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Abstract
Through-silicon vias (TSVs) in 3D ICs show a significant power
consumption, which can be reduced using coding techniques. This
work presents an approach which reduces the TSV power consump-
tion by a signal-aware bit assignment which includes inversions to
exploit the MOS effect. The approach causes no overhead and results
in a guaranteed reduction of the overall power consumption. An
analysis of our technique shows a reduction in the TSV power con-
sumption by up to 48 % for real correlated data streams (e.g. image
sensor), and 11 % for low-power encoded random data streams.

1 Introduction
3D integration is a promising solution to overcome the challenges
that arise with the limit of Moore’s law. To connect the dies of
a 3D system on chip (3D SoC), through-silicon via (TSV) arrays
are typically used as they yield to a short delay and a high reliabil-
ity [1]. Previous work shows that shifting from 2D to 3D integration,
employing TSVs, allows for a significant reduction in the circuit
footprint and delay, but often increases the power consumption [2].

The system power consumption is significantly affected by TSVs
as they suffer from capacitive coupling which additionally impairs
the signal integrity [3]. In TSV arrays, the coupling capacitances are
large due to the relatively large TSV dimensions and the conductive
substrate [4]. Additionally, the high number of aggressors in 3D
further increases the coupling. Thus, coupling is a critical design
concern for 3D integrated circuits (3D ICs) and consequently caught
the attention of academia and industry (e.g. [4–15]).

Most previous works deal with coupling modeling [4–12] and
coupling suppression using manufacturing techniques [9–12]. How-
ever, these techniques significantly increase the production cost and
further impair the already critical TSV yield [1]. Additionally, most
manufacturing techniques aim for signal integrity optimization,
while leaving the overall power consumption unaffected [9–11].
Since coupling is a pattern dependent phenomena [16], data en-
coding approaches have recently been proposed which reduce the
coupling peaks, without affecting the manufacturing [13–15]. These
techniques again improve the signal integrity but also increase the
TSV count, leading to an even increased overall TSV power con-
sumption [3]. Thus, despite its importance, low-power techniques
for TSVs have not yet been properly researched.

Low-power coding is very efficient for planar metal-wires [3].
Metal-wires only show a significant coupling with their two adja-
cent neighbors and the coupling capacitance between each adjacent
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metal-wire pair has the same size. In contrast, TSVs have a maxi-
mum of eight adjacent neighbors and due to the different distances
between direct and diagonal adjacent neighbors, combined with the
E-field sharing effect [10], several capacitance values exist in a TSV
array [5]. Hence, traditional low-power coding techniques are not
directly applicable for TSV arrays. Thus, there is a need for new
efficient low-power strategies for the TSVs in 3D integration.

In this work we present the first 3D low-power coding approach.
Typical 3D SoCs take advantage of heterogeneous integration [17]:
sensor, processor and memory elements are fabricated in individ-
ual dies, using the most efficient technology for each die. After-
wards the dies are stacked and connected by TSVs. In such sys-
tems, the patterns traversing the TSVs are often temporally corre-
lated and/or normally distributed, resulting in bits with different
switching properties [18]. We show that these properties can be
exploited to effectively reduce the power consumption by an intelli-
gent bit-to-TSV assignment, since the capacitances of TSV arrays
are heterogeneous [5]. An additional fixed inversion of some bits
before the transmission, realized by using inverting TSV drivers,
can further decrease the power consumption, mainly due to the
MOS effect. Our approach only affects the local bit-to-TSV assign-
ments within the individual TSV arrangements, while the global
net-to-TSV-bundle assignment remains routing optimal. Thus, the
overhead costs are negligible.

A key contribution of this work is a formal method to find the op-
timal bit-to-TSV assignment (including inversions), that minimizes
the TSV power consumption for any given data stream and TSV
arrangement. To overcome the need for the exact data properties,
systematic bit-to-TSV assignments, generally applicable for DSP
signals, are contributed as well. A wide set of analyses, for real and
synthetic data, shows that our approach can reduce the power con-
sumption of modern TSVs by over 40 %, despite its negligible costs.

