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� The deep features of water-cement ratio, recycled coarse aggregate replacement ratio, recycled fine aggregate replacement ratio, fly ash replacement
ratio as well as their combinations are learned through neural networks.

� The proposed prediction model is developed using the softmax regression.
� The simulated results show that the prediction model based on deep learning exhibits the advantages including higher precision, higher efficiency and
higher generalization ability compared with the traditional neural network model.
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Considering on the current difficulties of predicting the compressive strength of recycled aggregate con-
crete, this paper proposes a prediction model based on deep learning theory. First, the deep features of
water-cement ratio, recycled coarse aggregate replacement ratio, recycled fine aggregate replacement
ratio, fly ash replacement ratio as well as their combinations are learned through a convolutional neural
networks. Then, the prediction model is developed using the softmax regression. 74 sets of concrete block
masonry with different mix ratios are used in the experiments and the results show that the prediction
model based on deep learning exhibits the advantages including higher precision, higher efficiency and
higher generalization ability compared with the traditional neural network model, and could be consid-
ered as a new method for calculating the strength of recycled concrete.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Along with the rapid urban development and economic activi-
ties, the generation of construction and demolition (C&D) waste
has increased substantially in many parts of the world. At the same
time, large quantities of natural aggregates are extracted for con-
struction every year [1]. The utilization of recycled aggregates
(RAs) in concrete production can potentially conserve the non-
renewable natural resource of natural aggregates, eliminate unnec-
essary consumption of limited landfill areas and reduce energy
consumption. Due to its benefits on preventing the shortage of nat-
ural aggregate and the deterioration of ecological environment
caused by concrete waste, Recycled Aggregate Concrete (RAC)
technology is considered as one of the main candidates for ecolog-
ical concrete development [2].

However, the variability in the characteristics of RA and RAC
prevents the use of RA further. For example, the use of RCA can lead
to reduction of up to 40% in compressive strength [1,3]. Low
density and high water absorption and porosity, mainly caused
by the heterogeneous nature of RA, can influence the properties
of fresh concrete and then reduce its workability [4–6].

Over the last two decades, many investigators have made use of
various methods to predict the properties of concrete with differ-
ent components. The compressive strength of recycled concrete
is closely related to these factors such as sand rate, water-
cement ratio, aggregate grade, aggregate type and substitution
rate, mineral fine admixture variety and dosage [7,8]. However,
the relationship between those factors and compressive strength
shows a complex non-linear relationship, and there is still no
definite theoretical formula which can accurately reflect their
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relationships [9,10]. In practice, substantial experiments have to be
carried out to ensure the compressive strength of recycled concrete
to meet the requirements.

