
Computer Communications 88 (2016) 73–83

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Efficient tag reading protocol for large-scale RFID systems with

pre-reading

Shuen-Chih Tsai ∗, Yu-Min Hu, Chen-Hsun Chai, Jung-Shian Li

Department of Electrical Engineering, Institute of Computer and Communication Engineering, National Cheng Kung University, University Road, Tainan 701,

Taiwan, ROC

a r t i c l e i n f o

Article history:

Received 3 September 2015

Revised 19 March 2016

Accepted 23 April 2016

Available online 25 April 2016

Keywords:

RFID tag collection

STT

Blocking protocol

Missing-tag problem

a b s t r a c t

In large-scale RFID systems, collecting all of the tag IDs is a time-consuming process. A protocol desig-

nated as Smart Trend-Traversal (STT) has been proposed to reduce collisions during the tag collection

process and to dynamically construct the query strings used to interrogate the tags. In general, if the tag

ID information is known to the reader from a previous tag collection round, the efficiency of the cur-

rent round can be significantly improved. Various protocols have been proposed for scanning a known

tag set based on the use of a hash function. Accordingly, the present study proposes an Enhanced STT

scheme based on a blocking protocol and a Distributed Record Tag-Check (DRTC) mechanism. Compared

to the conventional STT scheme, the proposed protocol adaptively adjusts the length of the query string

depending on the response received to the previous query. Moreover, in the DRTC mechanism, the tags

determine their transmission slot frame directly without the assistance of the reader, and thus the over-

all overhead of the tag-collection process is reduced. The simulation results show that the Enhanced STT

scheme reduces the total number of queries required to collect the entire tag set compared to the con-

ventional STT method. Moreover, the proposed DRTC mechanism yields an effective reduction in the total

number of frame slots compared to existing protocols such as TPP/CSTR and ECRB.

© 2016 Elsevier B.V. All rights reserved.

1

i

a

[

i

e

e

t

[

t

I

o

i

t

t

t

s

t

c

a

(

g

T

a

M

t

j

u

i

f

p

t

q

s

r

D

c

h

0

. Introduction

Radio frequency identification (RFID) technology [1] has many

mportant applications nowadays , including item identification,

utomatic inventory and asset management, payment, and so on

9,24,37] . RFID systems have many advantageous features, includ-

ng a relatively low deployment cost, an ability to operate in harsh

nvironments, the absence of batteries or any form of external

nergy source, and so forth. However, in implementing RFID sys-

ems, two problems arise, namely the RFID tag-collection problem

16] and the RFID missing-tag event problem [21,29] . Various pro-

ocols have been proposed for improving the efficiency of the tag

D collection process. Moreover, various methods have been devel-

ped for solving the missing-tag problem, i.e., detecting the miss-

ng tags among a set of known tags. However, in previous study,

hey usually either process the tag identification collection or de-

ect the missing tags independently. If the process of tag iden-

ification finishes, the process of missing-tag detection will start

eparately. In general, the system spends some time on switching

hese two processes. Our proposed protocol will switch the pro-
∗ Corresponding author. Tel.: +886 6 2757575x62400.

E-mail address: pandaorz@gmail.com (S.-C. Tsai).

r

t

ttp://dx.doi.org/10.1016/j.comcom.2016.04.019

140-3664/© 2016 Elsevier B.V. All rights reserved.
esses smoothly. We want to solve these two problems together

nd let our proposed scheme more efficient.

The present study proposes an Enhanced Smart Trend-Traversal

Enhanced-STT) scheme based on the STT protocol [18] and to-

ether with a blocking mechanism [35] and a Distributed Record

ag-Check (DRTC) mechanism. The conventional STT protocol uses

 depth-first-search method to construct the query traverse path.

oreover, when collisions occur, the number of bits appended to

he query string used to interrogate the tags is dynamically ad-

usted in accordance with the tag ID distribution or the tag pop-

lation. However, in the Enhanced STT scheme, the query length

s adjusted dynamically in accordance with the response received

rom the previous query in order to accelerate the tree traversal

rocess. In addition, in the DRTC mechanism, the tags determine

heir transmission frame-slots directly from an inspection of the

uery length. In other words, the reader is not required to transmit

lot information to them, and thus the tag collection overhead is

educed. Compared to traditional binary tree-based protocols [34] ,

RTC has a lower system requirement (i.e., a fewer number of

ounters per tag), but retains an excellent performance.