The remainder of this work is structured as follows: after some
preliminaries, the method to determine the optimal assignment
is derived in Sec. 3. Systematic assignments for DSP signals are
presented in Sec. 4, which are compared to an optimal assignment for
real data streams in Sec. 5. In Sec. 6, the combination of our approach
with traditional low-power codes is briefly discussed. Experimental
results are presented in Sec. 7. Finally, a conclusion is drawn.

2 Preliminaries: TSV model
The power consumption of TSVs can be precisely estimated by
the power consumption related with its capacitances [6]. Thus, to
calculate the TSV power consumption, the capacitance matrices
for modern TSV arrays are required. In this work, the capacitance
matrices are extracted by means of electromagnetic field simulations
for 3D structures of TSV arrays, using Ansys Q3D extractor.

In the analyzed structures, the TSVs are regularly placed in a
M×N array, where M and N are arbitrarily defined. The distance
between the centers of two direct neighbored vias is constant and
denoted by d . The cylindrical TSVs of length l and radius r are
made up of copper. The TSVs traverse through the p-doped silicon
substrate, which has a conductivity σ of 10 S/m. For DC insulation,
each TSV is surrounded by a SiO2 dielectric of thickness r/5. In the



model, the geometry parameters d and r are varied, in order to
analyze different global TSV dimensions predicted by the ITRS for
the year 2018. The length of the TSVs is defined by the substrate
thickness equal to 50 µm. A TSV, its dielectric and the substrate
form a metal oxide semiconductor (MOS) junction. Thus, a TSV is
surrounded by a depletion region, which is modeled in the Q3D
extractor as a depleted substrate area (σ = 0) [19]. The width of
a depletion region surrounding TSV i is calculated by solving the
exact Poisson’s equation for an average TSV voltage of pri ·Vdd ,
where pri is the probability of a logical 1 on TSV i . Vdd = 1V is
the power supply voltage.

For the final validation of our work, circuit simulations are used.
Therefore, full 3π -RLC circuits of the TSV arrays are also extracted.

3 Power-optimal bit-to-TSV assignment
In this section we derive our approach to reduce the TSV power
consumption by choosing the optimal (fixed) bit-to-TSV assignment.
The approach does not induce a circuit nor a TSV overhead. The
only overhead cost is a slight increase in the local metal-wire lengths
as the prior global net-to-array assignment remains routing optimal.

To quantify precisely the costs of our approach, we analyze a
3×3 TSV array, including the local routing, for a commercial 40 nm
technology and TSVs with a radius of 2 µm and a minimum pitch
of 8 µm. In detail, we analyze all possible bit-to-TSV assignments,
while considering the array symmetry. The worst-case routing only
increases the path parasitics by a maximum of 0.4 %, versus a routing
which aims for a local wire length minimization. The overall mean
parasitic increase for all assignments is below 0.2 % with a standard
deviation below 0.1 %. Thus, the effect of the local routing is marginal
as TSV parasitics are dominant. Additionally, due to Keep-out-Zone
restrictions, no active components are located nearby TSV arrays.
Thus, we do not face a metal-layer-utilization problem. Summarized,
the overhead costs for our approach are in fact negligible.

In the following, we derive a formula to calculate the power-
optimal bit-to-TSV assignment. Thereby, we do not only consider
the possibility of a mere reordering, but also the transmission of
negated bits over some interconnects.

First of all, we review the model for the power consumption of
(capacitive) interconnect structures, stated in Ref. [6]. Due to the
thick oxides, leakage currents can be neglected for interconnects.
The mean dynamic power consumption of an N bit interconnect for
an initial assignment, mapping bit i (bi ) to interconnect i , is equal to:

P =
Vdd

2 f

2
*.
,

N∑
i
E{∆b2i }Ci,i +

N∑
i,j

E{∆b2i − ∆bi∆bj }Ci,j
+/
-
. (1)

