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Abstract 
 

We introduce a purely feed-forward architecture for se- 

mantic segmentation. We map small image elements (su- 

perpixels) to rich feature representations extracted from a 

sequence of nested regions of increasing extent. These re- 

gions are obtained by ”zooming out” from the superpixel 

all the way to scene-level resolution. This approach exploits 

statistical structure in the image and in the label space with- 

out setting up explicit structured prediction mechanisms, 

and thus avoids complex and expensive inference. Instead 

superpixels are classified by a feedforward multilayer net- 

work. Our architecture achieves 69.6% average accuracy 

on the PASCAL VOC 2012 test set. 
 
 
1. Introduction 

 

We consider one of the central vision tasks, seman- 

tic segmentation: assigning to each pixel in an image a 

category-level label. Despite attention it has received, it re- 

mains challenging, largely due to complex interactions be- 

tween neighboring as well as distant image elements, the 

importance of global context, and the interplay between 

semantic labeling and instance-level detection. A widely 

accepted conventional wisdom, followed in much of mod- 

ern segmentation literature, is that segmentation should be 

treated as a structured prediction task, which most often 

means using a random field or structured support vector ma- 

chine model of considerable complexity. 

This in turn brings up severe challenges, among them the 

intractable nature of inference and learning in many “inter- 

esting” models. To alleviate this, many recently proposed 

methods rely on a pre-processing stage, or a few stages, to 

produce a manageable number of hypothesized regions, or 

even complete segmentations, for an image. These are then 

scored, ranked or combined in a variety of ways. 

Here we consider a departure from these conventions, 

and approach semantic segmentation as a single-stage clas- 

sification task, in which each image element (superpixel) 

is labeled by a feedforward model, based on evidence com- 

puted from the image. Surprisingly, in experiments on PAS- 
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Figure 1. Schematic description of our approach. Features are ex- 

tracted from a nested sequence of “zoom-out” regions around the 

superpixel at hand (red). Here we show four out of thirteen lev- 

els: 1 (cyan), 6 (olive), 10 (purple) and 13 (blue), as well as the 

subscene level (orange) and scene level (green). The features com- 

puted at all levels are concatenated and fed to a multi-layer percep- 

tron that classifies the superpixel. 
 

 
 

CAL VOC 2012 segmentation benchmark we show that this 

simple sounding approach leads to results significantly sur- 

passing previously published ones, advancing the current 

state of the art to 69.6%. 

The “secret” behind our method is that the evidence used 

in the feedforward classification is not computed from a 

small local region in isolation, but collected from a se- 

quence of levels, obtained by “zooming out” from the close- 

up view of the superpixel. Starting from the superpixel 

itself, to a small region surrounding it, to a larger region 

around it and all the way to the entire image, we compute 

a rich feature representation at each level and combine all 

the features before feeding them to a classifier. This allows 

us to exploit statistical structure in the label space and de- 

pendencies between image elements at different resolutions 

without explicitly encoding these in a complex model. 



 

We do not mean to dismiss structured prediction or in- 

ference, and as we discuss in Section 5, these tools may be 

complementary to our architecture. In this paper we explore 

how far we can go without resorting to explicitly structured 

models. 

We use convolutional neural networks (convnets) to ex- 

tract features from larger zoom-out regions. Convnets, 

(re)introduced to vision in 2012, have facilitated a dramatic 

advance in classification, detection, fine-grained recogni- 

tion and other vision tasks. Segmentation has remained 

conspicuously left out from this wave of progress; while 

image classification and detection accuracies on VOC have 

improved by nearly 50% (relative), segmentation numbers 

have improved only modestly. A big reason for this is that 

neural networks are inherently geared for “non-structured” 

classification and regression, and it is still not clear how 

they can be harnessed in a structured prediction framework. 

In this work we propose a way to leverage the power of rep- 

resentations learned by convnets, by framing segmentation 

as classification and making the structured aspect of it im- 

plicit. Finally, we show that use of multi-layer neural net- 

work trained with asymmetric loss to classify superpixels 

represented by zoom-out features, leads to significant im- 

provement in segmentation accuracy over simpler models 

and conventional (symmetric) loss. 