Nowadays various artificial intelligence algorithms, such as
neural networks (NN) and support vector machines (SVM), are
widely used in concrete strength prediction. In [11–13], the artifi-
cial neural network serves as to predict the relationship between
the different influencing factors and compressive strength of
recycled concrete. The nonlinear mapping ability of BP (Back Prop-
agation) neural network is adopted to establish the non-linear
model between input variables and output variables. Thus accurate
intensity prediction could be realized through a certain training
and iteration. A 7-20-3 BP neural network model is employed in
[14] to predict the recycled concrete slump. In [15], the neural
network model and ultrasonic pulse velocity test are proposed to
predict the concrete compressive strength. Although BP neural
network shows good abilities on solving non-linear problems, it
also exhibits some disadvantages including slow convergence, over
learning and local optimization which will affect the accuracy and
efficiency of prediction. In [16] the neural networks and the
adaptive neuro-fuzzy inference system are combined to improve
the capability of prediction model. In [17], artificial neural net-
works and regression techniques are used to analyses the relations
between concrete components and concrete properties. Further-
more, M5’ model tree algorithm is also used in concrete strength
prediction [18]. Literature [19] employed multivariable regression
to adjust the coefficients and proposed genetic programming to
optimized the predict processing. In [20] and [21], a support vector
machine (SVM) is employed to establish the prediction model of
compressive strength of recycled concrete. This algorithm adopts
the principle of structural risk minimization, which has the excel-
lent abilities of global optimal and generalization, and is suitable
for solving small samples as well as non-linear prediction problem.
In [22] the firefly algorithm is used for parameters optimal of a
LSSVR (Least-Squared Support Vector Regression) based prediction
model. A self-adaptive fuzzy inference based SVM model is
employed in [23] to predict compressive strength of rubberized
concrete. In [24], a LSSVR model, based on coupled simulated
annealing method, is proposed to find the nonlinear relationship
between the concrete compressive strength and eight parameters.
Literature [25] investigates and compares the performance of nine
data mining models in predicting the compressive strength of a
new type of concrete. However, the prediction accuracies of these
methods above are largely dependent on the selection of
parameters.
Fig. 1. Structure of artificial neuron and
In recent years, the deep learning theory with autonomous
learning ability arouse great interests and has already achieved sig-
nificant progresses in the fields such as large data analysis, face
recognition, sound analysis, fault diagnosis and defect detection
[26–29]. As for in the field of concrete strength prediction, the
application of deep learning is relatively new. This paper presents
a prediction model of compressive strength of recycled concrete
based on Convolutional Neural Network (CNN). By using deep
learning theory, the deep features of water-cement ratios, recycled
coarse aggregate substitution rate, replacement rate of recycled
fine aggregate, fly ash content as well as their combinations are
learned. Then, these deep features are employed to train a softmax
regression model for prediction of recycled concrete compressive
strength. The experimental results show that this algorithm avoids
not only the preprocessing process but the dependence on the
engineering experience of a large number of different dimensions
and orders of magnitude. The algorithm extracts the feature matrix
directly from the matching data to establish a highly accurate and
efficient forecasting model, which provides another new idea for
the prediction of compressive strength of recycled concrete.
2. Artificial neural networks and deep learning theory

Artificial neural networks (ANN) is a mathematical or computa-
tional model which tries to simulate the structure or functional
aspects of biological neural networks [30]. ANN is a parallel and
distributed system, which composed of simple processing units.
These units, similar to the structure of the human brain, are known
as the artificial neurons. The artificial neurons can achieve better
performances than the conventional models through calculating
specific mathematical functions.

2.1. Artificial neuron and artificial neural network

The artificial neuron is the basic unit of a neural network which
consists of weights, bias and the activation function. The structure
of an artificial neuron is shown in Fig. 1(a) and the mathematical
model is shown as following:

Y ¼ f
X

WmXm þ b
� �

ð1Þ

where Xm is the input vector, Y is the output, Wm is the weight
matrix, b is bias vector and f is activation function.

The artificial neuron can be regard as a linear map function with
adjustable weight matrix. By training the value of Wm to reduce
ANN: (a) Artificial neuron; (b) ANN.



Fig. 2. Basic structure of CNN.
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the distance between the target and the output, a perceptron is
obtained. However, the perceptron is a binary linear classifier
which is unsuitable to solving nonlinear problems such as the
XOR problem. Therefore, ANN model has been carried out.

An ANNmodel, which is shown in Fig. 1(b), consists of a number
of interconnected group of artificial neurons. Each artificial neuron
is fully connected to each other through connection weights and
receives an input signal from the linked one. These weights are
used to present the effect of an input parameter in the previous
layer on the process elements and it can be adjusted to produce
an output needed. In an ANNmodel, the information is transmitted
to the output layer from the input layer in one direction. Then, the
learning process is conducted to minimize the deviation between
the actual values and output values. In most cases the ANN is an
adaptive system that can change its model according to the rele-
vant information flowing through the network during the learning
phase. ANN can be used to model almost any complex relation-
ships between the inputs and outputs of the data.
Fig. 3. Schematic diagram of convolution and pooling process.
2.2. Multi-layer neural networks

Inspired by the mechanism of mammalian brain recognition,
Hinton proposed a deep learning theory [29]. This theory is a
new direction of traditional machine learning technology, and its
basic structure is a multi-layer artificial neural network, named
deep neural network (DNN). Through the multi-layer nonlinear
transformation, the combination of the underlying features can
form a more abstract high-level representation. Moreover, the
learning system is no longer dependent on artificial feature selec-
tion, and the distributed features of the data representation can be
found autonomously and the complex expression function also can
be learned through it. CNN is a typical deep learning neural net-
work which has been developed in recent years. The CNN algo-
rithm adopts the serial convolution layer and the pooling layer to
arrange the data feature layer by layer. Its spatial structure and
algorithm are very similar to the neural model of the animal visual
perception system which does not need to pre-process or recon-
struct the original data. Furthermore the CNN avoids extracting
data characteristics manually as the traditional machine learning
algorithms and the weight sharing network structure of CNN is
more similar to the biological neural network, resulting in greatly
reducing the complexity of the network model. Therefore, the CNN
has rapidly aroused researcher’s great interests since it appears
[31].