Here, the first term Vdd 2f/2 depends on the power supply voltage
Vdd and the clock frequency f , which are not affected by a coding
approach. Thus, in the following we use the mean power consump-
tion normalized by this factor: Pn = 2P/Vdd 2f . In Eq. 1, Ci,i is the
ground capacitance of interconnect i , andCi,j is the coupling capaci-
tance between the two interconnects i and j . Furthermore, E{} is the
expectation operator. ∆bi represents the switching of bit i , which
is either 1 (0 to 1 transition), 0 (no transition), or −1 (1 to 0 transi-
tion). Thus, E{∆b2i } is the self switching probability of interconnect i .
While the power consumption due to the ground capacitance of
an interconnect i is determined only by its self switching, ∆bi , the
power consumption associated with a coupling capacitance Ci,j , is
additionally affected by a switching on interconnect j, ∆bj . Com-
pared to the scenario where only interconnect i toggles (∆bj = 0):
the contribution of Ci,j to the power consumption is doubled when

interconnect j toggles in the opposite direction (∆bi∆bj = −1) and
vanishes if it toggles in the same direction (∆bi∆bj = 1).

The normalized power consumption Pn , can also be expressed
using Frobenius inner product (⟨⟩) of two matrices T and C:

Pn = ⟨T,C⟩. (2)

Here, C is the capacitance matrix, with capacitanceCi,j on entry i ,j .
T presents the switching probabilities of the bits:

T = Ts1N×N − Tc, (3)

where Ts is a matrix with the self switching probabilities E{∆b2i }
on the diagonal entries, and zeros on the remaining entries. Tc
represents the coupling probabilities with zeros on the diagonal
entries and E{∆bi∆bj } on entry i, j. 1N×N is a matrix of ones.

Since the capacitances of the C matrix are heterogeneous [5, 10],
the assignment of the logical bits to the TSVs affects the power
consumption. Moreover, a fixed inversion of some of the logical
bits before the transmission may potentially decrease the T en-
tries. If some bit pairs of the data stream are negatively correlated
(E{∆bi∆bj } < 0), initially in between them the likelihood of transi-
tions in the opposite direction (∆bi∆bj = −1, causing the highest
power consumption) is higher than the likelihood of aligned transi-
tions (∆bi∆bj = 1, causing the lowest power consumption). In this
scenario, the transmission of one of the two bits i or j negated over
an interconnect (e.g.bi → interconnect x ) results in a positive spatial
correlation, since E{∆bi∆bj } = −E{∆bi∆bj } > 0, and consequently
to a reduced power consumption. Additionally, the bit assignment,
including inversions, can also affect the TSV capacitances. Due to
the MOS effect, an increased 1-bit probability on a TSV enlarges
the width of its depletion region, resulting in up to 40% lower ca-
pacitance values [6]. Therefore, for TSVs, transmitting data streams
where the bit probabilities are not equally balanced (E{b} , E{b}),
the capacitance values depend on the assignment, including possible
inversions. In the following we model these aspects.

First, we consider the switching matrix T. The effect of a reassign-
ment, including inversions, on T is mathematically expressed as:

T′ = T′s1N×N − T
′
c = AπTsAT

π 1N×N − AπTcAT
π . (4)

Here, Aπ is a permutation matrix [20], which also performs inver-
sions. A valid Aπ has one 1 or one −1 in each column/row while all
other matrix entries are 0. To assign the ith bit of the data stream to
line j, Aπ j,i is set to 1. To assign the negated bit to the line, Aπ j,i
is set to −1. Thus, for an exemplary 3 bit interconnect structure, to
assign bit 3 negated to line 1, bit 1 to line 2 and bit 2 to line 3:

Aπ =



0 0 −1
1 0 0
0 1 0


. (5)

Second, we derive a mathematical method to estimate the TSV
capacitance matrix C depending on the bit-to-TSV assignment. The
exact bit probability — capacitance relation is very complex, and
consequently not suitable to determine the optimal assignment at
high levels of abstraction. However, a linear regression to estimate
the capacitance values as a function of the bit probabilities has a nor-
malized root mean square error below 2% [6]. Thus, the following
equation can be used to estimate the size of a coupling capacitance
for an assignment of the bits i and j to the TSVs i and j:

Ci,j = C0,i,j + ∆Ci,j (E{bi } + E{bj }), (6)

where C0,i,j is the capacitance value for all 1-bit probabilities equal
to zero and ∆Ci,j is the derivation of the capacitance value with
increasing 1-bit probability E{bi } or E{bj }. Since our requirement is



a formula where an inversion of the bits leads to one simple negation
in the formula, we use a shifted form of Eq. 6:

Ci,j = CR,i,j + ∆Ci,j (ϵi + ϵj ). (7)

Here CR,i,j is the capacitance value for all bit probabilities equal to
1/2 (CR,i,j = C0,i,j + ∆Ci,j ). ϵi is mathematically expressed as:

ϵi = E{bi } − 1
2 . (8)

Since E{bi } = 1 − E{bi }, an inversion of bi , negates the ϵi value.
Thus, the capacitance matrix as a function of Aπ is expressed as:

C′ = CR + ∆C ◦ (Aπ ϵ11×N + 1N×1ϵTAπ
T ), (9)

where CR and ∆C are matrices containing the CR,i,j and ∆Ci,j
values. ϵ is the vector of ϵi values. ◦ is the Hadamard operator.

Finally, we can determine the power-optimal bit assignment Âπ :

Âπ = argmin
Aπ ∈SN

(
⟨T′,C′⟩

)
, (10)

where Eq. 4 and Eq. 9 are substituted for T′ and C′. SN is the set of
valid permutation matrices including all possible inversions.

In practice Âπ is determined with any of the several optimization
tools available to reduce the computational complexity. Although
overall up to several hundreds of TSVs exist in modern 3D ICs, the
runtime of an optimization is negligibly low for our problem as it is
executed for each TSV bundle individually whose size is relatively
small. In this work, we exemplary use simulated annealing [21] to
determine the optimal mapping.

4 Systematic TSV assignments for DSP signals
In some scenarios a sample data stream, required to obtain T, may
not be known at design time. In this case, the basic characteristics of
the data can be used to obtain systematic assignments. As an exam-
ple, in this section we focus on systematic assignments, applicable
for DSP signals as they build an important data type in SoCs.

The bit-level characteristic of DSP signals arewell understood [18],
and only briefly summarized in the following. In many DSP signals,
due to a zero mean normal distribution of the patterns, MSB pairs
are strongly correlated (E{∆bi∆bj } ≫ 0). Additionally, a temporal
pattern correlation affects the self switching (E{∆b2i }) of the MSBs.
The self switching probability is 1/2 for no pattern correlation and de-
creases with an increasing pattern correlation. Generally, the LSBs
tend to be uncorrelated (E{∆bi∆bj } = 0; E{∆b2i } = 1/2). Furthermore,
all bit probabilities are equal to 1/2. Consequently, the capacitance
matrix is assignment independent, resulting in:

P ′n = ⟨T
′
s1N×N − T

′
c,CR⟩. (11)

Because of the positive bit correlations, we present systematic
assignments without bit inversions. More precisely, we present two
systematic approaches: one exploiting a temporal pattern correlation
and one exploiting a mean-free normal distribution of the patterns.

First, we analyze temporally correlated, equally distributed pat-
terns. An equal distribution causes no spatial bit correlation, which
implies: E{∆bi∆bj } = 0 for all i , j. Thus, for equally distributed
signals, all elements of T′c are zero. Therefore, Eq. 11 simplifies as:

P ′n = ⟨T
′
s1N×N ,CR⟩ =

∑
i
T ′s i,iCT ,i , (12)

where CT ,i is the sum of all capacitances connected to interconnect
i . T ′s i,i is the i

th diagonal entry of T′s, which is equal to the self
switching probability of the bit transmitted over interconnect i .

Therefore, to minimize P ′, bits with the highest self switching
probability E{∆b2i } have to be transmitted over TSVs with the lowest

a) Spiral

LSB

MSB

b) Sawtooth

MSB

LSB

Figure 1. Systematic bit-to-TSV assignments: Spiral for correlated
signals and Sawtooth (ST) for normally distributed signals.
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Figure 2. Decrease in power consumption (Pr ed ) due to the optimal
and the Spiral bit-to-TSV assignment for sequential data streams.

overall capacitance CT ,i and vice versa. In TSV arrays, corner TSVs
have the lowest overall capacitance, and edge TSVs have a lower
overall capacitance than TSVs in the middle of an array [5]. Thus,
the optimal assignment maps the bits with the highest self switching
to the array corners. The bits with the next highest self switching
are mapped to the array edges. The remaining bits are mapped to the
array middle. Since the MSBs of correlated patterns show the lowest
self switching, our systematic assignment for correlated patterns
forms a spiral, as illustrated in Fig. 1.a.