Below we give a high-level description of our method, 

then discuss related work and position our work in its con- 

text. Most of the technical details are deferred to Section 4 

in which we describe implementation and report on results, 

before concluding in Section 5. 

 
2. Zoom-out feature fusion 

 

We cast category-level segmentation of an image as clas- 

sifying a set of superpixels. Since we expect to apply the 

same classification machine to every superpixel, we would 

like the nature of the superpixels to be similar, in partic- 

ular their size. In our experiments we use SLIC [1], but 

other methods that produce nearly-uniform grid of super- 

pixels might work similarly well. Figures 2 provides a few 

illustrative examples for this discussion. 
 

2.1. Scoping the zoom-out features 
 

The main idea of our zoom-out architecture is to allow 

features extracted from different levels of spatial context 

around the superpixel to contribute to labeling decision at 

that superpixel. Before going into specifics of how we de- 

fine the zoom-out levels, we discuss the role we expect dif- 

ferent levels to play. 
 

 
Local The narrowest scope is the superpixel itself. We 

expect the features extracted here to capture local evidence: 

color, texture, small intensity/gradient patterns, and other 

properties computed over a relatively small contiguous set 

of pixels. The local features may be quite different even 

for neighboring superpixels, especially if these straddle cat- 

egory or object boundaries. 
 

 
Proximal As we zoom out and include larger spatial area 

around the superpixel, we can capture visual cues from sur- 

rounding superpixels. Features computed from these levels 

may capture information not available in the local scope; 

e.g., for locations at the boundaries of objects they will rep- 

resent the appearance of both categories. For classes with 

non-uniform appearance they may better capture character- 

istic distributions for that class. We can expect somewhat 

more complex features to be useful at this level, but it is 

usually still too myopic for confident reasoning about pres- 

ence of objects. 

Two neighboring superpixels could still have quite dif- 

ferent features at this level, however some degree of 

smoothness is likely to arise from the significant overlap be- 

tween neighbors’ proximal regions, e.g., A and B in Fig. 2. 

As another example, consider color features over the body 

of a leopard; superpixels for individual dark brown spots 

might appear quite different from their neighbors (yellow 

fur) but their proximal regions will have pretty similar dis- 

tributions (mix of  yellow  and  brown).  Superpixels  that 

are sufficiently far from each other could still, of course, 

have drastically different proximal features, e.g., A and C 

in Fig. 2. 
 

 
Distant Zooming out further, we move to the distant lev- 

els : regions large enough to include sizeable fractions of 

objects, and sometimes entire objects. At this level our 

scope is wide enough to allow reasoning about shape, pres- 

ence of more complex patterns in color and gradient, and 

the spatial layout of such patterns. Therefore we can expect 

more complex features that represent these properties to be 

useful here. Distant regions are more likely to straddle true 

boundaries in the image, and so this higher-level feature ex- 

traction may include a significant area in both the category 

of the superpixel at hand and nearby categories. For exam- 

ple, consider a person sitting on a chair; bottle on a dining 

table; pasture animals on the background of grass, etc. Nat- 

urally we expect this to provide useful information on both 

the appearance of a class and its context. 

For nearby superpixels and far enough zoom-out level, 

distant regions will have a very large overlap, which will 

gradually diminish with distance between superpixels. This 

is likely to lead to somewhat gradual changes in features, 

and to impose a system of implicit smoothness “terms”, 

which depend both on the distance in the image and on the 

similarity in appearance in and around superpixels. Impos- 

ing such smoothness in a CRF usually leads to a very com- 

plex, intractable model. 
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Figure 2. Examples of zoom-out regions. We show four out of fifteen levels: 1(cyan, nearly matching the superpixel boundaries), 6 (olive), 

10 (purple) and 13 (blue). Levels 1-3 can be considered local, 3-7 proximal, and level 7-13 as well as the subscene level are distant. 
 

 

Scene The final zoom-out scope is the entire scene. Fea- 

tures computed at this level capture “what kind of an im- 

age” we are looking at. One aspect of this global context 

is image-level classification: since state of the art in im- 

age classification seems to be dramatically higher than that 

of detection or segmentation [9, 31] we can expect image- 

level features to help determine presence of categories in 

the scene and thus guide the segmentation. 

