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Matrix of Transformer Windings for Very Fast
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Abstract—To study very fast transients in transformers, com-
puting the winding inductance matrix at very high frequencies
(MHz) is required. The air-core approximation formulas cannot
be used for this purpose because at very high frequencies the core
behaves as a magnetic insulating wall and so the distribution of
the magnetic field is quite different from that of air-core inductors.
This paper presents new analytical methods for computing the
winding inductance matrix at very high frequencies considering
the presence of the core. A simple method, based on numerical
integration of the vector potential functions, is described for
the calculation of inductance outside the core window. For the
region inside the core window, two different analytical solutions
are developed and inductance formulas are extracted. The final
expressions are simple and fast convergent. Comparisons with
finite-element method simulations prove the high accuracy of the
technique.

Index Terms—Inductance matrix, magnetic fields, transformer
winding, very fast transients.

I. INTRODUCTION

T HE DETAILED model of winding consisting of induc-
tive, capacitive, and loss components has been used

widely for the analysis of fast and very fast transients in
transformers [1]–[15]. For very fast transients, such as those
caused by switching operations in gas-insulated substations
(GIS), using one segment per turn in order to achieve the
required detail of the winding model [16] is needed. In very
fast front transients, the flux penetration into core is negligible.
The core acts as a flux barrier at very high frequencies and the
distribution of the magnetic field is quite different from that of
air-core inductors. This is more significant in the core window.
At high frequencies, the core window shapes the distribution
of the magnetic flux, affecting the values of self and mutual
inductances. Very large errors have been reported when the self
and mutual inductances are computed with the commonly used
air-core approximations [17]. The consequence of this is that
the transient response of a winding is not properly computed
when the core is represented as air.
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The FEM analysis is an accurate method for the calculation
of inductance which is able to consider the details of the trans-
former geometry [18]. However, this method is computation-
ally expensive. Computation of winding impedances at high fre-
quencies is described in [19]. It offers theoretically accurate re-
sults but its implementation is rather complicated. Recently, a
technique, based on the application of a multilayer method of
images, was presented in [17] to take the presence of the core
into consideration. The mutual flux between round conductors
is computed by successively adding layers of images one at a
time and computing the relative difference between consecutive
values. The procedure stops when the difference is lower than a
fixed quantity.
In this paper, new analytical methods for computing the in-

ductance matrix of transformer windings with conductors of the
rectangular cross section at high frequencies are presented. Two
distinct regions are considered for the inductance calculation:
1) outside the core window and 2) inside the core window. The
total inductance is obtained by means of a weighted addition
of the components from each region depending on the specific
transformer geometry [17].
For the region outside the core window, the core wall is re-

placed by an image source with the correct magnitude and lo-
cation and then by integrating the vector potential produced by
actual and image sources over the cross section of the target coil
(or conductor), the self and mutual inductances are calculated.
For computation of inductance inside the core window, two

different methods are developed in this paper. Both methods
are based on an analytical solution of the Poisson equation in
planar coordinates. The boundary conditions are flux parallel
for all edges of the core window. In the first method, a double
Fourier series is applied to the current density and then using
the method of the separating variables, a solution in the form of
a double series of harmonics is obtained for the vector poten-
tial. The method of double Fourier series has been used before
for calculation of the leakage reactance of transformer windings
[20]. The method developed in this paper utilizes the same pro-
cedure but it uses different boundary conditions to represent the
core behavior at very high frequencies.
In the second method, the solution space is divided into three

regions and a single Fourier series in terms of a fundamental
period of the window height is applied to the current density.
Using the separating variables and then applying the required
constraints to the solutions for satisfying the boundary condi-
tions, the vector potential in each region is obtained as a single
series of sine and exponential components. This method is also
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Fig. 1. Coil of a rectangular cross section in the air.

an extension of the Rabins’ method [21], [22] in planar coordi-
nates and with different boundary conditions.
In both methods presented in this paper, the inductances are

calculated by applying the magnetic energy method. Simulation
results show that both methods produce the same results up to
at least six digits. Although the inductance formula obtained
by the double Fourier series method is rather simpler, it takes
more time to evaluate than the inductance formulas obtained by
the single Fourier series method. One advantage of the single
Fourier series method is that it can be developed easily in order
to extract inductance expressions in axisymmetric coordinates.
Despite these differences, both techniques are fast convergent
and can be used to compute the inductance matrix inside the
core window with high accuracy. The results of the proposed
formulas for the self and mutual inductances are verified with fi-
nite-element analyses and the relative differences are compared
with those of the previously presented multilayer image method
[17].

