
Structural Safety 42 (2013) 54–62
Contents lists available at SciVerse ScienceDirect

Structural Safety

journal homepage: www.elsevier .com/ locate/s t rusafe
Seismic risk analysis with reliability methods, part I: Models

M. Mahsuli, T. Haukaas *

Dept. of Civil Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
Dept. of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, Canada V6T 1Z4

a r t i c l e i n f o a b s t r a c t
Article history:
Received 12 March 2012
Received in revised form 27 December 2012
Accepted 16 January 2013
Available online 28 February 2013

Keywords:
Reliability methods
Probabilistic models
Seismic risk
Software
0167-4730/$ - see front matter � 2013 Elsevier Ltd. A
http://dx.doi.org/10.1016/j.strusafe.2013.01.003

* Corresponding author. Tel.: +1 6048275557.
E-mail addresses: terje@civil.ubc.ca (T. Ha

(M. Mahsuli).
A library of probabilistic models for prediction of seismic risk is presented. The models are specifically
intended for use with reliability methods to compute event probabilities, such as seismic loss probabil-
ities. Several models are presented here for the first time. In particular, new and generic models are pro-
posed for earthquake location, regional loss, building response, building damage, and building loss. Each
model is presented with an explanation of its development and a discussion of its predictions. In addition,
models from the literature are ‘‘smoothed’’ to make them amenable to reliability analysis. The models are
implemented in a new computer program that is tailored for reliability and optimization analysis with
many probabilistic models. The models and the computer program are employed in the companion paper
to assess the seismic risk to the Vancouver metropolitan region in Canada.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction and other results for the Vancouver metropolitan region in Canada
The overarching objective in this paper is to improve the predic-
tion of seismic risk for civil infrastructure. Risk in this context re-
fers to loss probabilities, where the losses are due to repair of
damaged structural and non-structural components. Loss probabil-
ities are often presented in the form of a ‘‘loss curve’’, which dis-
plays the probability of exceeding any loss value. Loss curves are
commonly employed on a regional scale in the insurance industry
[1] and for individual buildings in modern performance-based
engineering [2]. However, the definition of risk in terms of loss
curves contrasts the classical definition from the field of structural
reliability. Risk is there defined as expected loss, i.e., the product of
probability and cost of a predefined failure event. In classical reli-
ability analysis, the failure event is specified by a limit-state func-
tion, the uncertainty is characterized by random variables, and
reliability methods are employed to estimate the failure probabil-
ity [3]. This approach has mostly been applied to capacity–de-
mand-type limit-state functions. However, two observations are
made: (1) Reliability methods are tailored to estimate the probabil-
ity of rare events, i.e., small probabilities; (2) The tail of the loss
curve, i.e., where the probability is low but the loss is high, is
particularly important for seismic mitigation decisions. These
observations motivate the present effort to explore the use of reli-
ability methods in risk analysis and loss estimation, with emphasis
on accuracy in the tail of the loss curve.

This paper is part of a two-part contribution. New probabilistic
models are presented here, while analysis methods, loss curves,
ll rights reserved.

ukaas), mahsuli@sharif.edu
are presented in Part II. Although the details of the analysis are pre-
sented in Part II, it is immediately clear that the use of reliability
methods influences the form of the sought models. To appreciate
this fact, recall that reliability methods, such as the first- and sec-
ond-order reliability methods (FORM and SORM) and sampling
methods address problems with two ingredients: random variables
and limit-state functions. For example, this paper employs
limit-state functions defined in terms of seismic loss. The reliability
analysis progresses by repeatedly evaluating the limit-state func-
tion for new realizations of the random variables. Subsequently,
the probability that the limit-state function take on negative out-
comes is obtained. Because no probabilities enter into the limit-state
function, the models used in this type of reliability analysis must re-
turn measurable responses, not probabilities. In short, reliability
methods require models that take realizations of random variables
as input and return the value of one or more responses, which are
not probabilities. As described in greater detail in Part II, this con-
trasts with contemporary approaches that employ conditional prob-
ability models. To this end, the following ‘‘rules’’ are identified for
each probabilistic model intended for use in reliability analysis:

� Rule 1: It is an equation or algorithm
� Rule 2: It simulates possible scenarios of physical phenomena

without conservative bias
� Rule 3: It discretizes all uncertainty in terms of random variables
� Rule 4: It takes as input the realization of continuous random

variables
� Rule 5: Ideally, it has random model parameters whose proba-

bility distribution is updated when new data emerge; i.e., it
includes epistemic uncertainty

http://dx.doi.org/10.1016/j.strusafe.2013.01.003
mailto:terje&commat;civil.ubc.ca
http://dx.doi.org/10.1016/j.strusafe.2013.01.003
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Fig. 1. Damage fragility model for a concrete shear wall high-rise building from
FEMA–NIBS [6].
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Fig. 2. Overview of models at the region, building, and component levels.
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� Rule 6: It may take constants and decision variables as input;
decision variables are not uncertain, rather, their value is at
the discretion of the engineer
� Rule 7: It returns one or more physical responses, not

probabilities
� Rule 8: It returns a unique response for each unique realization

of the random variables
� Rule 9: It returns a response that is ‘‘continuously differentia-

ble,’’ i.e., smooth, with respect to the random variables; this is
necessary for gradient-based reliability methods, such as FORM
� Rule 10: It permits the simulation of all possible realizations of

the outcome space
� Rule 11: It is modularized in the sense that it can take input

from ‘‘upstream’’ models and/or return output to ‘‘downstream’’
models.