More subtly, features that are useful for classification 

can be directly useful for global support of local labeling 

decisions; e.g., lots of green in an image supports label- 

ing a (non-green) superpixel as cow or sheep more than it 

supports labeling that superpixel as chair or bottle, other 

things being equal. Or, many straight lines in an image 

would perhaps suggest man-made environment, thus sup- 

porting categories relevant to indoors or urban scenes more 

than  wildlife. 

At this global level, all superpixels in an image will of 

course have the same features, imposing (implicit, soft) 

global constraints. This is yet another form of high-order 

interaction that is hard to capture in a CRF framework, de- 

spite numerous attempts [3]. 
 
 

2.1.1   Convnet-based zoom-out 
 

In an early version of our work, we set the number and 

scope of zoom-out levels manually, and designed hand- 

crafted features to describe these levels. Details of this early 

approach can be found in an extended version of this pa- 

per [29]. However, we have found a different approach to 

work better. This approach relies on a convolutional neural 

network to provide both the feature values and the zoom-out 

levels used to accumulate these features. 

A feature map computed by a convolutional layer with 

k filters assigns a k-dimensional feature vector to each re- 

ceptive field of that layer. For most layers, this feature map 

is of lower resolution than the original image, due to sub- 

sampling induced by stride in pooling and possibly in filter- 

ing at previous layers. We upsample the feature map to the 

original image resolution, if necessary, using bilinear inter- 

polation. This produces a k-dimensional feature vector for 

every pixel in the image. Pooling these vectors over a su- 

perpixel gives us a k-dimensional feature vector describing 

that superpixel. Figure 3 illustrated this feature computation 

for a superpixel with a toy network with three convolutional 

layers, interleaved with two pooling layers (2with 2×2 non- 
overlapping pooling receptive fields). 

 
2.2. Learning to label with asymmetric loss 

 

Once we have computed the zoom-out features we sim- 
ply concatenate them into a feature vector representing a 

superpixel.   For superpixel s in image I, we will denote 

this feature vector as φ(s, I) = [φ1(s, I) . . . , φL(s, I)] 
where L is the number of levels in the zoom-out architec- 

ture. For the training data, we will associate a single cate- 

gory label ys with each superpixel s. This decision carries 

some risk, since in any non-trivial over-segmentation some 

of the superpixels will not be perfectly aligned with ground 

truth boundaries. In section 4 we evaluate this risk empiri- 

cally for our choice of superpixel settings and confirm that 

it is indeed minimal. 

Now we are ready to train a classifier that maps s in im- 

age I to ys based on φ(s, I); this requires choosing the em- 
pirical loss function to be minimized, subject to regulariza- 
tion. In semantic segmentation settings, a factor that must 
impact this choice is the highly imbalanced nature of the la- 
bels. Some categories are much more common than others, 

but our goal (encouraged by the way benchmark like VOC 

evaluate segmentations) is to predict them equally well. It is 

well known that training on imbalanced data without taking 

precautions can lead to poor results [10, 30, 22]. A common 

way to deal with this is to balance the training data; in prac- 

tice this means that we throw away a large fraction of the 

data corresponding to the more common classes. We follow 

an alternative which we find less wasteful, and which in our 

experience often produces dramatically better results: use 
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Figure 3. Illustration of zoom-out feature extraction procedure for a simple network with three convolutional and two pooling layers. 
 

 

all the data, but change the loss. There has been some work 

on loss design for learning segmentation [37], but the sim- 

ple weighted loss we describe below has to our knowledge 

been missed in segmentation literature, with the exception 

of [20] and [22], where it was used for binary segmentation. 
 