II. OUTSIDE THE CORE WINDOW

A. Calculation of Vector Potential

The vector potential produced by a coil having a uniform cur-
rent density can be found by integrating the vector potentials of
an infinite number of line currents which can be deemed to con-
stitute the distributed current. The starting point is the expansion
of the vector potential of a line current

(1)

where is the distance from the source to the point at which A
exists and is a constant term. For a single line current,
approaches infinity but for a multiconductor system with zero
net current, can be dropped from the equation and only the
first term can be used to calculate the vector potential compo-
nent produced by each conductor.
Fig. 1 shows a coil of rectangular cross section with sides of

length 2a and 2b in the air. For a current in the coil, the current
density is .
The current carried by a filament of cross section ,

where and are coordinates of any filament in the coil, is
. The vector potential produced by all elements

of the coil is given by substituting for in (1) and integrating
over the cross section of the rectangle (with ). The vector

Fig. 2. Coil of the rectangular cross section in air.

potential at any point (u,v) can be integrated in terms of simple
functions. The result is

(2)

The vector potential of additional coils is given by superpo-
sition of their particular vector potentials.
Fig. 2(a) shows a coil of rectangular cross-section outside the

core window. At high frequencies, the core leg can be repre-
sented by an infinite vertical line corresponding to a magnetic
insulation boundary. This type of boundary can be replaced by
an image coil carrying the same current as the real one but in
the opposite direction [see Fig. 2(b)].
To obtain the vector potential at any point outside the window,

one needs to account for the effects of the image and actual
coils simultaneously. By superposition of the vector potentials
produced by both coils, A at any point is
obtained as

(3)
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where is the vector potential produced by the actual coil and
is the one produced by the image coil.
The values of and can be calculated using (2). The

only thing needed is that for the calculation of , ,
and for the calculation of , must be substituted
for (u,v) in (2). This is necessary because in derivation of (2),
it is assumed that the origin of the coordinate system coincides
with the center of the coil and, therefore, coordinate shifting is
needed in conditions where the coordinates of the viewpoint are
measured against points other than the coil’s center.

B. Inductance Calculation

Once the vector potential is calculated, it is possible to calcu-
late self and mutual inductances. Consider two coils outside the
core window. The mutual inductance between coil 1 and coil 2
with uniform current densities and is given by

(4)

By substituting for from (3), per-unit length, we obtain

(5)

where is the cross section of coil 1. Since the vector potential
is a smooth function, the integrals of and over a rect-
angular area can be evaluated by the Gauss–Legendre quadra-
ture. It is found that with a quadrature of order 5 (5 points in
each coordinate direction of the integration area), sufficient ac-
curacy is obtained. The coordinates of the integration points and
their corresponding weights for a “standard” rectangle are given
in the Appendix. For an arbitrary rectangle, a transformation is
also needed to map the area into the standard rectangle (See the
Appendix.)

III. INSIDE THE CORE WINDOW (DOUBLE FOURIER SERIES
METHOD)

A. Calculation of Vector Potential

Using Maxwell’s equations and choosing the Coulomb
gauge, the well-known equation for the vector potential is
obtained

(6)

The current density vector is in the direction and it can be
assumed that all the field quantities are independent of . With
these assumptions, (6) in planar coordinates becomes

(7)

A coil element inside the core window is shown in Fig. 3. The
ampere-turn density inside the coil may be considered as being
constant and can be written as a function of position

else
(8)

Fig. 3. Reflections of the source relative to the left and bottom wall.

where

(9)

and is the ampere-turns of the coil.
A double Fourier series can be applied to the current den-

sity. With a doubly harmonic series, we mean a series with
terms like cos(mx)cos(ny). Depending on the extension of the
current density function, different kinds of product terms ap-
pear in the series. To find the correct form, one needs to con-
sider the boundary conditions at the window walls. Fig. 3 also
shows images of the coil relative to the left and bottom walls of
the window which satisfy the flux parallel boundary condition

at these walls. Considering the images from the other
sides and those reflected from mirrors on the opposite sides, one
may notice that the system of real and image coils repeats at in-
tervals of along the vertical and horizontal axes while the
window width and the window height are radians in terms of
the fundamental of the wave.
Considering the sign of the reflections, the following double

Fourier series can be used for the current density:

(10)

where the th harmonic coefficient is obtained by the
equation

(11)
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Fig. 4. Two coils inside the core window.