Some models in the literature conform to these definitions and
are directly amenable to reliability analysis. One example is the fol-
lowing ground shaking intensity model, which predicts the value
of the site-specific acceleration response spectrum, Sa:

lnðSaÞ ¼ hðm;R;VS30; TnÞ þ e; ð1Þ

where h = function or algorithm, m = earthquake moment magni-
tude, R = site-to-hypocenter distance, VS30 = shear-wave velocity
of the top 30 m of the ground at the site, Tn = first natural period
of vibration of the structure, and e = model uncertainty. Intensity
models of the format in Eq. (1) include those presented by Atkinson
and Boore [4] and Boore and Atkinson [5], which are employed later
in this study. Notably, these intensity models yield a unique realiza-
tion of Sa for given realizations of m, R, VS30, Tn, and e. In a reliability
analysis, the parameters m, R, and VS30 are typically random vari-
ables. Thus, this model satisfies all 11 rules, except Rule 5 if the
regression parameters in the attenuation relationship are constants
instead of random variables.

A contrasting example of models that are intractable in reliabil-
ity analysis is the damage fragility model for a concrete shear wall
high-rise building in Fig. 1 presented by FEMA–NIBS [6]. The solid
thick line in Fig. 1 is the probability that the damage to the building
exceeds Damage State 3 for a given value of the maximum lateral
displacement, D. The probability that the building is in Damage
State 3 is the distance between the solid and dashed thick curves.
This model is here referred to as a conditional probability model
because it has a probability as output. Thus, it violates Rule 7
and cannot be directly employed in a reliability analysis. However,
this model is employed later to calibrate models that obey this
rule. As it stands, the model in Fig. 1 limits the analysis formats
to analytical integration by the total probability theorem or sam-
pling. It is also noted that with models like the one in Fig. 1, each
building configuration requires a unique model. In contrast, this
paper advocates the development of probabilistic models that take
an array of material, geometry, and model parameters as input,
thus covering a range of configurations.

Several modeling techniques are available to develop probabi-
listic models suitable for reliability analysis. One approach is the
development of linear models by Bayesian inference, as described
in [7]. This approach was applied in [8] to reinforced concrete
members in the context of seismic risk. This approach is appealing
because the resulting models conform to all the abovementioned
rules. In fact, model uncertainty is explicitly included by means
of random model parameters in accordance with Rule 5. The exten-
sion to nonlinear models, i.e., models that are nonlinear in terms of
the model parameters, is described in [9].

The models presented in this paper are implemented in the com-
puter program Rt. Rt is an object-oriented program developed by the
authors for reliability and optimization analysis with many interact-
ing probabilistic models. The software architecture to support this
type of analysis is presented by Mahsuli and Haukaas [10], but the
first comprehensive utilization of Rt is presented here. Rt and its ob-
ject-oriented library of models are freely available for download at
www.inrisk.ub.ca, together with examples and video tutorials.

An overview of the models addressed in this paper is provided in
Fig. 2. Each of the following sections presents one of the models, or
collection of models, identified in Fig. 2. The exception is the occur-
rence model, which is not described because the well-known Pois-
son point process is employed without modifications. Conversely,
a model that discounts future losses to present value is not shown
in Fig. 2, but it is briefly described in a section below. It is also empha-
sized that several other models are available in Rt. Fig. 2 emphasizes
that the buildings are modeled at three different levels in Rt, i.e., re-
gion, building, and component levels. A regional model covers many
buildings and provides rough estimates. This contrasts with building
models, which utilize characteristics such as building height and
structural system to estimate response, damage, and loss. The most
detailed approach is component models, i.e., finite element analysis
with element models for each structural and non-structural mem-
ber. However, in this paper the attention is centered on regional loss
estimation, thus justifying the use of simplified models to estimate
the damage for individual buildings.

2. Location models

Contemporary risk analysis approaches often take a ‘‘hazard
curve’’ as a starting point; see e.g., [11]. In the context of seismic

http://www.inrisk.ub.ca
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Fig. 3. Earthquake location model for an arbitrary area source.

Fig. 4. Uniformly distributed epicenter realizations shown in the spherical Google
Earth (left) and the flattened Google Maps (right).
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risk, a hazard curve displays the probability of exceeding values of
a site-specific ground shaking intensity, such as Sa. This study aims
at circumventing the hazard curve to expose the underlying mod-
els. This is necessary for the comprehensive and continuously
improving modeling of uncertainties in seismic risk analysis. Be-
hind each hazard curve are models for the location and magnitude
of earthquakes, and for the propagation of rupture energy. This sec-
tion addresses the location models, which aim at predicting in
probabilistic terms the earthquake location.