Let the frequency of class c in the training data be fc, 

with 
),

c fc = 1. Our choice of loss is log-loss. We scale 
it by the inverse frequency of each class, effectively giving 

each pixel of less frequent classes more importance : 

Another recent trend has been to follow a multi-stage ap- 

proach: First a set of proposal regions is generated, by a 

category-independent [6, 38] or category-aware [2] mech- 

anism. Then the regions are scored or ranked based on 

their compatibility with the target classes. Work in this 

vein includes [4, 17, 2, 5, 24]. A similar approach is taken 

in [39], where multiple segmentations obtained from [4] are 

re-ranked using a discriminatively trained model. Recent 

advances along these lines include [15], which uses con- 

 

1    

− 
N

 
i=1 

 

1 

fyi 

 
log p (yi|φ(si, Ii)) ,  

vnets and [8], which improves upon the re-ranking in [39], 

also using convnet-based features. In contrast to most of the 

work in this group, we do not rely on region generators, and 
limit preprocessing to over-segmentation of the image into 

where  (yi|φ(si, Ii)) is the estimated probability of the a large number of superpixels. 
correct label for segment si in image Ii, according to our 
model.   The loss in (1) is still convex, and only requires 
minor changes in implementation.1 

 

3. Related work 
 

The literature on segmentation is vast, and here we only 

mention work that is either significant as having achieved 

state of the art performance in recent times, or is closely 

related to ours in some way. In Section 4 we compare our 

performance to that of most of the methods mentioned here. 

Many prominent segmentation methods rely on condi- 

tional random fields (CRF) over nodes corresponding to 

pixels or superpixels. Such models incorporate local ev- 

idence in unary potentials, while interactions between la- 

bel assignments are captured by pairwise and possibly 

higher-order potentials. This includes various hierarchical 

CRFs [32, 21, 22, 3]. In contrast, we let the zoom-out fea- 

tures (in CRF terminology, the unary potentials) to capture 

higher-order structure. 
 

1We found that further increasing the weight on background class im- 

proves the results; perhaps this is due to the fact that other classes are more 
often confiused with it than with each other. 

The idea of using non-local evidence in segmentation, 
and specifically of computing features over a neighbor- 

hood of superpixels, was introduced in [11] and [25]; other 

early work on using forms of context for segmentation in- 

cludes [32]. A study in [27] concluded that non-unary terms 

may be unnecessary when neighborhood and global infor- 

mation is captured by unary terms, but the results were sig- 

nificantly inferior to state of the art at the time. 
 

Recent work closest to ours includes [10, 30, 34, 28, 16]. 

In [10], the same convnet is applied on different resolutions 

of the image and combined with a tree-structured graph over 

superpixels to impose smoothness. In [28] the features ap- 

plied to multiple levels are also homogeneous, and hand- 

crafted rather than learned. In [30] there is also a single 

convnet, but it is applied in a recurrent fashion, i.e., input 

to the network includes, in addition to the scaled image, 

the feature maps computed by the network at a previous 

level. A similar idea is pursued in [16], where it is applied to 

boundary detection in 3D biological data. In contrast with 

all of these, we use different feature extractors across lev- 

els, some of them with a much smaller receptive field than 



 

Group Level Dim Unit RF size Region size 

G1 1 64 3 32 
G1 2 64 5 36 

G2 3 128 10 45 

G2 4 128 14 52 

G3 5 256 24 70 

G3 6 256 32 84 

G3 7 256 40 98 

G4 8 512 60 133 

G4 9 512 76 161 

G4 10 512 92 190 

G5 11 512 132 250 

G5 12 512 164 314 

G5 13 512 196 365 

S1 subscene 4096 – 130 

S2 scene 4096 – varies 

 

any of the networks in the literature. We show in Section 4 

that our approach obtains better performance (on Stanford 

Background Dataset) than that reported for [10, 30, 34, 28]; 

no comparison to [16] is available. 

Finally, our work shares some ideas with other concur- 

rent efforts. The main differences with [26, 13] are (i) that 

we incorporate a much wider range of zoom-out levels, (ii) 

we combine features, rather than predictions, across lev- 

els. Another difference is that these methods fine-tune the 

convnets on the segmentation task as part of an end-to-end 

learning, while we use a network pre-trained on the Ima- 

geNet classification task as-is. Despite this lack of fine- 

tuning, we achieve a significantly better performance on 

VOC 2012 test set than either of these methods (Table 3). 