As shown in Fig. 2, the basic structure of the CNN consists of
series of stages. The first few stages are composed of two combina-
tions: convolutional layers and pooling layers, while the last stage
consists of a fully connected layer and a traditional classification
model. The convolutional layers contain a number of filters, which
convolute the input from the previous layer through a set of
weights and compose a feature output, generally called as feature
map. Within each filter, neurons are directly connected to the
input data points and multiply the data points by the weights.
All the neurons in the same filter share their weights, leading to
the reductions the optimization time and complexity of the CNN.

The structure has higher fault tolerance to the input samples,
and can realize the hierarchical expression of data more accurately.
The convolution layer is used to extract the local features of input
data and consists of multiple feature matrices. Each characteristic
matrix can be regarded as a plane (the same convolution kernel
on the same plane), so it shows the ability of parallel computation,
resulting in greatly reducing the number of free parameters. Differ-
ent planes correspond to different convolution kernels so that the
extracted features are more fully demonstrated [32].

The calculation process of the convolution layer is shown in
Fig. 3(a). Suppose the convolutional layer input is X 2 RA�B, where
A and B are the dimensions of the input data. Then the output of
the convolutional layer can be calculated as follows:

Cl ¼ f ðX �Wl þ blÞ ð2Þ

where C is the l-th feature map of the convolutional layer, X repre-
sents the input data matrix, W is the weight matrix of l-th filter of
the current layer, f is the activation function, K is the convolution
kernel, b is the bias, � is an operater of convolution.

A pooling layer usually follows a convolution layer to obtain a
lower resolution representation of the convolution layer activa-
tions through sub-sampling. Neighbor pooling units take input
from the patches that are shifted by more than one row or column,



Table 4
Main physical properties of recycled coarse aggregate.
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thereby reducing the dimension of the representation and creating
invariance to small shifts and distortions. The pooling function,
including max pooling, mean pooling and weighted pooling, com-
putes statistics of the activations. In the CNN method, the max
pooling function is the most commonly used one. The process of
pooling function is shown in Fig. 3(b), and the calculation is as
following:

P ¼ maxC ð3Þ
where P is the output of pooling layer and C is the output of convo-
lution layer.

After several combinations of convolutional layers and pooling
layers, there will be a fully-connected layer. The fully-connected
layer is similar to the traditional multilayer neural network and
can be applied through different classification models. The softmax
regression, which can achieve a fast computation and an accurate
result, is the most popular output layer. The output of the softmax
regression can be calculated as follows:

O ¼ 1Pn
j¼1 expðX � Kj þ BjÞ

expðX � K1 þ B1Þ
expðX � K2 þ B2Þ
:::

expðX � Kn þ BnÞ

2
6664

3
7775 ð4Þ

In the learning process, the back-propagation algorithm is
adopted, that is, the weight matrix is adjusted by reducing the
mean square error of the ideal output and the actual output. The
Mean Square Error (MSE) is calculated as follows:

MSE ¼ 1
2

X
j

ðyj � ojÞ2 ð5Þ

where yj is the actual output and oj is the ideal output.
The essence of the convolution neural network is to learn a

number of filters that can extract the characteristics of the input
data, extract the topological features hidden in the data through
layer-by-layer convolution and pooling, and finally get the input
data with translation, rotation and scaling, the characteristics of
the nature of change. This method can learn the features implicitly
Table 1
Chemical analysis of cement (wt%).

SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2Oeq f-CaO

22.64 4.62 3.62 64.68 2.80 0.46 0.578 0.92

Table 2
Conch cement clinker performance analysis results.