We validate our Spiral mapping for synthetic sequential data
streamswith varying branch probability, as their patterns are equally
distributed and temporally correlated. With the branch probability,
the temporal pattern correlation varies. The simulated power con-
sumption reductions, compared to a worst-case random assignment,
due to the Spiral and the optimal assignment, are shown in Fig. 2
for two TSV arrays: a 4×4 array with r = 2 µm; d = 8 µm, and a
5×5 array with r = 1 µm; d = 4.5 µm. Fig. 2 reveals that the power
consumptions for both assignments, optimal and Spiral, are almost
equal. This proves the optimality of the systematic approach.

As a second scenario, we investigate a systematic assignment
for mean-free normally distributed but temporally uncorrelated
patterns. This implies that the self switching probability of each bit
is 1/2. Thus, all diagonal elements of T′s are 1/2 independent of the
assignment, which results in a normalized power consumption of:

P ′n = ⟨
1
2 · 1N×N − T

′
c,CR⟩ =

1
2

∑
i
CT ,i −

∑
i,j

T ′c i,jCi,j , (13)

whereT ′c i,j is the correlation between the two bits transmitted over
the interconnects i and j. Therefore, in order to reduce the power
consumption, highly correlated bit pairs (large E{∆bi∆bj }) have to
be assigned to TSV pairs connected by a large coupling capacitance.
In TSV arrays, the biggest coupling capacitances are located between
corner TSVs and their two direct adjacent edge TSVs, due to the
reduced E-field sharing effect [5]. MSBs of normally distributed sig-
nals have the highest cross-correlation. Thus, our second systematic
assignment has to map the MSB onto a corner and the next lower
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Figure 3. Power consumption reduction (Pr ed ) due to our mapping
approaches for uncorrelated (3.a) and correlated (3.b-3.e; ρ , 0),
Gaussian distributed data streams with standard deviation σ .

significant bit onto one of its direct adjacent edge TSVs. The follow-
ing bits, recursively, have to be mapped by finding the TSV in the
array that has the biggest accumulated coupling capacitance with all
previously assigned TSVs. Finally, our systematic assignment results
in the MSB to LSB mapping illustrated in Fig. 1.b. Over the first two
rows the bits, from the MSB downwards, are mapped in a sawtooth
manner. From the third row on, a simple row-by-row mapping is
used. Fig. 3.a shows the reduction in the power consumption due to
the optimal and the Sawtooth (ST) assignment for the transmission
of Gaussian distributed 16 b pattern sets, over a 4×4 TSV array (r =
2 µm; d = 8 µm). The results are plotted over the standard deviation
of the patterns, to analyze different normal distributions. The fig-
ure underlines the optimal nature of the Sawtooth assignment for
normally distributed, temporally uncorrelated patterns.

However, in some real applications, temporally correlated and
normally distributed signals occur. For these data streams, the opti-
mal TSV assignment is not trivial and dependent on the correlation
quantities. As shown in Fig. 3.b-3.e, for negatively correlated, Gauss-
ian distributed patterns the Sawtooth mapping leads to the lowest
power consumption (reduction up to 40%), while for a positive
temporal correlation neither Sawtooth nor Spiral mapping lead to
the optimal power consumption. However, compared to a random
assignment both approaches still lead to a significant improvement.

Summarized, if it is not possible to determine the optimal as-
signment by means of Eq. 10, which guarantees the lowest possible
power consumption, the proposed Sawtooth mapping should be
applied for normally distributed signals and the Spiral mapping for
primarily temporally correlated signals.

5 Comparison of systematic and optimal
mapping for real DSP signals

Until this point, we investigated the efficiency of our proposed
technique for synthetic DSP signals. In the following, we analyze
and compare the efficiencies of the systematic and the optimal
bit-to-TSV assignments for real DSP signals. Thereby, we focus
on an important class of systems: heterogeneous 3D SoCs. Two
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Figure 4. Power consumption reduction (Pr ed ) for an optimal/Spiral
assignment and image sensor patterns. “+xS” indicates x stable lines.

commercially relevant examples are 3D VSoCs [17], including dies
for image sensing and dies for digital image processing, and SoCs
with an dedicated MEMS sensor die, bonded to a digital die [22].