The simulation results confirm that the Enhanced STT protocol

educes the total number of queries required to collect the en-

ire tag set compared to STT. Moreover, the Enhanced STT scheme

http://dx.doi.org/10.1016/j.comcom.2016.04.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2016.04.019&domain=pdf
mailto:pandaorz@gmail.com
http://dx.doi.org/10.1016/j.comcom.2016.04.019

74 S.-C. Tsai et al. / Computer Communications 88 (2016) 73–83

2

o

r

T

t

o

s

n

t

i

e

a

s

w

t

f

t

s

t

t

u

t

o

q

i

d

C

t

r

i

t

t

d

t

p

Q

t

c

p

c

t

h

s

2

t

fi

r

a

i

c

t

t

t

b

i

v

n

T

o

t

p

reduces the number of collisions in the tag-collection process, and

therefore reduces both the total tag identification time and the

energy consumption of the active tags. The efficiency of the En-

hanced STT scheme is further evaluated in terms of both the Sys-

tem Efficiency (SE) and the Time System Efficiency (T ime _ SE). It is

shown that the T ime _ SE of Enhanced STT is superior to that of STT

and other Query Tree-based (QT-based) protocols. In addition, it is

shown that the DRTC mechanism provides an efficient approach

for checking the IDs of staying tags and reduces the total number

of frame slots required to collect all of the tag IDs compared to ex-

isting protocols such as Three-Phase Protocol with Collision Sensi-

tive Tag Removal (TPP/CSTR) [21] and Enhanced Couple-Resolution

Blocking (ECRB) [35] .

The remainder of this paper is organized as follows.

Section 2 reviews the related work in the RFID tag identifica-

tion field. Section 3 introduces the Enhanced STT scheme and

DRTC mechanisms proposed in this study. Section 4 presents and

discusses the simulation results Finally, Section 5 provides some

brief concluding remarks and indicates the intended direction of

future research.

2. Related works

Research in the RFID field focuses predominantly on two main

problems, namely the RFID tag anti-collision problem and the RFID

missing-tag event problem. The former problem involves improv-

ing the efficiency of the tag collection problem by avoiding colli-

sions [16] . The later problem involves scanning a large group of

known tags and identifying any tags which are missing in the

current scanning round [4] . The present study proposes an ap-

proach for reducing the tag identification time by extending the

conventional STT algorithm. STT is a QT-based anti-collision proto-

col. Thus, the following sub-section introduces previous work re-

lating to QT-based protocols. Section 2.2 then reviews existing pro-

posals for dealing with the missing tag event in the second round

(and on) of the tag-collection process.

2.1. RFID tag anti-collision protocols

Existing RFID tag anti-collision protocols generally adopt either

a tree-based approach [11,15,23,25,26,34–36] or an Aloha-based

approach [3,7,8,14,19,20,22,30–32] . Because of scalability in real

life [5] , our study adopts tree-based approaches. Among protocols

adopting the former method, the Query Tree (QT) algorithm [2,6] ,

and Binary Tree (BT) algorithm [34] are among the most common.

In the QT algorithm, the RFID reader uses the tag ID prefix to per-

form the tag-collection process. By contrast, the BT algorithm iden-

tifies the tags by using random binary numbers to partition the

RFID tags into small groups. Meanwhile, in Aloha-based protocols,

the reader first estimates the number of tags within its communi-

cation range and then assigns these tags an appropriate number of

frame slots such that they can return their IDs without contention

[28] . We adopt the mechanism without estimating the number of

tags, because it is more easy to be deployed in real life.