Substituting the double Fourier series (10) into (7) and drop-
ping the subscript, we have

(12)
From (12), A is obtained as

(13)

where

(14)

B. Inductance Calculation

Consider two coils inside the core window as shown in Fig. 4.
By substituting for (the solution of vector potential for coil
2) and (the double Fourier series of the current density for
coil 1) in (4), after some algebraic manipulation, we obtain

(15)

where is the mutual inductance (per unit length) of two
arbitrary coils inside the core window.

IV. INSIDE THE CORE WINDOW (SINGLE
FOURIER SERIES METHOD)

A. Calculation of Vector Potential

As is shown in Fig. 5, the solution space is divided into three
regions. Radial and axial extensions of all regions are given in
Table I. The current density can be written as a Fourier series in
terms of the yoke-to-yoke distance or window height. For this
purpose, as illustrated in Fig. 6, the current density is extended

Fig. 5. Solution regions inside the core window.

TABLE I
RADIAL AND AXIAL EXTENSIONS OF REGIONS

Fig. 6. Reflection of the source relative to the bottom wall.

as an odd function of period 2H and then a Fourier sine series
is applied

(16)
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TABLE II
SOLUTION OF A INSIDE THE REGIONS

For a coil with a constant current density , we have

(17)

Substituting the Fourier series (16) into (7) and dropping the
subscript, we have

(18)

If we consider a solution as

(19)

Then, flux parallel boundary conditions at , L is satisfied.
Substituting (19) into (18), we obtain

(20)

Since the sine functions are orthogonal, we can equate corre-
sponding coefficients on both sides of this equation. We obtain

(21)

The solution to (21) consists of a homogeneous solution and a
particular solution

(22)

Thus, the solution (19) is given explicitly as

(23)

where are unknown constants that are determined by
using boundary conditions. For regions I and III, the term

is eliminated from (23) because the current density is
zero inside these regions. Also, from the flux parallel boundary
condition at 0 and , it can be concluded that

for the solutions of the regions I and III.

Using the appropriate region label, A inside each region
becomes

(24)

(25)

(26)

All solutions already satisfy the boundary conditions at
, L. The unknown constants must be determined by satisfying
the boundary conditions at . The vector potential
must be continuous across the interfaces. Otherwise, the mag-
netic field density will contain infinities. Thus, at ,
(24) and (25) must be equal to each other. Since this must be
satisfied for all , we obtain

(27)

Similarly at , using (25) and (26), we obtain

(28)
In addition to the continuity of A at the interfaces between re-

gions, according to Maxwell’s equations, the tangential compo-
nent of H should be continuous across these interfaces. Since B
is proportional to H in all regions, the tangential B components
must be continuous. Thus, we require that be continuous
at .
At , we obtain

(29)

Similarly, at

(30)
Equations (27)–(30) are solved simultaneously in order to find
the unknown constants. The final solutions with their corre-
sponding constants are summarized in Table II.

B. Inductance Calculation

In Fig. 7(a), two coils inside the core window are shown
which are in different radial positions. We need the region I
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Fig. 7. Calculation of mutual inductance of two coils in (a) different radial
positions and (b) the same radial positions.

solution for coil 2. By substituting for A and J in (4), after some
algebraic manipulation, we obtain

different radial positions

(31)

where different radial positions is the mutual inductance
(per unit length) of two coils in different radial positions.
If the coils are two coils axially displaced (i.e., two coils oc-

cupy the same radial position) [see Fig. 7(b)], then is the
solution of region II. Thus, we have

same radial positions

(32)

where same radial positions is the mutual inductance (per
unit length) of two axially displaced coils. It is important to note
that for the calculation of , and must be substituted
for and in the formulas given in Table II.

V. CONSIDERATION FOR SKIN EFFECT REDUCTION OF THE
SELF INDUCTANCES

For a conductor, in addition to the “external inductance” in-
volving a magnetic field outside the conductor (due to the total
current in the conductor), there is also a much smaller compo-
nent of “internal inductance” due to the magnetic field inside the
conductor itself. At very high frequencies, due to the skin effect,
the currents are concentrated near the surface of the conductor
and since there is essentially no current deeper in the conductor,
there is no magnetic field beneath the surface of the conductor.
So the internal inductance of a conductor vanishes at very high
frequencies.
Therefore, for the correction of the self inductance of a con-

ductor at very high frequencies, we can simply subtract the in-
ternal inductance of the conductor from its total inductance. For
conductors with a small square cross section, the internal induc-
tance of round conductors that is equal to can be used

Fig. 8. Geometrical configuration of the transformer [17].

