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Abstract – This paper deals with the fault location on high 
voltage series compensated lines. A new approach to evaluate the 
fault distance is proposed. The distributed-parameter line equa-
tions are preferred to describe the overhead lines. The algorithm 
uses two-terminal measurements, but those data do not require 
synchronization. No information on the fault resistance value and 
on the fault type is necessary. 

Numerical tests with time-domain sampled measurements are 
carried out. The simulations are performed using EMTP-ATP. 
Results for various fault resistance and fault distance values, and 
fault type conditions, are reported. 

Keywords – Distance protection, series compensated lines, 
EMTP, fault location, line equations. 

I. INTRODUCTION 
dentification of a fault and accurate estimation of the fault 
distance become increasingly important for high power 

transmission lines in the deregulated electricity market. 
The possible approaches to the digital fault location prob-

lem using moderately low sampling rate of measured data, on 
which this paper will be focused, can be divided into two main 
groups, namely the algorithms using data from one terminal of 
a transmission line, and the other using data from both termi-
nals. The former is superior in the economical point of view 
because it requires no data transfer along long distances and 
no data synchronization [11]. The latter is superior in the accu-
racy of fault location point of view, but requires a data transfer 
system. 

Regarding to the line description for fault location algo-
rithms it can be distinguished between different methods. For 
example, one of these approaches can be the use of lumped 
line impedances and capacitances. Alternatively, the use of 
complete line differential equations allows a higher accuracy 
in the line modelling [1], [2]. In particular, the lossless repre-
sentation allows to solve the line equations directly in the time 
domain. Considering more realistically the frequency depend-
ence of line resistance and inductance, mainly due to the skin 
effect [7], the line equations are solved in frequency domain 
using the modal theory. Line equations that consider distrib-
uted line parameters are utilized for the line representation in 
this work. 

M. Kizilcay is with the University of Siegen, D-57068 Siegen, Germany 
(e-mail kizilcay@ieee.org) 

P. La Seta is with the Technische Universität Dresden, D-01063 Dresden, 
Germany (e-mail laseta@ieeh.et.tu-dresden.de) 

The present paper deals with the fault location estimation 
on series compensated lines. The compensation stage is gener-
ally consisted of capacitor banks and protective devices, like 
MOV, that prevent overstressing of the capacitors during 
faults. The non-linearity of such equipment is well known, and 
the accuracy in its model strongly affects the accuracy of the 
fault distance evaluation. 

If the voltage drop across the line is expressed as a function 
of the distance, the presence of a compensation stage along the 
line introduces a discontinuity at the compensation location. 
Due to this discontinuity a problem for the fault location algo-
rithm arises to assume that the fault location is either in front 
of or behind the compensation point, thus providing two solu-
tions to the problem. 

A fault location algorithm for series compensated lines has 
to be supported by a criterion to decide which one of the two 
estimated solutions is the correct one. Different criteria were 
proposed in the literature; in [5] and [9] a criterion based on 
the estimated fault resistance has been suggested. 

For the new method based on two-terminal measurements 
no assumption is to be made regarding the fault resistance 
value and the fault type. The proposed approach is general, 
and based only upon known electrical properties of the trans-
mission line. 

II. LINE EQUATIONS

As mentioned in the Introduction, the overhead line is 
modelled using distributed-parameter line equations. This 
way, unbalance conditions and coupling between phases of 
transmission lines and circuits of parallel lines can be taken 
into account. 

The conductors’ electrical properties can be expressed de-
fining resistive, inductive and capacitive elements as quantities 
per unit length. These terms are called respectively R’, L’ and 
C’. The conductance term G’, to take into account dissipative 
effects like Corona and others, will be neglected. The equiva-
lent of an infinitesimal section of a single-phase line is shown 
in Fig. 1. 
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Fig. 1.  An infinitesimal section of a single-phase homogeneous line. 
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Let us consider an infinitesimal section of a multi-phase 
homogenous line, and denote with R’, L’ and C’ the coupled 
and symmetric line resistance, inductance and capacitance 
matrices. The time domain voltage and current equations for 
such a line section are as follows: 
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A mathematical way to solve this equation system in the 
time domain would lead to non-homogenous wave equations, 
whose non-homogeneous term would be in particular a term 
depending mainly on the resistance of the conductors. The best 
way is to solve this problem in the frequency domain by ap-
plying the Fourier theorem and reducing the time and space 
depending functions (voltage and current) to only space de-
pendent functions, for a constant frequency. Since line equa-
tions will be evaluated at a constant frequency for fault loca-
tion, 2 fω π=  will be omitted in the further analysis. The 
equations in frequency domain can be expressed now as fol-
lows: 
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where: 

          j jω ω= + =Z' R' L' Y' C'