Irrespective of the anti-collision protocol employed, it is neces-

sary to deal with two different types of tags, namely staying tags

and arriving tags. Staying tags are tags identified by the reader

in a previous tag-collection round which are also present in the

current round. By contrast, arriving tags are tags which appear in

the reader’s communication range for the first time in the present

round. In other words, they are unknown to the reader prior to

the current round. As described above, in attempting to improve

the efficiency of the tag-collection process, the present study ex-

tends the conventional QT-based STT protocol. Thus, the follow-

ing discussions briefly review the original QT algorithm and its

variants.
.1.1. QT protocol and variants

In the QT protocol, the tag set is split using the tag ID prefix in

rder to construct a query tree. Having constructed this tree, the

eader then broadcasts tag ID queries in a breadth-first manner.

he reader maintains a queue (Q) of query strings and initializes

his queue with two 1-bit strings, i.e., 0 and 1, at the beginning

f each tag-collection round. The reader then de-queues a query

tring from Q in order to interrogate the tags within its commu-

ication range. Any tags having a prefix which matches the query

ransmit their IDs to the reader. If the tag IDs arrives at the reader

n different time slots, they can be successfully recognized. How-

ver, if multiple tags respond simultaneously, the reader detects

 collision event and splits the original query b 1 b 2 . . . b lc into two

ub-tree queries where b i ∈ {0, 1}, i.e., b 1 b 2 . . . b lc 0 and b 1 b 2 . . . b lc 1 ,

hich it then enqueues to the end of its queue. In the event that

he reader detects just one tag response or no tag response, re-

erred to as a single-tag-response query and an idle query, respec-

ively, it concludes that query b 1 b 2 . . . b lc is the end of the current

ub-tree, and labels the query string “end” accordingly. The reader

hen dequeues the next query string from Q and repeats the in-

errogation process. The process is repeated iteratively in this way

ntil all of the query strings in Q are labelled as “end”.

In the QT-based Adaptive Query Splitting (AQS) protocol [13] ,

he single-tag-response and idle queries obtained in the previ-

us tag-collection round are stored by the reader in a candidate

ueue (CQ). At beginning of each tag-collection round, the queries

n CQ are copied to Q and are then sequentially dequeued in or-

er to identify the staying tags and arriving tags, respectively. The

ouple-Resolution Blocking (CRB) protocol [35] extends AQS by in-

roducing a blocking mechanism. In the proposed approach, the

eader “mutes” arriving tags as it is identifying the staying tags

n order to prevent collisions between them. CRB distinguishes be-

ween the two types of tags by allowing the reader and all the

ags to store both the last reader ID and the frame number. CRB

ivides the tag-collision process into two phases, namely a staying

ag identification phase (Phase 1) and an arriving tag identification

hase (Phase 2). In Phase 1, the reader dequeues two queries from

 and transmits a concatenated query including both queries. Since

he arriving tags are muted in Phase 1, the reader interprets the oc-

urrence of a collision event as meaning that the two tags are still

resent (i.e., they are staying tags). Importantly, this “2-collision”

oncept yields a significant reduction in the time required to iden-

ify the staying tags compared to the original AQS protocol. En-

anced CRB combines two similar prefixes into one query. Thus,

ending this query can further reduce the bits sent by reader.

.1.2. Smart trend-traversal protocol

Various protocols based on QT have been proposed in which

he reader broadcasts queries in a depth-first rather than breadth-

rst manner [10,18,33] . In such protocols, when a query b 1 b 2 . . . b lc
esults in a collision, the reader infers that the current query is

t a higher bit-level in the query tree, and thus the next query

s set to b 1 b 2 . . . b lc 0 such that the reader traverses down to the

hild node in the query tree. In the event of a single-tag-response,

he next query is set as (b 1 b 2 . . . b lc) + 1 and traverses horizontally

o the node located immediately to the right of the child node in

he tree. Finally, if an idle query occurs, the next query is set to

 1 b 2 . . . b lc−1 1 if b lc = 0 (i.e., b lc is a left child node), or b 1 b 2 . . . b lc−1

f b lc = 1 (i.e., b lc is a right child node), such that the query tra-

erses in the right upper direction and converge to the next prefix

ode. Fig. 1 presents an illustrative example of the STT protocol.

here are 5 tags in the query tree. Each node represents the status

f a query, including collision, single-tag-response and idle. Note

hat the numbers on the graph show the sequence step in the STT

rocess.