Performance Analysis Results

Fineness 0.08/% 2.9
Standard consistency % 28.2
Le Chatelier soundness test Qualified

Setting time (min) Early condensate 187
Final condensate 2236

Flexural strength (Mpa) 3d 4.5
28d 9.6

Compressive strength (Mpa) 3d 23.7
28d 46.9

Table 3
The main chemical composition of fly ash (wt%).

MgO Al2O3 SiO2 Na2O SO3

1.23 28.98 54.70 0.45 0.58
from the data, avoid explicit feature extraction, and exhibits higher
accuracy and efficiency than traditional neural networks.

3. Materials

3.1. Cementitious materials

The test employed 42.5 ordinary Portland cement produced by
Anhui Conch Cement Co, its oxide composition and main physical
properties are shown in Tables 1 and 2. The fly ash used in the test
was II grade fly ash produced by Huaneng thermal power plant.
The main chemical composition and physical properties of fly ash
are shown in Table 3. The water for concrete mixing and mainte-
nance was the ordinary tap water.

3.2. Aggregate

The recycled coarse aggregate used in this test was obtained
from the pier of an abandoned highway bridge. The average value
of compressive strength of the recycled coarse aggregate was mea-
sured by sampling the core of the pier, which is 37.8Mpa. First,
manual crushing was used to crush the abandoned concrete, then
magnetic sorting and debris sorting were employed to remove
debris from concrete fragments. Next, the jaw crusher was used
to break the concrete blocks to meet the requirements of small size
concrete particles. Finally, these small concrete particles were
selected manually to satisfy the requirements of 5–30 mm contin-
uous gradation. The main physical properties are shown in Table 4.

The recycled fine aggregate used in this test consist of sand par-
ticles with no cement slurry on the surface, sand with cement
slurry on the surface, cement stone particles and a small amount
of crushed stone. The particle size range of recycled fine aggregate
is 0.08–5 mm and the recycled fine aggregate fineness modulus
was 2.8, the screening results are shown in Table 5.
K2O CaO Fe2O3 Loss of ignition

1.65 4.48 5.24 2.24

Performance Test Results

Moisture content % 3.7
Water absorption % 2.0
Apparent density kg/m3 2580
Loose bulk density kg/m3 1440
Close bulk density kg/m3 1560
Mud content % 1.71
Crushing index % 12

Table 5
Recycled fine aggregate screening results.

Sieve size/mm Retention/%

5 0.4
2.5 24.7
1.25 30.6
0.63 23.5
0.315 18.4
0.16 1.5
<0.16 0.9



Fig. 4. Test device.
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3.3. Concrete mixing design and compressive strength

In this experiment, the concrete was stirred and formed by
ASTM C192-C192M method, and the mixed ratio of recycled con-
crete was calculated. This test adopted concrete modes of 100
mm cube, and loaded the concrete mixture at one time. After 3
Table 6-1
Strength of RAC on different water-cement ratio.

W/C 7d 28d W/C 7d 28d Other

0.34 42.9 52.4 0.5 31.9 42.4 C: 340
FA: 0
FAR: 0
S: 656
RS: 0
RS/S: 0
G: 610
RG: 610
RG/G: 50

0.36 41.4 51.3 0.52 30.7 41
0.38 39.9 50.2 0.54 29.6 39.5
0.4 38.4 49.1 0.56 27.6 37.1
0.42 36.9 47.9 0.58 25.6 34.9
0.44 35.4 46.8 0.6 23.6 32.5
0.46 34.2 45.4 0.62 21.6 30.2
0.48 33.1 43.9 0.64 19.6 27.9

Table 6-2
Strength of RAC on different fly ash replacement ratio.

C FA FAR 7d 28d C

340 0 0 29.4 39.8 285.6
333.2 6.8 2 28.9 39.7 278.8
326.4 13.6 4 28.2 39.5 272
319.6 20.4 6 27.6 39.4 265.2
312.8 27.2 8 26.9 39.2 258.4
306 34 10 26.3 39.1 251.6
299.2 40.8 12 25.6 38.7 244.8
292.4 47.6 14 24.9 38.2 238
min vibration on the vibration table, excess concrete was scraped
and the modes were then smoothed by a spatula. The formed con-
crete was conserved in the conservation room where the tempera-
ture was 20 ± 2 �C and the humidity was 90%. After 24 h
conservation, the molds were demolished and the modes were
numbered. Finally, the modes were placed in the water of 20 ± 3
�C till the prescribed age.