The literature provides probability distributions for the epicen-
ter-to-site distance, R, for various source geometries [12]. Techni-
cally, these probability distributions can be employed directly in
the reliability analysis, with the premise that the epicenter-to-site
distance is input as a random variable. However, this approach has
several disadvantages in the present regional analysis. To address
all buildings in a region, a different random variable with different
distribution would be necessary for each site. This is cumbersome
and computationally inefficient, and the stipulation of correlation
between the ground motions at different sites poses an additional
challenge. Therefore, an alternative is proposed here, whereby
location models are developed that take random variables as input
and give earthquake location as output. Each realization of the ran-
dom variable(s) is associated with one earthquake location and
once the coordinates of this location are known, the distance to
any and many building sites is readily computed. The proposed ap-
proach is also advantageous if aftershocks are modeled, because
their locations are dependent on the location of the main shock.
The dedicated location models presented here also make it easier
to model non-uniform probability of occurrence within a source,
although this is not relevant in this paper.

Models are developed here for area sources and line sources. The
line source model is straightforward. It takes two random variables
as input, together with the longitude and latitude of the end points,
as well as the longitude and latitude of potential intermediate points
for multi-segment lines. One of the random variables represents the
epicenter location along the line, which is usually a uniform random
variable. The other represents the earthquake depth.

The formulation of the area source model is new in this paper. It
models arbitrarily shaped area sources and takes three random
variables, x1, x2, and x3, as input. The output is the earthquake
depth, d, and the longitude, Lo, and latitude, La, of the epicenter.
The random variable x3 directly represents the depth, while x1

and x2 are uniformly distributed random variables that indirectly
represent Lo and La. The key objective of the model is to transform
realizations of x1 and x2 into realizations of Lo and La so that the
probability for the epicenter location is uniformly distributed with-
in the arbitrary area.

To understand how the objective is accomplished, consider
Fig. 3. The shape identified by thick solid lines is an arbitrary poly-
gon that represents an earthquake source. The user specifies the
area by defining any number of longitude–latitude pairs. This is
conveniently done in Rt’s map interface. Next, it is recognized that
if Lo and La have the probability density functions (PDFs) shown in
Fig. 3 and denoted by f (Lo) and f (La), then the sought model is ob-
tained. Specifically, if f (Lo) is uniform and f (La) is proportional to
the width of the area at that latitude, then the joint PDF f (Lo,La) =
f (Lo)�f (La) is uniform over the area. Therefore, the model trans-
forms the uniform distributions f (x1) and f (x2) to the distributions
f (Lo) and f (La), where f (La) is automatically computed based on the
width of the area source at every latitude La.

The width of the area source at each latitude is denoted by
W(La), as shown in Fig. 3. Several geometrical considerations are
made in the computation of W(La). First, note that Lo and La are
measured in radians, and that La is zero at the Equator. Second,
let the radius of the Earth be denoted by r, under the approxima-
tion that the Earth is spherical. The radius of a circle around the
Earth at a specific latitude is r�cos(La). As a result, the length of a
segment on this circle, delimited by the longitudes Lo1 and Lo2, is

WðLaÞ ¼ Lo2 � Lo1j j � r � cosðLaÞ: ð2Þ

Furthermore, the ‘‘great circle effect’’ is included when deter-
mining longitude and latitude values on the straight lines between
the user-given corner points, shown by thick solid lines in Fig. 3.
This means that the slight curvature of these lines, due to the cur-
vature of the Earth, is accounted for.

To demonstrate the effectiveness of the area source model,
Fig. 4 shows 2000 locations generated by random samples of x1

and x2. An arbitrary area in the northern hemisphere is selected
for this demonstration because it highlights the ability of the mod-
el to produce uniformly distributed earthquake locations. It is ob-
served in Fig. 4 that the locations correctly appear uniformly
distributed in Google Earth�, which gives a correct spherical view
of the Earth, while they appear non-uniform in Google Maps�,
which gives an incorrect flattened view of the Earth. Fig. 4 also
shows that it is possible to model concave polygons with this
new probabilistic model. All the location models presented here
are available online in Rt.