S.-C. Tsai et al. / Computer Communications 88 (2016) 73–83 75

Fig. 1. Illustrative example of STT protocol.

Fig. 2. Mapping of tags to frame slots using hash function.

2

l

r

n

s

a

t

t

p

b

m

t

p

c

n

s

b

h

a

d

t

a

s

d

r

i

m

t

o

c

s

h

w

f

3

m

p

p

o

H

c

s

q

a

t

r

t

t

t

t

b

h

i

t

m

w

(

(

q

i

d

e

w

n

t

3

i

u

[

o

a

t

a

s

3

3

v

n

q

h

a

t

t

p

t
.2. RFID missing-tag event

In many RFID applications, it is necessary to monitor a very

arge number of tags. Furthermore, the tag IDs recorded at the

eader or in a linked database require constant maintenance as

ew tags enter the network or existing tags leave. For large-scale

ystems, scanning the RFID tag set repeatedly using the original

nti-collision protocol is highly inefficient; particularly if most of

he tags are staying tags and their IDs are therefore already known

o the reader. In such a situation, a more intuitive approach is sim-

ly to identify the tags which were previously known to the reader

ut no longer appear in the current round (i.e., the so-called RFID

issing-tag problem [21,29]).

To monitor the missing tags, a reader can use a hash function

o map the tags to a frame slot. As shown in Fig. 2 , each tag is

seudo-randomly mapped to a frame slot. In performing the roll

all, the reader broadcasts a request < r, f > , where r is a random

umber and f is the frame size. Therefore, all tags know the frame

ize. While receiving the request, each tag calculates the slot num-

er s = H(id, r) mod f , where id is the tag identification and H is a

ash function. Each tag will decrement their slot number s . When

 tag decreases to 0 and send a response which is a 16-bit ran-

om number. If only one tag whose slot number is 0 responses,

he reader will receive a 16-bit random number and reply an ACK,

nd then the tag responses its identification. If two more tags re-

ponses at the same time, the reader will detect a collision and

ose not reply any ACK. The tags keep silent until next round. The

eader repeats this process and knows which tags should appear

n each time slot, and therefore easily detects any tags which are

issing.

In [29] , the proposed scheme, Trusted Reader Protocol (TRP), let

he tag reply random bits instead of its identification. The length

f the random bits is less than tag ID’, so that the execution time

an be decreased. The authors in [21] proposed five protocols for

olving the missing-tag problem. First four protocols use only one

ash function, the fifth one uses two hash functions. In our study,

e will focus on one hash function and improves it without hash

unction. That means the requirement of the RFID system is lower.

. Enhanced STT protocol with distributed record tag-check

echanism

This section describes the RFID tag identification protocol pro-

osed in the present study. As discussed in the following, the pro-

osed protocol differs from existing methods in two key regards.

According to query construction rules, the QT protocol adds

nly a single bit to the query string following a collision event.
owever, such an approach not only increases the risk of further

ollisions (due to the larger number of query strings), but also re-

ults in a slower (i.e., 1 bit-level) downward traversal rate of the

uery tree. The STT protocol uses two deterministic parameters (r

nd w) to move down (or up) the query tree more rapidly.