5.1 Vision system on chip
In contrast to pure CMOS image sensors, VSoCs are used to capture
and process the images in a single chip. This overcomes the limita-
tions of traditional systems due to expensive image transmissions
between sensor and processor, especially for high frame rates [17].

In a 3D VSoC some dies are dedicated for image sensing and
digitalization and some for image processing. In this subsection, we
investigate our approach for the transmission of digitalized image
pixels from a sensing layer to a processing layer.

The first three analyses are performed for data stemming from
a 0–255 RGB image sensor using a Bayer pattern filter [23]. First,
we analyze the parallel transmission of all four RGB colors (1 red, 2
green, 1 blue) of each Bayer pattern pixel over one 32 b (4×8) TSV
array. For the second analysis, we assume four additional TSVs in the
array (resulting in a 6×6 array): one TSV carrying an enable signal,
one redundant TSV for yield enhancement and two power/ground
TSVs to supply the sensor. In the third analysis the four colors of
each pixel are transmitted one after another (RGB Mux.) over a 3×3
array including an additional enable signal. The fourth analysis, is
performed for a data stream stemming from a 0–255 grayscale image
sensor. Here, the transmission of one pixel per clock cycle over a 3×3
array including an enable signal is investigated. All analyzed data
streams are composed of pictures of cars, people and landscapes.

For all analyses, the reduction in the power consumption, against
random assignments, is investigated for the optimal and the Spiral
assignment, since the strong correlation of adjacent pixels generally
results in a temporal pattern correlation. Redundant, enable and
power/ground signals are considered as (almost) stable. Redundant
and enable signals are assumed as set to logical 0 when unused,
whichmay be exploited by inversions.Vdd and GND lines are always
on logical 1 and logical 0, respectively, but an inversion for power
lines is not possible and consequently forbidden for the assignment.
For the simultaneous transmission of a complete RGB pixel, the bits
of the four color components are interleaved one-by-one for the
Spiral mapping. Since stable lines are perfectly correlated, they are
added as MSBs for the Spiral mapping.

For the global TSV dimensions, we choose the minimum ones
predicted for the year 2018 (r = 1 µm; d = 4 µm). To show the effect
of varying TSV geometries, the power consumption for the 3×3 and
the 6×6 array is also investigated for r = 2 µm and d = 8 µm.

The simulated power reductions due to the various assignments
are reported in Fig. 4. The results show that the Spiral mapping
is almost optimal for the transmission of image sensor patterns
without stable lines and always leads to a power reduction of 11–
13 %, except for the multiplexed colors, where the reduction is only
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5 %. Here, due to the multiplexing, the pixel correlation is lost why
only the reassignment of the stable line results in a power reduction.

With stable lines in the TSV array, the power reduction due to an
optimal assignment is up to 2.5 percentage point higher, as it consid-
ers inversions and the coupling properties of stable lines. Therefore,
with stable lines, the potential to reduce the power consumption,
using our approach, is also higher.

Summarized, the simulations show that both, optimal and system-
atic, bit-to-TSV assignments can effectively reduce the TSV power
consumption in 3D VSoCs. However, in the presence of additional
stable lines, the optimal approach has a noticeably higher gain.

5.2 MEMS sensors in a 3D system on chip
In this subsection we analyze the efficiency of our technique for
MEMS sensor data, transmitted from a sensing to a processing layer.
Therefore, sensor signals from a modern smartphone in various
daily use scenarios are used. Analyzed is a magnetometer, an ac-
celerometer and a gyroscope, all sensing on three axes (x, y and z)
with a resolution of 16 b. We assume a transmission of one sample
per time step over a 4×4 array with r = 2 µm and d = 8 µm. We ana-
lyze the transmission of the single data streams for two scenarios.
In the first one, only the root mean square (RMS) values resulting
from the three axis values are transmitted. In the second one, the
x-, y- and z-axis values are regularly interleaved/multiplexed (XYZ).
For completeness, we also analyze the transmission of all three data
streams over one TSV array. Thereby, a regular pattern-by-pattern
multiplexing of the three XYZ-interleaved data streams is assumed.
Here, we investigate both systematic bit-to-TSV assignments since
normally distributed and temporally correlated data streams occur.