3. Magnitude model

The magnitude of earthquakes is commonly represented by a
bounded exponential random variable [11]. The probability distri-
bution of this random variable is based on the Gutenberg–Richter
law [13] and the PDF is

f ðmÞ ¼ b0 � exp½�b0 � ðm�MminÞ�
1� exp½�b0 � ðMmax �MminÞ�

for Mmin � m � Mmax ; ð3Þ
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where m = moment magnitude, b0 = parameter that depends on the
relative occurrence of different magnitudes, Mmin = magnitude low-
er bound, and Mmax = magnitude upper bound. This study addresses
the uncertainty in b0 and Mmax by modeling them as lognormal ran-
dom variables. Furthermore, because Eq. (3) produces a probability
density, thus violating Rule 7, it is necessary to transform it into a
model that yields a magnitude realization as output. For this pur-
pose, a standard normal random variable, x, is introduced as an in-
put variable. Its cumulative distribution function (CDF) is denoted
by U(x) and it is employed as a surrogate measure of the earthquake
magnitude. Specifically, a relationship between m and x is intro-
duced by the well-known probability-preserving transformation
[14]

UðxÞ ¼ F ðmÞ; ð4Þ

where F is the CDF that corresponds to the PDF in Eq. (3). As a result,
magnitude realizations are produced for given realizations of x by
the formula:

m ¼ F�1 UðxÞð Þ; ð5Þ

where F�1 is the inverse CDF of x. In summary, the magnitude model
takes the realization of b0, Mmax, and x as input and produces the
corresponding realization of the magnitude, m, as output. This mod-
el is also available online in Rt.
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4. Intensity models

An earthquake intensity model employs characteristics of the
earthquake and the path of shock wave propagation, and perhaps
features of the structure, to predict characteristics of the site-spe-
cific ground shaking. A variety of models and intensity measures
exist in the literature. While time-series of the ground acceleration
are sought in the component-level approach in Fig. 2, the
region- and building-level analysis in this paper requires models
that produce a scalar intensity measure. Specifically, models are
sought that take earthquake location and magnitude as input and
return the elastic 5%-damped Sa for given periods Tn at specific
sites. The models employed in this study are of the generic form
of Eq. (1) and proposed by Atkinson and Boore [4] and Boore and
Atkinson [5], with e as a random variable in the reliability analysis.
In this study, a particular effort is made to model VS30. The authors
were given access to a comprehensive database of VS30-measure-
ments for the Vancouver metropolitan region in Canada. As a re-
sult, VS30 is modeled as a lognormal random variable with
probability distribution inferred from the data as described in the
companion paper for the Vancouver metropolitan region.

The contribution to intensity modeling in this paper is ‘‘smooth-
ing’’ to satisfy Rule 9. In particular, it is required that the model re-
sponse, Sa, is continuously differentiable with respect to m, R, and
VS30. The models presented by Atkinson and Boore [4] and Boore
and Atkinson [5] violate Rule 9 due to the presence of discrete vari-
ables that depend on VS30 and if-statements that introduce differ-
ent model forms for different ranges of VS30, m, Tn, and depth. To
make the intensity models continuously differentiable, the varia-
tion of Sa with respect to its parameters is given a third-order poly-
nomial shape in the vicinity of the parameter values where the
model changes form. For brevity, detailed equations are omitted
here, but Figs. 5 and 6 illustrate the effect of smoothing for the
two utilized intensity models. It is arbitrarily selected to plot the
model response against magnitude and shear wave velocity. As a
result, the solid lines in Figs. 5 and 6 demonstrate that kinks and
discontinuities in the original model are replaced by smooth
transitions. This makes the models amenable to gradient-based
reliability analysis, and the smoothed models are available online
in Rt.
5. Regional damage model

Three levels of modeling were identified in Fig. 2. Modeling at
the regional scale, which is described in this section, requires
less data and less computational resources compared to the
building-by-building modeling that is described later. As the name
suggests, a regional model predicts damage and loss within an en-
tire region. Naturally, the savings in modeling and computer efforts
are counteracted by high model uncertainty. The characterization
of this uncertainty is the primary objective in this section.

In general, a region encompasses different land uses, here cate-
gorized as ‘‘zones.’’ These zones are analogous to typical city zon-
ing and—in the implementation in Rt—each region has K zones.
Damage to the building stock within a zone is measured by a dam-
age ratio, gk, (k = 1,2, . . ., K) where gk = 0 indicates no damage and
gk = 1 indicates complete damage. Complete damage requires
replacement of the entire building stock. In this study K = 5 because
five zone types are considered: single-residential (detached family
housing); multi-residential (apartments); commercial; industrial;
and comprehensive development (high-rise construction).

In the following, regression models for gk for the different zone
types are developed, with spectral acceleration at different periods



Fig. 7. Damage ratio predicted by the regional damage model versus Sa0.3 and Sa1.0.
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as regressors, as explained shortly. For this purpose it is necessary
to have observed earthquake damage in specific regions. Ideally,
data from past earthquakes are utilized, such as insurance claims
data. In lieu of such information, detailed analysis of a large build-
ing inventory is conducted. The authors were given access to a
database for 8330 buildings in Vancouver, for which key character-
istics are known. One of these characteristics is the occupancy
type, described shortly, which is employed to categorize the build-
ings into different zones.