In developing the tag identification protocol, it is argued that

he time required to obtain all of the single-tag responses can be

educed by progressively increasing the number of bits appended

o the query string following consecutive collision events. Impor-

antly, such an approach increases the traversal rate and poten-

ially avoids some collision nodes. However, by appending more

han 1 bit to the query, some of the nodes in the query tree may

e missed during the downward traversal process. Thus, in the En-

anced STT protocol, the interrogation process moves up 1 bit-level

n the query tree each time an idle query response occurs. Fur-

hermore, a blocking technique is applied to improve the perfor-

ance of the identification protocol in checking the staying tags

ithin the reader’s communication range. Whenever an idle query

or collision) occurs, the length of the following query is decreased

or increased). In other words, in the proposed protocol, the next

uery length remains unchanged only when a single-tag response

s received. Importantly, this variable query length is exploited to

evelop a Distributed Record Tag-Check (DRTC) mechanism, which

nables each tag to record its transmission “Slot number” directly

ithout the assistance of the reader. In other words, the reader is

ot required to transmit frame-slot information to the tags, and

hus the overall overhead of the tag-collection process is reduced.

.1. System assumptions

In developing the proposed tag-collection protocol, the follow-

ng assumptions are imposed:

• Assumption 1: The signals between the reader and the tags

are transmitted over an error-free wireless channel. As a result,

data errors occur only when multiple tags respond simultane-

ously, resulting in a collision event at the reader.

• Assumption 2: Once the current tag identification round be-

gins, the tags in the reader’s communication range remain un-

changed until the round terminates since if a tag arrives in the

reader’s communication range just after the reader has broad-

cast its query, it may miss the opportunity to be identified.

• Assumption 3: A tag entering or leaving the reader’s communi-

cation range are independent of one another.

Note that all three assumptions are consistent with those

sed in previous studies on RFID anti-collision protocols

2,6,10,12,13,18,33–35] . For the fairness of comparisons between

ur algorithm and previous studies, this paper still holds these

ssumptions. Our study focus on the algorithm of protocols. Al-

hough the issues, e.g. transmission on the error-prone channel,

re important, it is out of the scope in our research and should be

tudied separately.

.2. Enhanced STT (E-STT)

.2.1. Dynamic query down

In the tag-collection phase, the conventional STT scheme tra-

erses only 1-bit level down whenever it encounters a collision

ode. Thus, if many collisions occur consecutively, STT traverses

uery tree very slowly. Accordingly, as described above, the En-

anced STT scheme utilizes a Dynamic Query Down (DQD) mech-

nism, in which a gradually increasing number of bits is appended

o the query string each time consecutive collisions occur. Steps 1

o 3 in Fig. 5 (Example 1) present an illustrative example of the

roposed approach. Table 1 and 2 compare the respective opera-

ions of the DQD and STT protocols. It is seen that the DQD scheme

76 S.-C. Tsai et al. / Computer Communications 88 (2016) 73–83

Fig. 3. Undesirable DQD outcome.

Table 1

Example 1 - DQD.

Step Query string Status Appending

0 N 0 (C) null

1 N 0 0 (C) +1

2 N 0 0 0 0 (C) +2

3 N 0 0 0 0 0 0 0 (S) +3

Table 2

Example 1 - STT.

Step Query string Status Appending

0 N 0 (C) null

1 N 0 0 (C) +1

2 N 0 00 (C) +1

3 N 0 0 0 0 (C) +1

4 N 0 0 0 0 0 (C) +1

5 N 0 0 0 0 0 0 (C) +1

6 N 0 0 0 0 0 0 0 (S) +1

Fig. 4. Worst-case DQD outcome.

Fig. 5. Illustrative example of query construction rules.

v

s

p

s

i

h

r

F

S

p

t

b

a

i
saves a total of three queries in identifying the first single-tag re-

sponse node compared to the conventional STT protocol. In the

present study, the term “appending pattern” is used to define the

strategy adopted by the reader in appending bits to the query fol-

lowing each consecutive collision.