The simulated mean power consumption reductions against ran-
dom assignments are shown in Fig. 5. The figure reveals that, for
the interleaved data streams, the proposed Sawtooth mapping is
only slightly worse than the proposed optimal assignment which
reduces the power consumption by up to 21.1 %. Generally, the sin-
gle axis values are normally distributed and temporally correlated.
However, for interleaved data streams temporal correlation is lost.
Thus, these scenarios build examples for temporally uncorrelated,
normally distributed signals, since an interleaving does not affect
the pattern distribution. The small gain for the optimal bit-to-TSV
assignment over the Spiral mapping is caused by the fact that not
all sensor signals are perfectly mean-free.

In contrast, for the RMS data streams, the Spiral mapping signifi-
cantly outperforms the Sawtooth mapping because here the patterns
are unsigned (no zero mean) and spatially correlated. However, for
the RMS data streams, the maximum possible power reduction due
to a reassignment is 13.3 %, which is significantly lower than the
maximum power reduction for the interleaved data streams.

In conclusion, for real data streams, the exploitation of a mean-
free normal distribution is more efficient than the exploitation of a

temporal pattern correlation. Furthermore, due to non idealities in
real signals, the optimal approach has a slightly higher gain than
a systematic one. But generally, both assignments, systematic and
optimal, lead to a significantly reduced TSV power consumption.

6 Combination with data encoding
Modifying the data properties using encoding techniques is a well
established low-power approach [3]. Our proposed technique en-
ables the use of existing low-power coding techniques, designed to
reduce the power consumption of metal-wires and/or gates, for 3D
integration in the most efficient way by finding the optimal bit-to-
TSV assignment. Thus, if an encoding is already applied for other
components, no additional overhead is required for the TSV coding.
Unencoded, most data streams generally have a balanced number
of 0- and 1-bits. However, data encoding techniques often lead to
a large fraction of 0-bits [3], which affects the power consumption
in 3D negatively. Here, our optimal mapping further boosts the
efficiency of the coding approach by transmitting inverted bits. Gen-
erally, an inversion is realized by using inverting buffers instead of
non-inverting ones (or vice versa) on both sides of the TSV. However,
inversions can be also hidden in the coder/decoder.

For example, Gray coding is a popular approach to reduce the
power consumption of gates and metal-wires. The nth binary-to-
Gray encoders output is equal to the nth input XORed with the
n+1th input (Y [n] = X [n] ⊕ X [n + 1]). Consequently, due to the
spatial MSB correlation in normally distributed signals, Gray coding
results in bits nearly stable on logical 0 for this kind of data. This
reduces the switching activities but also decreases the 1-bit prob-
abilities. Here the required inversions for the optimal bit-to-TSV
assignment can be realized inside the Gray encoder and decoder:
XOR operations are swapped with XNOR operations to obtain the
negated code words which increases, instead of decreases, the 1-bit
probabilities, while leaving the switching activities unaffected. Since
XOR and XNOR operations have the same costs, this optimization
of the data encoding technique is overhead free.

7 Experimental results
In this section, our approach is investigated for real signals and tra-
ditional coding approaches by means of Spectre circuit simulations
in combination with the results from the Q3D extractor. Here, TSV
arrays with r = 1 µm and d = 4 µm, including the connection to
the metalization are analyzed. For the circuit simulations, 22 nm
Predictive Technology Model drivers of strength six are employed.
The clock frequency is set to 3 GHz. Considered is the overall power
consumption, including leakage and the drivers. To report values
independent of the TSV count in the array, and redundant bits in the
data stream, the power consumptions reported in Fig. 6 are scaled
to values for an effective transmission of 32 b per clock cycle.