 
4. Experiments 

 

Our main set of experiments focuses on the PASCAL 

VOC category-level segmentation benchmark with 21 cate- 

gories, including the catch-all background category. VOC 

is widely considered to be the main semantic segmentation 

benchmark today2. The original data set labeled with seg- 

mentation ground truth consists of train and val por- 

tions (about 1,500 images in each). Ground truth labels 

for additional 9,118 images have been provided by authors 

of [14], and are commonly used in training segmentation 

models. In all experiments below, we used the combination 

of these additional images with the original train set for 

training, and val was used only as held out validation set, 

to tune parameters and to perform “ablation studies”. 

The main measure of success is accuracy on the test, 

which for VOC 2012 consists of 1,456 images. No ground 

truth is available for test, and accuracy on it can only be ob- 

tained by uploading predicted segmentations to the evalua- 

tion server. The standard evaluation measure for category- 

level segmentation in VOC benchmarks is per-pixel accu- 

racy, defined as intersection of the predicted and true sets 

of pixels for a given class, divided by their union (IoU in 

short). This is averaged across the 21 classes to provide a 

single accuracy number, mean IoU, usually used to measure 

overall performance of a method. 
 

4.1. Zoom-out feature computation 
 

We obtained roughly 500 SLIC superpixels [1] per im- 

age (the exact number varies per image), with the param- 

eter m that controls the tradeoff between spatial and color 

proximity set to 15, producing superpixels which tend to 

be of uniform size and regular shape, but adhere to local 

boundaries when color evidence compels it. This results in 

average superpixel region of 450 pixels. 
 

2The Microsoft Common Objects in Context (COCO) promises to be- 

come another such benchmark, however at the time of writing it is not yet 
fully set up with test set and evaluation procedure 

Given a convnet, we associate a zoom-out level with ev- 

ery convolutional layer in the network. In our main exper- 

iments, we use the 16-layer network from [33], with the 

final classification layer removed. This network, which we 

refer to as VGG-16, has 13 convolutional layers, yielding 

13 zoom-out levels (see Fig. 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 1. Statistics of the zoom-out features induced by the 16 layer 

convnet. Dim: dimension of feature vector. Unit RF size is size 

of receptive field of a convnet unit in pixels of 256×256 input im- 

age. Region size: average size of receptive field of the zoom-out 

feature in pixels of original VOC images. The group designation 

is referred to by design of experiments in Section 4.3. 

 
To compute subscene level features, we take the bound- 

ing box of superpixels within radius three from the su- 

perpixel at hand (i.e., neighbors, their neighbors and their 

neighbors’ neighbors). This bounding box is warped to 

canonical resolution of 256×256 pixels, and fed to the con- 

vnet; the activations of the last fully connected layer are 

the subscene level features. Finally,the scene level features 

are computed by feeding the entire image, again resized to 

canonical resolution of 256×256 pixels, to the convnet, and 

extracting the activations of the last fully connected layer. 

Feature parameters are summarized in Table 1. Concate- 

nating all the features yields a 12,416-dimensional repre- 

sentation for a superpixel. 

Following common practice, we also extract the features 

at all levels from the mirror image (left-right reflection, with 

the superpixels mirrored as well), and take element-wise 

max over the resulting two feature vectors. 
 

4.2. Learning setup 
 

To rule significant loss of accuracy due to reduction 

of image labeling to superpixel labeling, we evaluated the 

achievable accuracy under “oracle” labeling. Assigning 

each superpixel a category label based on the majority vote 

by pixels in it produces mean IoU of 94.4% on VOC 2012 



 

Feature set mean accuracy 

G1 6.0 

G1-2 10.1 

G1-3 16.3 

G1-4 26.3 

G1-5 41.8 

G1-5+S1 51.21 

G1-5+S2 57.3 

G4-5+S1+S2 58.0 

full zoom-out: G1-5+S1+S2 58.6 
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Figure 4. Color code for VOC categories. Background is black. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Examples illustrating the effect of zoom-out levels. From left: original image, ground truth, levels G1:3, G1:5, G1:5+S1, and the 

full set of zoom-out features G1:5+S1+S2. In all cases a linear model is used to label superpixels. See Figure 4 for category color code, 

and Table 1 for level notation. 

 
val. Thus, we can assume that loss of accuracy due to 

our commitment to superpixel boundaries is going to play a 

minimal role in our results. 