In the original STT protocol, if an idle query occurs at the left-

child node, the next query traverses to the child node to the right

of this node. By contrast, in the Enhanced STT protocol proposed

in this study, an idle response from a left-child node is followed

by a query to the parent node since this node may not yet have

been visited in the traversal process. However, if the parent node

is a collision node, a closed-loop is formed and the traversal pro-

cedure cannot continue. Thus, in the present study, a shortcutting

mechanism is applied to avoid this closed-loop scenario and to

improve the overall efficiency of the query tree traversal process.

Note that in contrast to the shortcutting mechanism proposed in

[33] , in the present study, when a collision occurs at the (K − 1) th

bit-level, the traversal process still visits the two child nodes and

results in two single-tag-response nodes. Note that this strategy

is deliberately adopted since the resulting variation in the query

length is taken as the basis for the DRTC mechanism proposed in

Section 3.3 .

Importantly, while appending additional bits to the query string

enables the query tree to be traversed more rapidly, it may cause

two undesirable outcomes, as shown in Figs. 3 a and 3 b, respec-

tively. Fig. 3 a (Example 2.1) shows the case where the next query

exceeds the next shortest prefix node. If node N 0 with current

query q c results in a collision and consecutive collisions then oc-

cur, the reader constructs the next query by appending 4 bits to

q c , i.e., q n = q c 0 0 0 0. However query q c 0 0 0 0 in level n + 4 may re-

sult in an idle (I) response. Thus, the Enhanced STT scheme tra-
erses 1 bit-level to query q c 0 0 0, and so on. Fig. 3 b (Example 2.2)

hows the case where the next query exceeds the next shortest

refix node, but the query is happened to the prefix of the next

ingle tag, and thus a single-tag response (S) occurs. Since a tag

s successfully identified, the query process traverses to the right

orizontally, sets q n = q c 0 0 01 and results in an idle response (I).

In both examples described above, the Enhanced STT protocol

esults in three more idle queries than the original STT scheme.

urthermore, for the case considered in Example 2.2, the Enhanced

TT scheme uses more bits than in Example 2.1. In practice, Exam-

le 2.2 represents the worst-case scenario for the performance of

he Enhanced STT scheme relative to the STT protocol (see Fig. 4).

In the event of consecutive collisions, the next query is formed

y adding x i 0’s to q c . The next shortest prefix node is node A

nd is located 1 bit-level down in the query tree. The reader first

dentifies node 1 with a query of length n + x . It then encounters
i

S.-C. Tsai et al. / Computer Communications 88 (2016) 73–83 77

Table 3

Appending pattern table.

Cons. Appending Query length Skipped queries S i = { s j | l i −1 + 1 , l i −1 + 2 , ..., l i − 1 }
collision i pattern x i l i = l i −1 + x i −1 # of S i is N i = x i −1 − 1 , if x i > 1

0 x 0 = 1 l 0 = 1 –

1 x 1 = 2 l 1 = l 0 + x 0 = 2 S 1 = ∅ , N 1 = 0

2 x 2 = 3 l 2 = l 1 + x 1 = 4 S 2 = { l 1 + 1 = l 2 − 1 } = { 3 } , N 2 = 1

3 x 3 = 4 l 3 = l 2 + x 2 = 7 S 3 = { l 2 + 1 , l 2 + 2 = l 3 − 1 } = { 5 , 6 } , N 3 = 2

4 x 4 = 5 l 4 = l 3 + x 3 = 11 S 4 = { l 3 + 1 , ..., l 3 + x 3 − 1 = l 4 − 1 } = { 8 , 9 , 10 } , N 4 = 3

5 x 5 = 6 l 5 = l 4 + x 4 = 16 S 5 = { l 4 + 1 , ..., l 4 + x 4 − 1 = l 5 − 1 } , N 5 = x 4 − 1

...

x

t

s

i

s

t

c

c

w

q

d

l

T

w

Q

x

P

A

0

t

t

t

t

E

D

o

3

r

t

q

t

r

p

T

s

o

c

w

a

t

i
 i − 1 ’s consecutive idle queries 2 , 3 After x i − 1 ’s idle queries,

he reader identifies node B. In other words, the proposed protocol

aves x i − 1 queries in identifying node 1, but wastes x i − 1 queries

n identifying node B.