The servo press machine is adopted for the compressive
strength test. The testing modes are hold in the machine and the
strain gauge is connected with the pressure sensor to monitor
the compressive strength. The servo press machine and the strain
gauge shown in Fig. 4. In this test, 4 sets of strength data were pre-
pared on different mixed parameters, the specific mixing ratio and
strength test results are shown in Tables 6-1 to 6-4.
4. Predictionmodel of recycled concrete strength based on deep
learning

4.1. Convolution neural network prediction model establishment

This paper chose the water cement ratio, recycled coarse aggre-
gate replacement ratio, recycled fine aggregate replacement ratio
and fly ash replacement ratio as the input variables and the sample
strength as output variables. Since these ratio parameters are dif-
ferent from the general image, text and other data, it is not easy
to express by deep learning method. A 2 � 2 matrix which consists
of 4 concrete mixed parameters was used as the input of CNN.
Since the input parameters were fewer, the single layer convolu-
tional neural network structure was selected. The model was com-
posed of the input layer, the convolutional feature layer and the
traditional neural network output layer. The input layer is a 2 �
2 pixel composed of four kinds of matching parameters. The convo-
lution kernel k and the bias b were set in the convolution charac-
teristic layer. The activation function was chosen to be the
sigmoid function. Through the convolution between the pixels,
the influence of the 4 input parameters on the compressive
strength of the sample can be extracted, and it can be expressed
by 4 convolution kernels. The traditional neural network layer
employs the four features obtained by the feature layer as input
value, set the weight and bias, and get the final output value. The
prediction model structure is shown in Fig. 5.
4.2. Predictive model training

In this experiment, the prediction model of convolution neural
network was established by the Matlab platform. According to
the mixing design above, there were 74 � 10 sets of different
RAC mixing ratio. The training data was composed of the front
10 sets of Tables 6-1 and 6-2 as well as the front 15 sets of Tables
6-3 and 6-4. Thus, there were 50 sets of samples used to train the
CNN predictive model and the rest 24 samples were used as test
data.
FA FAR 7d 28d Other

54.4 16 24.3 37.8 S: 656
RS: 0
RS/S: 0
G: 610
RG: 610
RG/G: 50
W: 184
W/C: 0.54

61.2 18 23.6 37.3
68 20 22.9 36.9
74.8 22 22.1 36.7
81.6 24 21.3 35.6
88.4 26 20.5 35
95.2 28 19.7 34.3
102 30 18.9 33.7



Table 6-3
Strength of RAC on different recycled coarse aggregate replacement ratio.

G RG RG/G 7d 28d G RG RG/G 7d 28d Other

1220 0 0 26.9 35.7 549 671 55 30.4 39.2 C: 340
FA: 0
FAR: 0
S: 656
RS: 0
RS/S: 0
W: 184
W/C: 0.54

1159 61 5 27.1 36.1 488 732 60 31.2 38.9
1098 122 10 27.3 36.4 427 793 65 32.2 38.7
1037 183 15 27.5 36.8 366 854 70 32.8 38.4
976 244 20 27.7 37.1 305 915 75 32.6 38.5
915 305 25 27.9 37.5 244 976 80 32.3 38.6
854 366 30 28.1 37.8 183 1037 85 32.1 38.8
793 427 35 28.5 38.2 122 1098 90 31.8 38.9
732 488 40 28.9 38.7 61 1159 95 31.5 39
671 549 45 29.2 39.1 0 1220 100 31.3 39.1
610 610 50 29.6 39.5

Table 6-4
Strength of RAC on different recycled fine aggregate replacement ratio.

