for potential scientific and 

medical applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Humanoid model. (a) Sixteen Hill-type MTUs, shown in red, generate torques for the hips, 

knees, and ankles. Note that the back joint is not rendered for aesthetic reasons. (b) Five 

uniarticular muscles in each leg produce flexion or extension torques at single joints. (c) 

Three biarticular muscles in each leg generate torques at pairs of joints. See Section 3 for 

details.
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Figure 2. 
Relationship between musculoskeletal model, controller, and simulator. The controller takes 

as input the simulation state (body position, joint configuration, contact state, etc.), denoted 

by s and outputs neural excitation signals (u) and torques (τ̃). Excitation signals are 

converted to muscle activations (a), which are then converted to torques τ for the hip, knee, 

and ankle sagittal DOFs. The remaining DOFs are directly actuated by τ̃. The excitation to 

torque mapping is a function of the contractile element kinematics (lCE, vCE) and hip, knee, 

and ankle joint configuration (θ).
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Figure 3. 
Muscle force-length and force-velocity curves used in our model. The force generating 

capacity of a muscle is dependent on the length of muscle fibers (force-length relationship) 

and the velocity of muscle fibers (force-velocity relationship). The force-length curve shows 

that muscles can generate force more efficiently near lopt, and the force-velocity curve 

shows that muscles lose ability to generate force as the magnitude of contraction velocity 

increases.

Wang et al. Page 22

ACM Trans Graph. Author manuscript; available in PMC 2015 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
High-level control states for each leg. The stance and swing phases are triggered by ground 

contact conditions. The signed horizontal distance between the COM and the ankle (d) 

normalized by leg length (d̃) is compared against two threshold parameters (d̃
SI, d̃

SP) to start 

swing initiation (SI) and stance preparation (SP), respectively. SI can also be started when 

the opposing leg makes ground contact (double stance).
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Figure 5. 
Effects of muscle physiology on activation illustrated by GAS activation and normalized 

fiber length during the stance phase. Note the nonlinearity of the activation curve generated 

by the linear force feedback control law (Section 4.1). While the foot is flat on the ground 

during mid-stance, GAS activation does not significantly change the fiber length, and force 

feedback leads to an activation build-up. As heel loses contact during late-stance, the fiber 

rapidly shortens and reduces fl and fv (Figure 3). As the generated force decreases, the same 

force feedback leads to a drop-off in activation.
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Figure 6. 
Comparison between walking controllers with speeds near 1.0 m/s. The shaded areas 

represent one standard deviation of the ground truth human data at 1.0 m/s. The hand-tuned 

SIMBICON-style controller [Coros et al. 2009] matches joint angle data relatively well, but 

lacks hip extension and relies primarily on hip torques. The robust feature-based controller 

[Mordatch et al. 2010] walks in a crouch and uses large knee torques. A controller optimized 

for human-like torque distributions [Wang et al. 2010] fails to generate human-like joint 

angles and torques. Our result (swalk in Table 1), optimized with a target velocity of 1.0 

m/s, best matches human data.
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Figure 7. 
Comparison of running. Our result is optimized with a target velocity of 4.0 m/s. The shaded 

regions represent one standard deviation of the human running data at 4.0 m/s.
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