With more than 10,000 images and roughly 500 super- 

pixels per image, we have more than 5 million training ex- 

amples. We trained various classifiers on this data, with 

asymmetric log-loss (1), using Caffe [18] on a single ma- 

chine equipped with a Tesla K40 GPU. During training we 

used fixed learning rate of 0.0001, and weight decay factor 

of 0.001. 
 

4.3. Analysis of contribution of zoom-out levels 
 

To assess the importance of features extracted at differ- 

ent zoom-out levels, we experimented with various feature 

subsets, as shown in Table 2. For each subset, we train a lin- 

ear (softmax) classifier on VOC 2012 train and evaluate 

performance on VOC 2012 val. The feature set designa- 

tions refer to the groups listed in Table 1. 

It is evident that each of the zoom-out levels contributes 

to the eventual accuracy. Qualitatively, we observe that 

complex features computed at sub-scene and scene levels 

play a role in establishing the right set of labels for an im- 

age, while features derived from convolutional layers of the 

convnet are important in localization of object boundaries; a 

few examples in Figure 5 illustrate this. We also confirmed 

empirically that learning with asymmetric loss leads to bet- 

ter performance compared to standard, symmetric loss (and 

no data balancing). 

Finally, we investigated the effect of replacing VGG- 

16 from [33] with a previously widely used 7-layer con- 

vnet referred to as AlexNet [19]. Our experience is con- 

sistent with previously reported results where the two net- 

works were compared as feature extractors on a variety of 

tasks [12, 33, 26]: there is a significant drop in perfor- 

mance when we use the full zoom-out architecture induced 

by AlexNet compared to that induced by VGG-16 (mean 

IoU 45.4 vs. 58.6). 
 

 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Ablation study: importance of features from different lev- 

els under linear superpixel classification. Results on VOC 2012 

val, mean class IoU. 



 

Method VOC2010 VOC2011 VOC2012 

zoom-out (ours) 69.9 69.4 69.6 

Hypercolumns [13] – – 62.6 
FCN-8s [26] – 62.7 62.2 

DivMbest+convnet [8] – – 52.2 

SDS [15] – 52.6 51.6 

DivMbest+rerank [39] – – 48.1 

Codemaps [24] – – 48.3 

O2P [4] – 47.6 47.8 

Regions & parts[2] – 40.8 – 

D-sampling [27] 33.5 – – 

Harmony potentials [3] 40.1 – – 

 

Method pixel accuracy class accuracy 

zoom-out (ours) 86.1 80.9 

Multiscale convnet [10] 81.4 76.0 

Recurrent CNN [30] 80.2 69.9 

Pylon [22] 81.9 72.4 

Recursive NN [34] 78.1 – 

Multilevel [28] 78.4 – 

 

Next we explored the impact of switching from linear 

softmax models to multilayer neural networks, evaluating 

a sequence of models on VOC 2012 val. Introducing a 

single layer of 1024 hidden units, with RELU nonlinearity, 

increased IoU from 58.6 to 68.4; additional hidden units 

(1500 or 2048) didn’t increase it further. Adding another 

layer with 1024 units, and introducing dropout [35] im- 

proved IoU to 69.9, and this is the model we adopt for final 

evaluation on the test set. Results of this evaluation, in com- 

parison to some related work, are summarized in Table 3. 

about 0.5 IoU, while making the segmentations more visu- 

ally pleasing. We did not pursue this ad-hoc approach. 
 

4.4. Results on Stanford Background Dataset 
 

For some of the closely related recent work results on 

VOC are not available, so to allow for empirical compar- 

ison, we also ran an experiment on Stanford Background 

Dataset (SBD). It has 715 images of outdoor scenes, with 

dense labels for eight categories. We applied the same 

zoom-out architecture to this dataset as to VOC, except 

that the classifier had only 128 hidden units (due to much 

smaller size of the data set). 