Differentiating both equations (3) according to the x vari-
able, and rearranging the terms, one can easily obtain: 
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The matrices Z’ and Y’ are not diagonal, and this means 
that the solution of the equations (4a) and (4b) is not straight-
forward. The differential equation set that describes three-
phase single- or multi-circuit lines can be solved in an efficient 
way with the help of modal theory [2] [3]. In modal domain a 
number of single-phase equivalent uncoupled circuits is repre-
sented, each of which being a mode that can be dealt with 
independently from others modes. 

Although modal theory is well known, basic equations will 
be given below for completeness. In general, the matrices Z’ 
and Y’ are to be assumed symmetric. Using two transforma-
tion matrices, Ti for currents and Tv, for voltages: 

 = =v m i mV T V I TI (5) 

the line equations can be transformed from phase coordi-
nates to the modal domain. By using the eigenvalue theory to 
determine the transformation matrices, it results: 
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The differential equations result to be decoupled through 
the square of matrix Γ, that is the modal propagation matrix. 
So it is possible to find a solution to the equation system (6) 
by solving a number of simple second order equations. In a 
matrix form, this general solution can be expressed as follows: 

( ) x xx e e−= +Γ Γ

m 1 2V C C (7a)

( ) x xx e e−= −⎡ ⎤⎣ ⎦
Γ Γ

m Cm 1 2I Y C C (7b)

The modal characteristic impedance matrix ZCm (and the 
modal characteristic admittance matrix YCm) can be expressed 
as: 
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If the line were considered as lossless, it would be easy to 
find a solution directly in the time domain, because the equa-
tion set (7) for each mode would have a purely imaginary 
exponential term, so that those equations would be trans-
formed from frequency to time domain by simply introducing 
a time delay. In the present work, the losses and the frequency 
dependence of the line parameters are taken into account. 

For a line with a length l, the two wave coefficient vectors 
C1 and C2 can be found from the equations (7) by evaluating 
at 0=x  and x l= , corresponding to the two terminals of the 
line K and M, respectively. Substitution of the boundary con-
ditions in the equations (7) results in: 
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III. FAULT LOCATION METHOD

The main aspects of the proposed approach are summarized 
in this section briefly. For this purpose it is worth to refer to 
the line configuration shown in Fig. 2 for the following con-
siderations. 

In Fig. 2 a fault on a series compensated high voltage over-
head transmission line is depicted. The two terminals of the 
line are identified by the nodes K and M, respectively. The line 
is connected to the power network, represented by Thevenin 
equivalents at both terminals consisting of voltage sources and 
source impedances ZK and ZM. The capacitor banks equipped 
with MOV protection devices are placed at a known distance h 
from the node K. Let us denote the two buses immediately 
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Fig. 2.  Single-line diagram of a series compensated line with a fault at distance d. 
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Fig. 3.  Equivalent circuit of the series compensated line and source networks expressed in modal quantities. 

before and after the capacitor banks as P and S, respectively. 
In Fig. 2 the fault location is supposed to be after the compen-
sation stage, at a distance d from node K. The total line length 
is l. 

In Fig. 3 the representation of the system in Fig. 2 in modal 
quantities is shown. Furthermore, in Fig. 3 the distances are 
referred to the fault location point “0”, although unknown. 

A. MOV and equivalent impedance 
The MOV is one of the suitable devices to protect the ca-

pacitor banks used for series compensation. The necessary 
equipment protection has from the protective relaying point of 
view the drawback that the used devices with nonlinear char-
acteristic have their impact on the fault location estimation and 
line tripping. 