To generate the data, first a range of earthquake magnitudes
and distances are randomly generated. For each magnitude and
distance pair, Sa at Tn = 0.3 s and Tn = 1.0 s, denoted by Sa0.3 and
Sa1.0, at the location of each building is computed. Sa0.3 and Sa1.0

are not independently generated because that would miss the cor-
relation between these two quantities. Sa at these two periods is
commonly employed in the literature to construct a complete re-
sponse spectrum, see, e.g., NEHRP [15] and FEMA–NIBS [6]. Sa0.3

and Sa1.0 for each building are input to the capacity spectrum
method [16], which is implemented in Rt as a separate model. Fur-
thermore, the peak displacement and acceleration response from
the capacity spectrum method are input to the HAZUS fragility
and loss functions [6] to compute the loss for each of the 8330
buildings. Thereafter, the damage ratio, gk, for each zone is com-
puted by dividing the total loss of the buildings in that zone by
their total replacement cost. The latter is obtained for each build-
ing by multiplying the cost of replacement per unit floor area,
which is obtained from HAZUS, by its floor area of construction
from the database. Finally, gk is recorded together with Sa0.3 and
Sa1.0 at the centroid of the region. Although the correlation coeffi-
cient between Sa0.3 and Sa1.0 is substantial at 0.85, both Sa0.3 and
Sa1.0 were considered as regressors in the model development.

A number of model forms for gk as a function of Sa0.3 and Sa1.0

are explored. To model the transition from no damage (gk = 0) for
low values of Sa0.3 and Sa1.0 to complete damage (gk = 1) for high
values of Sa0.3 and Sa1.0, several functions are explored. Rather than
the linear and the sine function, the most successful turned out to
be the standard normal CDF, U(.), which transitions smoothly from
zero to unity as the argument increases. It is first attempted to let
the argument of U be a linear function of Sa0.3 and Sa1.0, i.e., with
the following model form for each zone type:

g ¼ U h1 þ h2 � Sa0:3 þ h3 � Sa1:0ð Þ þ e; ð6Þ

where hi = model parameters and e = model error. However, Eq. (6)
turns out to provide a poor fit to the data; it tends to over-predict
low damage and under-predict high damage. As a result, the follow-
ing nonlinear form of the argument is introduced:

ln gð Þ ¼ ln h1 �U h2 þ h3 � Sa0:3ð Þh5 þ h4 � Sa1:0ð Þh5
� �h i

þ e; ð7Þ

where it is noted that the powers of Sa0.3 and Sa1.0 are equal, and
that the logarithmic transformation is introduced to obtain a homo-
scedastic model, confirmed by diagnostics plots that are omitted
here for brevity. It is reiterated that Sa0.3 and Sa1.0 are evaluated
at the centroid of the region.

To determine the mean, standard deviation, and correlation for
the model parameters hi in Eq. (7), the nonlinear regression de-
scribed in [9] is employed. The regression analysis is carried out
in MATLAB� with the Levenberg–Marquardt algorithm [17] for
solving the nonlinear least squares problem. According to Seber
and Wild [9], the model parameters, hi, are jointly t-distributed.
As an approximation, in the application of Eq. (7) for regional risk
analysis, the model parameters are assumed to have the normal
distribution. Table 1 shows the mean and coefficient of variation
that is obtained for hi and e for the five zone-types. The table shows
that for the single-residential, the mean of h3 is several times larger
than the mean of h4. This correctly suggests that Sa0.3 is a more
important regressor than Sa1.0 for single-residential buildings,
which are mostly low-rise and thus have lower periods. Con-
versely, the Table 1 shows that Sa1.0 is more influential in a com-
prehensive development zone, which mostly consists of high-rise
buildings with high periods.

To demonstrate the predictions made by the regional damage
model in Eq. (7), Fig. 7 shows the median damage plus/minus
one standard deviation for a single-residential zone. The plot dis-
plays damage for Sa1.0 � Sa0.3 �3�Sa1.0 because points outside this
range are uncommon. The desired smooth S-shaped increase in
damage for increasing ground shaking intensity is observed. It is
also observed in Fig. 7 that the uncertainty in the damage is signif-
icant. This is reasonable because it covers a range of possible build-
ing types within a zone. In fact, it is stressed that the uncertainty in
Eq. (7) has four contributions: (1) Variability in the ground shaking
intensity, which is included in Sa0.3 and Sa1.0; (2) Variability in the
spatial distribution of ground shaking, which is included in the
model parameters because each of the 8330 buildings have a dif-
ferent intensity according to their exact location; (3) Variability
in the amount of damage to each building, which is included in
the FEMA–NIBS fragility curves that are employed; and (4) Vari-
ability in the building characteristics within a zone.

6. Regional loss model

This paper addresses seismic loss due to the cost of repair of
damaged buildings. Once the zone-specific damage ratio, gk, is
computed by Eq. (7), the total regional loss is

l ¼
XK

k¼1

gk � Ak � Ckð Þ; ð8Þ

where Ak = area of zone k and Ck = replacement cost of the buildings
in zone k measured per unit area. Two interpretations are possible
for Ak and Ck. One is that Ak is the floor area of construction, so that
Ck is the replacement cost per unit floor area. Another interpretation
is that Ak is the area of the entire zone, so that Ck is the replacement
cost per unit area of land. In the analysis presented in the compan-
ion paper, the former interpretation is adopted, but in Rt the analyst
is free to adopt either one. In Rt, the analyst defines any number of
corner points of the region by clicking on an interactive map. There-
after, zone percentages within the region are specified. For example,
of the total area of a region, 10% may be commercial and 40%



Table 1
Second moments of model parameters for regional damage models. CoV = coefficient of variation and re = standard deviation of the model error, e.