There is no standard train/test partition of SBD; the es- 

tablished protocol calls for reporting 5-fold cross validation 

results. There is also no single performance measure; two 

commonly reported measures are per-pixel accuracy and av- 

erage class accuracy (the latter is different from the VOC 

measure in that it does not directly penalize false positives). 
 
 
 
 
 

Table 3. Results on VOC 2010,  2011 and 2012 test.  Mean IoU 

is shown, see Table 4 for per-class accuracies of the zoom-out 

method. 

 
To evaluate importance of our reliance on superpixels 

we also evaluated an architecture in which SLIC superpix- 

els are replaced by an equal number of rectangular regions. 

The achievable accuracy on VOC 2012 val with this over- 

segmentation is 87.2, compared to 94.4 with superpixels. 

The difference is due to failure of the rectangular grid to 

adhere to boundaries around thin structures or fine shape el- 

ements. Similar gap persists when we apply the full zoom- 

our architecture to the rectangular regions instead of super- 

pixels: we get mean IoU of 64.3, more than 5 points below 

the result with superpixels. It would be interesting to run an 

experiment in which individual pixels are being classified 

(so the achievable accuracy would be 100%) but we have 

not done it so far, due to a prohibitive cost of such a run. 

Figure 6 displays example segmentations. Many of the 

segmentations have moderate to high accuracy, capturing 

correct classes, in correct layout, and sometimes including 

level of detail that is usually missing from over-smoothed 

segmentations obtained by CRFs or generated by region 

proposals. On the other hand, despite the smoothness im- 

posed by higher zoom-out levels, the segmentations we get 

do tend to be under-smoothed, and in particular include lit- 

tle “islands” of often irrelevant categories. To some extent 

this might be alleviated by post-processing; we found that 

we could learn a classifier for isolated regions that with rea- 

sonable accuracy decides when these must be “flipped” to 

the surrounding label, and this improves results on val by 

 
 
 
 
 
 

 
Table 5. Results on Stanford Background Dataset 

 
The results in Table 5 show that the zoom-out architec- 

ture obtains results better than those in [30] and [10], both 

in class accuracy and in pixel accuracy. 
 

5. Conclusions 
 

The main point of this paper is to explore how far we can 

push feedforward semantic labeling of superpixels when we 

use multilevel, zoom-out feature construction and train non- 

linear classifiers (multi-layer neural networks) with asym- 

metric loss. The results are perhaps surprising: we can far 

surpass previous state of the art, despite apparent simplic- 

ity of our method and lack of explicit representation of the 

structured nature of the segmentation task. Another impor- 

tant conclusion that emerges from this is that we finally have 

shown that segmentation, just like image classification, de- 

tection and other recognition tasks, can benefit from the ad- 

vent of deep convolutional networks. 

We are working on implementing the zoom-out architec- 

ture as a single feed-forward network, to allow fine tuning 

of all the parameters jointly on segmentation data. We also 

plan to investigate the role inference could play in further 

improving the results of the zoom-out approach. We hope 
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acc 69.6 91.9 85.6 37.3 83.2 62.5 66 85.1 80.7 84.9 27.2 73.3 57.5 78.1 79.2 81.1 77.1 53.6 74 49.2 71.7 63.3 

 

Table 4. Detailed results of our method on VOC 2012 test. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Example segmentations on VOC 2012 val with 3-layer neural network used to classify full zoom-out representation of superpixels 

(15 zoom-out levels). See Figure 4 for category color code. 
 

 

that this can be done without giving up the feedforward na- 

ture of our approach; one possibility we are interested in ex- 

ploring is to “unroll” approximate inference into additional 

layers in the feedforward network [23, 36]. This is in part 

motivated by recent success of work [7, 40] that uses a com- 

bination of convnets for classification with a CRF frame- 

work to explicitly impose higher-order constraints.  These 

methods achieve results better than ours, although the gap 

is small, considering that they fine-tune the convnets to the 

task while we do not. Training the systems on the recently 

released COCO dataset further improves accuracy on VOC 

test. We plan to pursue all of these directions (end-to-end 

training, additional training data, and adding inference) to 

improve our system. 
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