The presence of an MOV makes the compensation block to 
be nonlinear. It is possible to represent the compensation stage 
as an equivalent series impedance at operation frequency (50 
Hz). In this equivalent representation, both the resistance and 
the reactance is dependent on the amplitude of the power fre-
quency current component flowing into the block capacitance-
MOV. This representation at power frequency is sufficient, 
because for the fault location only power frequency compo-
nents of measured currents and voltages will be taken into 
consideration.  

The V-I characteristic of the installed MOVs should be 
known. Fig. 4 shows the typical equivalent impedance for the 
block capacitance-MOV. 

B. Equations to determine the fault location 
The three line sections shown in Fig. 3 are represented by 

the distributed-parameter line model in modal domain. The 
line section between nodes K and P of length h is described in 
modal quantities by applying equation set (9): 
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where heΓ is the diagonal matrix of modal propagation coeffi-
cients, CmZ  and CmY  are modal characteristic impedance and 
modal characteristic admittance matrices, respectively. 
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Fig. 4.  Typical current-dependent characteristics of the impedance of the 
block capacitance-MOV 



The presence of a MOV makes the compensation block to 
be nonlinear. However, as mentioned, it is possible to adopt an 
equivalent current-dependent series impedance representation. 
The diagonal impedance matrix of capacitors and MOV is 
denoted as ZMOV, whereas its modal representation is: 

= -1

MOVm v MOV iZ T Z T (11) 

Assuming that the fault is behind the compensation stage, 
i.e. between nodes S and M in Fig. 3, the modal voltages and 
currents immediately after the compensation location (indi-
cated in Fig. 3 for a single mode as VSm and ISm) can be deter-
mined independent from the unknown fault distance d. The 
non-linear equivalent impedance of the compensation stage is 
taken into account and the matrix ZMOVm is used to calculate 
the voltage drop to express the voltages at node S. The current 
vector ISm is equal to the current vector IPm. 

= −Sm Pm MOVm PmV V Z I (12a) 

with 

=Sm PmI I (12b)

Buses S and M can now be considered as the first and sec-
ond nodes to evaluate the fault location. A numerical algo-
rithm is developed to obtain the fault distance. The proposed 
method expresses the voltage and current phasors at the fault 
location, denoted as node N, as functions of the distance. 

The voltage at fault location and the first equation to calcu-
late the fault currents can be determined, taking into account 
that the section between nodes S and N has a length d-h: 
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The second equation to calculate the fault currents can be 
determined considering the phase currents measured at node 
M, expressed in modal domain and referred to the fault loca-
tion: 
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The fault distance-dependent modal current flowing into 
the fault resistance RF will be: 

( ) ( ) ( )d d d= −Nm Nm1 Nm2I I I  (15)

Under the assumption that the fault impedance is purely re-
sistive, i.e. RF, for real values of the distance the phase angle 
of fault voltage VNm equals to the phase angle of the fault cur-
rent INm only at the fault location. The crossing point identifies 
a solution candidate. On this basic principle is the solution 
algorithm for the fault location estimation based, which was 
proposed by the authors in [12] and adapted for the case of 
series compensated lines. 

The case of a fault in front of the compensation stage, i.e. in 
the first part of the line, can be treated equally only by invert-
ing the current phasors signs and looking into the system de-
picted in Fig. 3 from node M to node K. Thus the second can-
didate of solution for d is obtained. To identify the correct one, 
i.e. correct fault location, a new criterion is developed. 

C. Use of unsynchronized measured data 
In [11] a fault location method is described that uses un-

synchronized measured data at two-ends of a line. The solu-
tion of the synchronization angle transcendent equation in [11] 
is provided through the Newton-Raphson iterative method. In 
this work a different solution method is followed, when the 
measured data at the two line terminals are unsynchronized as 
in [11]. The alternative solution method is based on the fact 
that the proposed fault location algorithm is itself iterative. 