Fig. 9. Flux distribution obtained by FEM analysis.

for this purpose. As a result, in order to account for the impact of
the skin effect on the self inductances at very high frequencies,
the value of should be subtracted from the calculated
inductance values.
The proximity effect between conductors with a small cross

section is negligible and, therefore, the proposed formulas can
be used directly for calculation of the mutual inductances of
conductors with enough accuracy.

VI. TEST CASE

The transformer winding used in [17] is applied to test the
methods proposed in this paper (Fig. 8). It consists of 30 turns
with a square cross-sectional area of 4 4 mm. The distance
between centers of contiguous turns is 8 mm. The core window
dimensions are .
FEM simulations were performed using the free available

software FEMM [23]. The core internal walls are replaced by
magnetic insulation boundaries. Fig. 9 shows a flux distribution
obtained by FEM analysis inside the core window. The self and
mutual inductances are calculated by applying the flux linkage
method.
Tables III and IV show representative values for the self and

mutual inductances outside the core window, respectively. They
have been computed with the method described in Section II
and then compared with FEM simulations. Relative differences
between results are also given and compared with the method of
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TABLE III
PERCENT DIFFERENCE IN THE SELF INDUCTANCE OUTSIDE THE CORE WINDOW

TABLE IV
PERCENT DIFFERENCE IN THE MUTUAL INDUCTANCE

OUTSIDE THE CORE WINDOW

TABLE V
PERCENT DIFFERENCE IN THE SELF INDUCTANCE INSIDE THE CORE WINDOW

images [17]. Although only a few digits are shown in the results,
the relative differences are computed using full precision.
Tables V and VI show selected values for the self and mutual

inductances inside the core window, respectively. Since (15)
and (32) produce the same results up to 6 digits, the results of
them are shown in the same column. The results are also com-
pared with FEM simulations and the corresponding relative dif-
ferences are included.
It can be noticed from Tables III–VI that the self and mu-

tual inductances are in very close agreement to FEM simula-
tions and nearly in all cases, the differences are considerably
smaller than the image method’s. It can be seen that the calcu-
lation error of mutual inductances increases with the separation

TABLE VI
PERCENT DIFFERENCE IN THE MUTUAL INDUCTANCE

INSIDE THE CORE WINDOW

distance. It is noticeable that all of the inductance values shown
in Tables III–VI are calculated with constant current densities
inside conductors.
One can also observe that the differences outside the core

window are somewhat larger than the differences inside the core
window. This is basically due to the errors of FEM simulations
introduced in the open boundary problems.
Typically, the FEM is best suited for problems with closed so-

lution regions. For open boundary problems, the simplest way to
proceed is to pick an arbitrary boundary far enough away from
the area of interest and declare 0 on this boundary. The
truncation of the outer boundary causes error in the solution. It
was observed that by increasing the volume of the outer region
and using a relatively fine mesh, the results of the FEM sim-
ulation approach the results of the proposed method, and the
relative differences become smaller than the values shown in
Tables III and IV.

VII. CONCLUSION

New analytical methods have been established for computing
the winding inductance matrix at very high frequencies. For the
region outside the core window, a simple method has been de-
veloped wherein only two well-behaved integrals need to be
evaluated numerically in order to determine the inductances.
For the region inside the core window, accurate formulas for the
self and mutual inductances have been derived from the direct
solution of Poisson’s equation in two different approaches. The
final expressions are simple and fast convergent. The accuracy
of the proposed formulas has been verified by comparisons with
finite-element analyses.

APPENDIX
GAUSS-LEGENDRE QUADRATURE OVER A

QUADRILATERAL ELEMENT

Consider the double integral

(33)
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Fig. 10. Mapping an arbitrary rectangle into the standard rectangle. (a) Stan-
dard rectangle. (b) Arbitrary rectangle.

TABLE VII
WEIGHTS AND COORDINATES OF THE INTEGRATION POINTS [24]

over the rectangular element shown in Fig. 10(a). Evaluating
each integral, in turn, by the Gauss–Legendre quadrature using
nodes in each coordinate direction, we obtain

(34)

The number of integration points in each coordinate direc-
tion is called the integration order. The weights and the coordi-
nates of the integration points are as listed in Table VII.
In order to apply quadrature to an arbitrary rectangle element

in Fig. 10(b), it is required first to map the element into the
“standard” rectangle in Fig. 10(a). The transformation that does
the job is

(35)
where , , , and are shown in Fig. 10(b).
It can be shown that the following formula for the Gauss–Le-

gendre quadrature over an arbitrary rectangle area is obtained

(36)
The and coordinates of the integration points and the

weights can again be obtained from Table VII.
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