As described above, x i is progressively increased following con-

ecutive collisions. In other words, a large value of x i appended to

he query indicates that multiple consecutive collisions have oc-

urred. In practice, the total number of saved queries in previous

ollisions will be greater than the total number of idle queries

asted. Thus, it is expected that the total number of collision

ueries in the Enhanced STT scheme is lower than that in the tra-

itional STT scheme.

In general, let (l i + 1) be the next single-tag-response node and

et the appending pattern table have the form shown in Table 3 .

he total number of wasted idle queries is equal to x i − 1 . Mean-

hile, the total number of saved queries is equal to

 sa v ed =

∑

S =

i ∑

j=1

(x j−1 − 1) (1)

Q saved is greater than zero when i ≥ 2 since it is assumed that

 0 is 1 and S 1 = ∅ . The probability of i ≥ 2 is given by

 (i = 2) + P (i = 3) + ... =

i ∑

j=1

P (j) , l i ≤ K (2)

ssuming that the probability of the next bit being 0 is equal to

.5, the probability of i ≥ 2 is around 0.125 for the node located at

he K − 3 bit-level above since i ≥ 2 means that there are at least

hree consecutive 0’s after q c . The total number of queries required

o complete the tag identification process in STT is directly propor-

ional to the tag population. Thus, for a large tag population, the

nhanced STT scheme proposed in the present study based on the

QD mechanism yields a significant reduction in the total number

f queries required.

.2.2. Query construction rules

The construction of the next query q n depends on the response

eceived to query q c . As described earlier, the reader may receive

hree different responses, namely collision, idle or single-tag. The

uery construction rules for each type of response are described in

he following.

• Collision:

When the reader detects a collision, it infers that the current

query string q c = b 1 b 2 . . . b lc is at a higher bit-level and should

traverse down to a lower bit-level. The reader first checks if the

shortcutting condition exists. If the query string q 1 = q c 0 has

been visited and resulted in an idle response, the next query

string is set as q n = b 1 b 2 . . . b lc−1 10 . As a result, the query pro-

cess skips an idle and double query string q 1 . However, if the

shortcutting condition does not exist, the next query string is

constructed using the DQD mechanism, as described above. The

choice of the number of bits to append to the current query
string q c = b 1 b 2 . . . b lc is determined from an appending pattern

table. In general, the reader appends x i bits of 0’s to q c . Thus,

q n = q c 0 . . . 0 . Note that subscript i denotes the number of con-

secutive collisions, and its value increases by one each time a

collision occurs. Importantly, if the current query length l c plus

x i exceeds the total tag ID length K (i.e., 96 bits), q n is simply

truncated to 96 bits. It is seen from the preceding discussions

that the length of query l n following a collision event is always

longer than the length of the current query l c .

• Idle:

When the reader detects an idle response, it indicates that the

current query q c = b 1 b 2 . . . b lc is at a lower bit-level and should

traverse up the query tree to a higher bit-level. The consecu-

tive collision subscript i is thus set to zero. As for the collision

case described above, the reader first checks for the presence of

the shortcutting condition. If the idle response occurs at a left-

child node, i.e., b lc is 0, and the query string q 2 = b 1 b 2 . . . b lc−1

has been visited and results in collision, then the next query is

set as q n = b 1 b 2 . . . b lc−1 10 . Else; if b lc is 0 but q 2 = b 1 b 2 . . . b lc−1

has not been visited, the next query string q n is set as q 2 ,

q n = b 1 b 2 . . . b lc−1 in order to query the parent node. Note that

if this shortcutting process is not performed, a closed loop will

be formed. For example, if q = 010 results in a collision and

q ′ = 0100 results in an idle response, the next query string q ′ ′
will be set to 010 if shortcutting is not performed. If the idle re-

sponse occurs at a right-child node, i.e., b lc is 1, the next query

should be sent to/directed to the upper-right node relative to

q c , i.e., q n = (b 1 b 2 . . . b lc−1) + 1 . It is noted from the preceding

discussions that the length of query l n following an idle re-

sponse is always shorter than that of the current query l c if

shortcutting is not performed. However, l n is greater than l c by

one if shortcutting is performed. In other words, the length of

query l n following an idle response is always different from that

of l c irrespective of whether or not shortcutting is performed.