Single-residential Multi-residential Commercial Industrial Comprehensive development

h1 Mean 0.779 1.415 0.580 0.304 0.663
CoV 0.021 0.101 0.020 0.013 0.030

h2 Mean �3.981 �11.397 �6.333 �5.677 �9.461
CoV 0.016 0.109 0.030 0.034 0.049

h3 Mean 3.126 3.667 2.282 3.401 1.215
CoV 0.018 0.119 0.039 0.035 0.082

h4 Mean 0.698 6.641 4.126 2.916 7.919
CoV 0.051 0.115 0.030 0.036 0.049

h5 Mean 0.436 0.081 0.209 0.249 0.117
CoV 0.028 0.145 0.042 0.046 0.065

re Mean 0.117 0.095 0.095 0.100 0.086
CoV 0.023 0.023 0.023 0.023 0.023
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residential. Because of the different possible interpretations of Ak,
the zone percentages need not add up to 100%. Ak is automatically
computed in Rt once the analyst has specified the zone-percentages,
and the analyst inputs the replacement cost, Ck, as a parameter,
which may be given as a constant or a random variable. Values
for Ck for different zones are provided in the companion paper.
7. Building response models

With reference to Fig. 2, it is straightforward in Rt to replace re-
gional models with many models for individual buildings. This
refinement leads to more accurate results at the cost of more mod-
eling and computer efforts. The characteristics of the building
models are obtained by walk-down surveys, satellite imagery,
and municipal databases. In this and the next sections, the follow-
ing information is employed: (1) Load bearing system and con-
struction material, which places the building in one of 13
‘‘prototype’’ categories, listed in Table 2; (2) Occupancy type,
which places the building in one of, coincidentally, 13 occupancy
classes; (3) State of seismic retrofit and time of construction, which
determines the parameter a for construction quality in accordance
with Table 3; this parameter is analogues to the building code level
in FEMA–NIBS [6]; (4) Number of stories, N, which determines the
building height, H = N�3 m; (5) Footprint area, A; (5) Plan irregular-
ity, IPI, which is unity if the building has a non-rectangular plan and
zero otherwise; (6) Vertical irregularity, IVI, which is unity if there
is a change in the building plan along its height and zero other-
wise; (7) Soft story, ISS, which is unity if the building has a story
with significantly less stiffness than other stories, e.g., parking in
the first floor, and zero otherwise; (8) Short column, ISC, which is
unity if there are columns in the building with high ratio of width
to height and zero otherwise; and (9) Pounding, IP, which is unity if
there is insufficient separation with adjacent buildings and zero
otherwise.

In this section, a new building response model is developed for
each of the 13 prototypes. The responses are peak inter-story drift
ratio, dp, and peak acceleration response, Ap. These two responses
are selected because, according to the definition that is adopted
in this paper, they are directly related to the structural and
non-structural damage. In fact, corresponding damage models
are developed in the next section, while a later section presents
loss models for the 13 occupancy classes. The motivation for devel-
oping new models instead of employing those implemented in HA-
ZUS is threefold: (1) To explicitly describe the model uncertainty
by random variables; (2) To have continuously differentiable mod-
els, which is not the case for, e.g., the response model in HAZUS due
to presence of ‘‘kinks’’ in the demand curve; and (3) To create mod-
els that are updated in a Bayesian fashion once new observations
become available.
Seismograph readings of dp and Ap from past earthquakes are
limited. Therefore, the capacity spectrum method [16] is employed
to generate data for the regression analysis. In particular, dp and Ap

are computed and H, a, and Sa at Tn are recorded as regressors. In
the initial modeling efforts, these regressors were directly em-
ployed in a variety of model forms that unfortunately were incapa-
ble of providing good predictions of dp and Ap. Therefore, a stronger
emphasis on the mechanics of the problem was introduced. As a
result, several ‘‘explanatory functions’’ that define the structural
dynamics of the building are considered as regressors. These
parameters include Tn, as well as the strength-to-weight ratio, V,
yield drift ratio, dy, ductility capacity, l, ultimate drift ratio, du,
and degradation factor, j. Sub-models are established for these
parameters, in which Tn is modeled as a function of the building
height:

Tn ¼ h1 � Hh2 : ð9Þ

V and l are modeled as functions of code level and height:

V ¼ h1 � exp �h2 � Hð Þ � 2þ a� 2ð Þ � a� 1ð Þ
8

; ð10Þ

l ¼ h1 � H�h2 � 10þ a� 2ð Þ � a� 1ð Þ
16

; ð11Þ

because the data indicate that these two parameters typically in-
crease with code level and decrease with height. As stated earlier,
a is a parameter that reflects the construction quality, with values
given in Table 3. The a-dependent terms in Eqs. (10) and (11) are
introduced in this paper based on judgment to achieve the desired
variation of V and l with construction quality. For instance, the
a-dependent factor in the right-hand side of Eq. (10) equals 1.0
for the high code level, while it reduces V by factors of 0.5 and
0.25 for moderate and low code levels, respectively. It is noted that
V represents a means by which damage can be introduced into the
model, for example in aftershock predictions, i.e., in a damaged
building, the strength is reduced to the residual capacity of the
structure, as pointed out in [18]. Next, the yield drift ratio equals
the strength, V�g, where g is the acceleration of gravity, divided by
the elastic stiffness, 4p2/Tn

2, and normalized by H:

dy ¼
T2

n

4p2 �
V � g

H
: ð12Þ

The ultimate drift ratio is

du ¼ l � dy: ð13Þ

Finally, the degradation factor is modeled as a function of the
spectral acceleration demand and the building code level:

j ¼ exp �h1 � Sa � a�h2
� �

; ð14Þ

where the negative sign in the exponent appears because the struc-
ture degrades more as the demand increases. When Sa increases,



Table 2
Building prototypes.

Material Load bearing system

Shear wall Moment frame Braced frame Light frame Frame/masonry wall

Reinforced concrete Concrete shear wall Concrete moment frame – – Concrete frame with masonry infill wall
Precast concrete Precast frame with

concrete shear wall
– – – –

Steel Steel frame with
concrete shear wall

Steel moment frame Steel braced frame Steel light frame Steel frame with masonry infill wall

Wood – Wood large frame – Wood light frame –
Reinforced masonry – – – – Reinforced masonry bearing wall
Unreinforced masonry – – – – Unreinforced masonry bearing wall

Table 3
Building code levels, i.e., construction quality.

Time of construction Unretrofitted Retrofitted

Before 1940 a = 1: Pre-code a =3: Moderate-code
From 1940 to 1975 a = 2: Low-code a=3: Moderate-code
After 1975 a = 3: Moderate-code a = 4: High-code
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then j tends to zero, i.e., full degradation. Conversely, j = 1 when
Sa = 0, i.e., no degradation.

Eqs. (9)–(14) are established separately for each of the 13 pro-
totypes. In turn, the six parameters Tn, V, dy, l, du, and j are utilized
as regressors to model dp and Ap for all prototypes. A number of dif-
ferent model forms are tried. Each model is assessed by plotting
the model predictions against the data and the model residuals
against the regressors. In this process, some model forms exhibited
inadequate predictions and some suffered from heteroscedasticity.
In conclusion, the models that best predict dp and Ap are:

lnðdpÞ ¼ h1 þ h2 � lnðdyÞ þ h3 � lnðduÞ � h4 � lnðVÞ
� h5 � lnðjÞ þ h6 � lnðSaÞ þ h7 � Saþ e; ð15Þ

lnðApÞ ¼ h1 � h2 � lnðdyÞ þ h3 � lnðVÞ � h4 � lnðlÞ
þ h5 � lnðjÞ þ h6 � lnðSaÞ þ e: ð16Þ

The total number of parameters for all models is high, which
prevents the presentation of second-moment information for the
model parameters hi here. However, this information is imple-
mented in Rt and is available in the Ph.D. thesis of the first author
[19]. It is observed that the model form in Eqs. (15) and (16) is
essentially multiplicative due to the natural logarithm on the
left-hand side. A model without the natural logarithm on the
left-hand side suffers from heteroscedasticity and non-normality
of the residuals. The latter is illustrated in Fig. 8, where the residual
quantiles for such a model are plotted against normal theoretical
quantiles. The points in this plot significantly deviate from the
45� line, which indicates the non-normality of errors. This is rem-
edied by the natural logarithm on the left-hand side. The natural
logarithms on the right-hand side improve the model prediction
and homoscedasticity of the model.

Fig. 9 shows the median model predictions against the data for
the drift model in Eq. (15). The data points are relatively close to
the solid line, which is one indication that the model provides rea-
sonable predictions. The models in Eqs. (15) and (16) originally in-
cluded damping and overstrength as regressors, but these were
omitted in a stepwise modeling process, similar to the one de-
scribed in [8]. In conclusion, Tn, V, dy, l, du, and j appear to be
the most important building characteristics.

8. Building damage models

Given the responses dp and Ap, this section addresses the ensu-
ing damage. Damage is here expressed as the ratio of the repair
cost to the replacement cost of the building. Four damage ratios
are developed: (1) Structural damage, gS; (2) Non-structural
drift-sensitive damage, gND; (3) Non-structural acceleration-sensi-
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tive damage, gNA; and (4) Content damage, gC. The first two factors
depend on dp, while the last two depend on Ap.