Assuming that the modal voltages and currents measured at 
nodes K and M are unsynchronized, and denoting the synchro-
nization angle between the corresponding phasors as δ, the 
modal vectors at node K follows: 
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As a consequence, the equations for the fault location esti-
mation have to be rewritten. Introducing the angle δ, the mo-
dal voltages and currents at fault location N given in equations 
(13a) and (15) are expressed as: 

( ) ( ) ( ) jd d e δ=s

Nm NmV V (17)

( ) ( ) ( ) ( )jd d e dδ= −s
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As it can be seen from (17) and (18), it is not possible to 
have a solution for d unless the synchronization angle δ is 
determined. As suggested in [11], if it is not possible to derive 
directly an equation for δ, two iterative cycles can be used 
alternately, the first one to find δ, assuming a constant esti-
mated fault distance, and the second one to evaluate the fault 
distance, assuming constant synchronization angle that was 
determined in the previous iteration. 

The modal voltages at node N to be obtained by introducing 
the measured data at nodes K and M according to (9a), can be 
used to determine the synchronization angle. The modal volt-
ages at node N due to measured data at node K, which take 
into account the angle δ, are given in (17). The modal voltages 
at node N due to measured data at node M follow: 
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The modal voltages at node N from (17) and (19) have to 
be obviously the same, independently from the parameter d. 
Thus: 

( ) ( ) ( ) ( )jd d e dδ= =s M

Nm Nm NmV V V  (20) 

Since the equality in (20) has to be valid for each modal 
component, to determine δ the use of the first modal compo-
nent only is sufficient: 
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Being normally the angle δ small, an approximation for the 
Euler formula can be used 

cos sin 1je j jδ δ δ δ= + ≅ +  

so that the incremental angle variation of  δ at each iteration 
i results in: 
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For each iteration of the fault location algorithm, an itera-
tive calculation to determine the synchronization angle is 
performed. A solution for δ is obtained at the end of this sec-
ond iterative cycle, when δ∆  as in (22) is smaller than a 
predefined threshold (e.g. 10-4). 

D. Criterion for the selection of the correct solution 
One of the problems in the fault location estimation on se-

ries compensated lines is that the presence of the compensa-
tion stage makes it difficult to determine whether the fault 
position is in front of or behind the compensation itself. In 
such case, usually the fault distance is estimated under both 
assumptions, and the correct solution is chosen with the help 
of a selection criterion. 

In the present work, a precise selection criterion is pro-
posed. Once the fault location algorithm provides a candidate 
of solution, called d , the assumption that the fault is in front 
of or behind the compensation stage can be verified by com-
paring the modal fault voltages for the distance d  using the 
data measured at node K, i.e. NmV  as expressed in (13a), and 

the data measured at node M, i.e. M

NmV  as expressed in (19). 
The scalar index εS is so introduced: 
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This equation calculates the sum of the magnitude differ-
ences of these voltages, which are normalized by Vnorm. The 
nominal voltage of the line can be chosen as Vnorm. This index 
is calculated twice with the assumption that either the fault is 
in front of or behind the compensation stage. Theoretically, at 
the correct fault location, the index εS should be zero. Since in 
practice the solution is strongly dependent on the correct 
evaluation of the equivalent impedance of the block capaci-
tance-MOV, εS will be not zero. The correct solution will be 
the one with smaller εS. 

IV. NUMERICAL EXAMPLES AND RESULTS

The simulations of the faulted line in steady-state condi-
tions are performed using the electrical network simulation 
program EMTP-ATP [10]. The line is physically described 
and, the electrical distributed parameters model is obtained 
using built-in supporting program LINE CONSTANTS. 

The line is a three-phase, two conductor-bundled overhead 
line, with two ground wires “0”, in a horizontal configuration. 
In Fig. 5 the line configuration is depicted. 

The 380-kV line is 250 km long, and it is supplied from 
both sides by two source networks at 380 kV (line-to-line rms 
value), whose positive-sequence source impedances are: 

(1.334+j13.34) KZ = Ω

(1.6+j16.01)MZ = Ω

1 2 3

0 0

Fig. 5.  380-kV overhead line with two ground wires and 2-bundle phase wires 

Voltage phase displacement angles are 0Kδ = ° and 
15Mδ = − ° , respectively. The required matrices of the series 

impedances and shunt admittances per length (see (6))  are 
computed by LINE CONSTANTS routine at power frequency. 