S RS RS/S 7d 28d S RS RS/S 7d 28d Other

656 0 0 26.9 35.7 295.2 360.8 55 18.3 26.5 C: 340
FA: 0
FAR: 0
G: 610
RG: 610
RG/G: 50
W: 184
W/C: 0.54

623.2 32.8 5 25.4 34.4 262.4 393.6 60 18 26.6
590.4 65.6 10 23.8 33.1 229.6 426.4 65 17.6 26.6
557.6 98.4 15 22.3 31.8 196.8 459.2 70 17.3 26.7
524.8 131.2 20 20.8 30.5 164 492 75 17.2 26.6
492 164 25 19.3 29.2 131.2 524.8 80 17.1 26.4
459.2 196.8 30 17.8 27.9 98.4 557.6 85 17 26.3
426.4 229.6 35 18 27.5 65.6 590.4 90 16.9 26.1
393.6 262.4 40 18.2 27.1 32.8 623.2 95 16.9 26
360.8 295.2 45 18.4 26.8 0 656 100 16.8 25.8
328 328 50 18.6 26.4

Notice: C-cement; FA-fly ash; FAR-fly ash substitution rate; S-natural sand; RS-recycled fine aggregate; RS/S-fine aggregate substitution rate, G-aggregate; RG-recycled coarse
aggregate; RG/G-coarse aggregate substitution rate; W-water; W/C-water-cement ratio.

Fig. 5. Convolution neural network prediction model structure.
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4.3. Prediction results and analysis

After 33 epochs of learning, the training of CNN was completed
and the test data was used to test the prediction model. The net-
work output value of the training data and the network prediction
value of the test data could be obtained, which is shown in Fig. 6.

As shown in Fig. 6, the values obtained through the training and
testing of CNN model are very close for experimental results, indi-
cating a strong correlation between the input and output parame-
ters of the CNNmodel. The relative error can be calculated from the
testing data by using the following equation:

RE ¼ jPi � Aij
Ai

� 100% ð6Þ
where Ai is the actual value and Pi is the predictive value.
Fig. 7 shows the histogram of the relative error percentage rate

of testing set samples predicted by the CNN model. The max and
min relative errors found are 18.93% and 0.01%, respectively.
Approximately 85% of the data shows the error less than 10% and
all the data achieves the error less than 20%. This is another indica-
tion of the high correlation between the results obtained by CNN
and the experimental results. All statistical values prove that the
proposed CNN model is suitable to predict the compressive
strength values.

In order to compare the performances with the deep learning
method, a 4-9-1 BP neural network and a support vector machine
(SVM) model were used to establish the prediction model respec-
tively. The relative error of these three neural networks, which is



Fig. 6. Prediction results of CNN on 7d and 28d compressive strength (a) Training set of 7d strength; (b) Training set of 28d strength; (c) Testing set of 7d strength; (d) Testing
set of 28d strength.

Fig. 7. Histogram of the relative errors achieved with actual and predictive values: (a) Testing set of 7d strength; (b) Testing set of 28d strength.

Table 7
Error comparison of three prediction models.

Relative error (%) BPNN SVM CNN

7d 28d 7d 28d 7d 28d

Max 39.25 17.63 21.37 14.21 18.93 10.55
Min 7.63 5.76 3.25 1.76 0.31 0.01
Average 10.89 6.63 7.48 4.35 5.42 3.65
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calculated by using Eq. (6) are shown in Table 7. It can be seen from
this table that the CNN exhibits higher accuracy and stronger gen-
eralization ability compared with the BP neural network and the
SVM, resulting it is more suitable for prediction of the compressive
strength of recycled concrete. In addition, compared with the 7d
prediction results, the 28d prediction results are more accurate.
It is mainly due to the characteristics of recycled aggregate, espe-
cially the strength showing fluctuations in the early time. Thus,
the prediction of early strength is relatively difficult. As the later
strength is relatively stable, the prediction results are more
accurate.
5. Conclusion

Due to the variability in the characteristics of RAC, it is a non-
linear relationship between the compressive strength of RAC and
its mixing ratio. Therefore, a predictive model based on CNN is
proposed in this paper. The CNN model can predict the strength
by learning the deep features of the water-cement ratio, the
recycled coarse aggregate replacement ratio, the recycled fine aggre-
gate replacement ratio, the fly ash replacement ratio as well as their
combinations. In order to prove the capability of the proposed
method, 74 sets of concrete block masonry with different mixing
ratios are used in the experiments. The results show that the predic-
tion model based on deep learning exhibits the advantages includ-
ing higher precision, higher efficiency and higher generalization
ability compared with the traditional neural network model.