Data for the regression analysis is generated by substitution of
realizations of dp and Ap into the fragility curves from FEMA–NIBS
[6]. To account for the increased damage due to building irregular-
ities, the information from the building scoring system in ATC-21
[20] is employed. ATC-21 assigns a base score to each building,
which is the negative log10 of the probability of exceeding a 60%
damage ratio. In addition, different irregularities modify the base
score. For example, ATC-21 proposes a decrease of 0.5 to the base
score for a wood frame building if it has a vertical irregularity. Con-
sequently, to generate data for such a building, the probability of
the highest damage state is increased by 100.5 = 3.2. A similar
method is employed in [21] to incorporate irregularities in the risk
assessment of a city. Using the updated damage state probabilities
and the damage ratios associated with each damage state, the ex-
pected damage ratio is computed, with dp, Ap, H, a, and irregularity
indices, Ii, recorded as regressors.

For all models, a smooth increase in damage from 0 to 1 due
to increasing building responses is sought. As in the regional
modeling, polynomial, trigonometric, and even logit functions
were tested, but the standard normal CDF, U, again turned out
to provide the best fit. The building irregularities are included
in the structural damage model by means of the exponential
function. This function produces a factor to increase the damage
if irregularities exist. This yields the following model for struc-
tural damage:

gS ¼ ;
Uðh1 þ h2 � lnðdpÞ þ h3 � lnðHÞ � h4 � aÞ

�expðh5 � IVI þ h6 � IPI þ h7 � ISS þ h8 � ISC þ h9 � IPÞ

!
þ e : ð17Þ

The second moment information for the model parameters hi

for each of the 13 building prototypes is available in Rt and in
[19]. The other damage models are considered independent from
the building prototype and building irregularities:

gND ¼ U h1 þ h2 � lnðdpÞ
� �

þ e; ð18Þ

gNA ¼ U h1 � lnðApÞ � h2 � a
� �

þ e; ð19Þ

gC ¼ U h1 � lnðApÞ � h2 � a
� �

þ e: ð20Þ
Fig. 10 shows median predictions of the structural damage
according to Eq. (17) for four common prototypes. The figure
shows that at the same drift ratio, unreinforced masonry buildings
incur the most damage, while steel frame and concrete shear wall
buildings experience the least damage. Light wood frame buildings
fall in between. The negative sign of the hi parameters associated
with a in Eqs. (17), (19) and (20) correctly indicates that the dam-
age decreases as the quality of construction increases. It is also
noted that the structural damage model in Eq. (17) suggests that
taller buildings incur more damage at the same level of drift ratio.
Furthermore, amongst the hi parameters that correspond to irregu-
larities (h5 –h9) in Eq. (17), regression yields the highest mean for h7

for most prototypes. This implies that soft-story irregularity is the
most detrimental type of irregularity. Conversely, h9 has the lowest
mean for most prototypes, which indicates that pounding imposes
least damage compared with other irregularities.
9. Building loss model

Provided a damage ratio, the associated repair cost is computed
by multiplying it with the building replacement cost per unit floor
area and the building floor area. Summation over structural, non-
structural, and content yields:
l ¼ gS � CS þ gND � CND þ gNA � CNA þ gC � CCð Þ � A � e; ð21Þ

where gi = damage ratios from the previous section, Ci = correspond-
ing replacement costs per unit floor area, A = total floor area, and e
= model error variable that is a normal random variable with unit
mean and 10% coefficient of variation. Specific information for dif-
ferent occupancy classes is provided in the companion paper.

10. Discounting model

Future seismic losses must be discounted to present value to
facilitate comparison of different risk mitigation actions. The dis-
counting model in Rt employs continuous discounting to discount
the future loss, l, to present value, lp. As a result, losses far into the
future have less present value than a loss at present time. The dis-
counting model in Rt takes a dedicated Time parameter, t, as input,
which identifies the time that the loss occurs. The model reads

lp ¼ l � exp �q � tð Þ; ð22Þ

where q = effective interest rate. In the reliability analyses con-
ducted in this study, q is a normal random variable with mean
equal to 3% and 10% coefficient of variation.

11. Conclusions

This study proposes a reliability-based approach for risk analy-
sis. The approach employs a collection of many interacting proba-
bilistic models, and new models are presented in this paper. The
models are generic, and they are applied in the companion paper
to risk analysis for the Vancouver metropolitan region in Canada.
Comprehensive modeling of uncertainty and updating of the mod-
els as new information becomes available are key driving forces
behind this paper. In fact, an important vision behind this paper
is to promote candid modeling of epistemic uncertainty, i.e., reduc-
ible uncertainty, which is subsequently reduced by targeted efforts
as more observations and better mechanical understanding be-
come available. The models are implemented in Rt, which is a
new general-purpose computer program that is tailored for mul-
ti-model reliability and optimization analysis. It is freely available
at www.inrisk.ubc.ca. An important objective in Rt is to make reli-
ability methods and a library of predictive models available to a
broad engineering audience. This is intended to advance the use
of probabilistic models and reliability methods in a variety of
applications, here with focus on seismic risk.

http://www.inrisk.ubc.ca
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