The compensation stage is located in the middle of the line, 
125 km far from both line terminals. A two-phase-to-ground 
fault (A-B-G) is assumed at a distance d = 175 km from node 
K behind the compensation stage. The fault resistance is as-
sumed to be 5 Ω. The sampling rate of measured data is se-
lected as 2 kHz. Fig. 6 shows the estimated distance using 
Fourier analysis as a function of time for the two possibilities 
that the fault is in front of or behind the compensation stage 
referring to node K. 
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Fig. 6.  Estimated fault distances for the assumption of the fault in front of (a) 
and behind (b) the compensation stage 

The index εS calculated for the two possibilities of fault lo-
cation are: 

1.245Sε =   (fault in front of the compensation stage) 
0.023Sε =   (fault behind the compensation stage). 

This result clearly indicates that the fault seen from node K 
is behind the compensation stage. Accordingly, the calculated 
distance of the fault is obtained from Fig. 6b, which shows the 
estimated fault distance as d = 177 km with an error of 1.14 %. 
The fault resistance for the correct solution is estimated as 
RF = 4.897 Ω. 

In Table I the results of various fault location tests on a 
three-phase series compensated faulted line are provided. In 
the first column the simulated fault location, resistance, type 
of the fault and location of the compensation stage are speci-
fied. The first six tests refer to a compensation stage in the 
middle of the line, the remaining two tests refer to a compen-
sation stage at 80 km measured from the terminal K of the line 
(32 % of the total length). Estimated fault location and index 
εS assuming that the fault is in front of and behind the compen-
sation stage, respectively, are given in the next columns. The 
estimated fault resistance for the correct solution is provided 
in the last column. The correct fault locations in Table I are 
indicated by bold-face. The iterative process to synchronize 
measured data at the two terminals of the line has been proved 
to be effective in all the cases, so the fault location algorithm 
is tested in this example using synchronized data. 

TABLE I: 
FAULT LOCATION AND FAULT RESISTANCE ESTIMATION FOR A THREE-PHASE 

SINGLE CIRCUIT SERIES COMPENSATED LINE 

Estimated results Specification:  
fault distance (km), 
resistance (Ω), type, 
compensation stage 
distance (km) 

Location 
1 [km] 

εS1 Location 
2 [km] 

εS2 Resistance 
[Ω] 

50, 10, A-G, 125 51.3 0.027 115.5 0.636 10.511 
75, 5, A-B, 125 72.9 0.024 192 0.901 5.097 
175, 5, A-B-G, 125 43.6 1.245 177 0.023 4.897 
110, 10, A-C-G, 125 108.2 0.019 234 0.919 10.082 
225, 10, B-G, 125 158.6 0.853 226.5 0.02 10.274 
20, 5, A-C, 125 19.2 0.02 93.9 0.879 5.21 
50, 5, A-G, 80 50.8 0.037 117.8 0.713 5.4 
225, 10, A-C-G, 80 145.2 1.157 226.8 0.028 10.349 

V. CONCLUSIONS 
This paper deals with fault location on series compensated 

lines. The developed method uses line equations taking into 
consideration the distributed nature of line impedances and 
capacitances in contrary to former methods that describe the 
line by a lumped series impedance. 

The presence of a non-linear element along the line, such as 
the series capacitance and its protective device MOV, does not 
allow linear representation such as the Thevenin method. For 
that reason a two-terminal fault location algorithm is pro-
posed. 

The fault distance is determined in a general way using 
modal theory. The developed method does not need any 
knowledge of fault resistance and fault type. Only line pa-
rameters and the impedances of source networks interfacing 
the line at both ends are required. The compensation stage 
with the protection device can be represented by current-
dependent equivalent impedance at power frequency. 

The solution algorithm proposed by the same authors in 
[12] is adapted to series compensated lines in this paper. Un-
synchronized measured data from the two line terminals are 
taken into consideration in the iterative solution method. Two 
candidates of a solution for the fault distance are obtained, 
assuming that the fault is in front of and behind the compensa-
tion stage. To select the correct solution, a new criterion is 
introduced. 

Several tests performed using numerical fault simulations 
show that the method is accurate under idealized condition, i.e. 
influence of instrument transformers is not taken into account. 
Effects of instrument transformers and appropriate signal 
processing of measured quantities will be the subject of future 
work. 
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