F. Deng et al. / Construction and Building Materials 175 (2018) 562–569 569
Conflicts of interest

The authors declare no conflict of interest.

Acknowledgments

This work was supported by Natural Science Foundation of
China (51577046, 51767006, 51662008), State Key Program of
National Natural Science Foundation of China (51637004), National
Key Research and Development Plan ‘‘Important Scientific
Instruments and Equipment Development” (2016YFF0102200),
Equipment Research Key Project in Advance (41402040301),
Natural Science Foundation of Jiangxi Province (20171BAB206045),
Science and Technology Project of Education Department of Jiangxi
Province (GJJ160491, GJJ170378).

References

[1] R.V. Silva, J.D. Brito, R.K. Dhir, The influence of the use of recycled aggregates
on the compressive strength of concrete: a review, Eur. J. Environ. Civil Eng. 19
(7) (2015) 825–849.

[2] L. Evangelista, J.D. Brito, Concrete with fine recycled aggregates: a review, Eur.
J. Environ. Civil Eng. 18 (2) (2014) 129–172.

[3] D.K. Kartheeban, Performance related approach to use of recycled aggregates.
WRAP Final Report, Eur. J. Psychol. Educ. 15 (15) (2007) 191–205.

[4] G. Andreu, E. Miren, Experimental analysis of properties of high performance
recycled aggregate concrete, Constr. Build. Mater. 52 (2) (2014) 227–235.

[5] V. Corinaldesi, Mechanical and elastic behaviour of concretes made of
recycled-concrete coarse aggregates, Constr. Build. Mater. 24 (9) (2010)
1616–1620.

[6] F. Debieb, L. Courard, S. Kenai, et al., Mechanical and durability properties of
concrete using contaminated recycled aggregates, Cem. Concr. Compos. 32 (6)
(2010) 421–426.

[7] A. Akbarnezhad, K.C.G. Ong, M.H. Zhang, et al., Microwave-assisted
beneficiation of recycled concrete aggregates, Constr. Build. Mater. 25 (8)
(2011) 3469–3479.

[8] P. Amorim, J. Brito, L. Evangelista, Concrete made with coarse concrete
aggregate: influence of curing on durability, ACI Mater. J. 109 (109) (2012)
195–204.

[9] W.C. Choi, H.D. Yun, Compressive behavior of reinforced concrete columns
with recycled aggregate under uniaxial loading, Eng. Struct. 41 (3) (2012) 285–
293.

[10] D. Cree, M. Green, A. Noumowé, Residual strength of concrete containing
recycled materials after exposure to fire: a review, Constr. Build. Mater. 45 (7)
(2013) 208–223.

[11] A.T.A. Dantas, M.B. Leite, K.D.J. Nagahama, Prediction of compressive strength
of concrete containing construction and demolition waste using artificial
neural networks, Constr. Build. Mater. 38 (2) (2013) 717–722.

[12] Z.H. Duan, S.C. Kou, C.S. Poon, Prediction of compressive strength of recycled
aggregate concrete using artificial neural networks, Constr. Build. Mater. 40 (7)
(2013) 1200–1206.

[13] Z.H. Duan, S.C. Kou, C.S. Poon, Using artificial neural networks for predicting
the elastic modulus of recycled aggregate concrete, Constr. Build. Mater. 44 (7)
(2013) 524–532.
[14] J. Shao, X. Ji, R. Li, Application of BP Neural Network Model in the Recycled
Concrete Performance Prediction, in: International Conference on Advances in
Energy, Environment and Chemical Engineering (AEECE), 2015, pp. 527–532.

[15] M. Bilgehan, P. Turgut, The use of neural networks in concrete compressive
strength estimation, Comput. Concr. 7 (7) (2010) 271–283.

[16] J. Sobhani, M. Najimi, A.R. Pourkhorshidi, et al., Prediction of the compressive
strength of no-slump concrete: A comparative study of regression, neural
network and ANFIS models, Constr. Build. Mater. 24 (5) (2010) 709–718.

[17] Šipoš, T.KIvana Milicevic, Prediction of properties of recycled aggregate
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