The power consumption is investigated for the transmissions of
four different data streams, if our optimal approach is applied, and
if not. The first data stream contains the MEMS sensor signals from
Subsec. 5.2, where, for 3,900 cycles, patterns of a single axis of one
sensor are transmitted. Subsequently, patterns stemming from the
next sensor are transmitted for 3,900 cycles and so on, until data
for all axes and sensors has been transmitted. We refer to this data
stream as “Sensor Seq.”. For the second data stream “Sensor Mux.”,
the patterns belonging to the individual axes are interleaved one-
by-one. For the first two data streams, a pattern width of 16 b and a
4×4 array is chosen. The results show that multiplexed sensor data
leads to a significantly higher power consumption, since the pattern
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Figure 6. TSV power consumption (including drivers and leakage)
if the proposed optimal bit-to-TSV assignment is used and if not.

correlation is lost. Nevertheless, because of limited buffer capabilities
in a sensing layer, the more common scenario is the multiplexed
transmission. However, temporal correlation can be retained using
Gray encoding, which can be realized in the sensors analog-to-digital
(AD) converters to avoid a noticeable implementation overhead.
Thus, Gray encoding is twice analyzed for the sensor data: once
in the traditional way and once in combination with our proposed
optimal bit-to-TSV assignment. For the multiplexed binary sensor
data, our approach, without Gray encoding, leads to a decrease
in the power consumption by 18.3 %. In contrast, the plain Gray
encoding even leads to a higher power consumption (reduction
8.6 %). A combination of the Gray encoder with our approach, more
than doubles the coding efficiency (power reduction 21.7 %).

The third data stream contains multiplexed RGB Bayer filter col-
ors for different pictures. The 8 b data stream is transmitted together
with a redundant line for yield enhancement over a 3×3 array. As
known from Subsec. 5.1, the temporal pattern correlation, caused
by the pixel correlation, is lost if the RGB colors are multiplexed.
Additionally, no normal distribution is present in the patterns. This
leads to a dramatic increase in the interconnect power consumption
and to no gain for a Gray encoding. To retain spatial correlation for
the multiplexed data, a correlator is used [3], which again can be
hidden in the AD converters. For a new R, G or B value, the value is
first bitwise XORed with the previous value of the same color and
subsequently transmitted. Since consecutive R, G or B values are
highly correlated, this again leads to MSBs nearly stable on zero.
Thus, the correlator produces a spatial and temporal bit correlation,
reducing the power consumption and increasing the potential gain
of a bit-to-TSV assignment. Thus, the correlated RGB data transmis-
sion over a 3×3 array, including one redundant TSV, is also analyzed.
Again, our approach swaps XOR with XNOR operations for the cor-
relator and transmits the inverted redundant line to maximize the
number of 1-bits. While our approach only leads to a decrease in the
power consumption by 6.8 % for the unencoded data, our approach
combined with the correlator leads to a dramatic decrease in the
power consumption from 0.61mW to 0.36mW (−41 %). In contrast,
the plain correlator only reduces the power consumption by 25.2 %.

To show the general usability of our approach for all kinds of
data, the last analyzed data stream is a random 7 b data stream,
encoded to a 8 b data stream using the coupling invert encoding
from Ref. [24], transmitted together with a flag with a set probability
of 0.01 % over a 3×3 array. The coupling encoding is derived for the
physical structure of metal-wires, and thus intrinsically not suitable
for TSVs. Here, we assume a 3D network on chip, where the data is
mainly transmitted over 2D links and a dedicated encoding for each
3D link is too cost intensive. However, the coding approach leads
to a spatial correlation in between some bits and to a temporal bit
correlation. This and the set probability of the flag is exploited by
our low-power approach. Thus, also for the random 2D coded data,

our approach reduces the TSV power consumption by 11.2 %. This
shows the efficiency of our technique for a wide set of applications.

Observe, that in this section the TSV dimensions are equal to the
minimum ones predicted by the ITRS for the year 2018. For thicker
TSVs and/or wider TSV pitches, which is the common case today,
our approach causes an even higher reduction in the TSV power
consumption (e.g. up to 48 % for r = 2 µm and d = 8 µm).

8 Conclusion
This work presents an approach to reduce the TSV power consump-
tion by an intelligent, physical-effect-aware, local bit-to-TSV assign-
ment, which exploits the stochastic bit properties of the transmitted
data. Analyses for a large set of real and synthetic data streams
underline the importance and efficiency of our low-power approach
which is able to reduce the power consumption of modern TSVs by
over 40 %, without inducing noticeable overhead costs.
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