• Single-tag response:

When the reader detects a single-tag response, the query

should traverse horizontally to the right in order to identify the

node next to the current node. The next query string is there-

fore set as q n = q c + 1 . The length of query l n following a single-

tag response is equal to that of the current query l c . In other

words, l n is unchanged.

The following discussions demonstrate the query construction

ules described above using Example 1 in Fig. 5 for illustration

urposes. The query construction steps are shown in Fig. 5 and

able 4 . In Steps 1 to 3, the number of appended bits is progres-

ively increased following multiple consecutive collisions. More-

ver, Steps 8 and 9 relate to the shortcutting process following

ollision. Specifically, knowing from Step 7 that the left-child node

as idle, the reader appends ‘10’ to the query in Step 8. Steps 15

nd 16 relate to the shortcutting in idle condition since in Step 14,

he parent node was visited and found to collide.

As described above, the query length is changed following an

dle response or a collision, but remains unchanged following a

78 S.-C. Tsai et al. / Computer Communications 88 (2016) 73–83

Table 4

Query construction steps for Example 1.

Step Query string Status

0 N 0 (C)

1 N 0 0 (C)

2 N 0 0 0 0 (C)

3 N 0 0 0 0 0 0 0 (S)

4 N 0 0 0 0 0 01 (S)

5 N 0 0 0 0 010 (S)

6 N 0 0 0 0 011 (I)

7 N 0 0 0 010 (I)

8 N 0 0 0 01 (C)

9 N 0 0 0 0110 (S)

10 N 0 0 0 0111 (S)

11 N 0 0 010 0 0 (S)

12 N 0 0 010 01 (I)

13 N 0 00101 (I)

14 N 0 0011 (C)

15 N 0 00110 (I)

16 N 0 001110 (S)

17 N 0 001111 (S)

Fig. 6. Basic concept of DRTC mechanism.

single-tag response. In the present study, the variation (or not) be-

tween l c and l n , is exploited to develop a mechanism designated as

Distributed Record Tag-Check (DRTC) for improving the efficiency

of the tag identification process in checking for staying tags.

3.3. Distributed record tag-check on E-STT with blocking protocol

In our proposed scheme, the reader identifies all tags first time

by the Enhanced-STT. After that the reader will do the Distributed

Record Tag-Check on E-STT with Blocking Protocol (DRTC/BP) ev-

ery times. And the time of tag collection process will be saved

much more, especially in an inventory system. The blocking fea-

ture has an advantage in the case, but it does not in a dynamic

application case. DRTC/BP comprises two phases, namely staying

tag phase: Distributed Record Tag-Check (DRTC) and arriving tag

phase: Enhanced STT with blocking protocol (E-STT/BP). Note that

the Enhanced STT has been described in Section 3.2 . E-STT/BP

extends STT so that having blocking feature which describes in

Section 3.3.2 .

3.3.1. Distributed record tag-check mechanism

There are two parts in DRTC. The first part identifies the miss-

ing tags by the slotted frame. The second part shortens the length

of the slotted frame to decrease the execution time.

• Distributed record by tags:

The “distributed record” concept used in the present study is

adopted from the Three-Phase Protocol with Collision Sensitive

Tag Removal (TPP/CSTR) method proposed in [21] . In order to

realize the distributed record concept, this study further uses

the blocking protocol presented in [35] to distinguish the stay-

ing tags from the arriving tags. As described earlier, the staying

tags are those tags which were identified in a previous tag-

collection process and whose IDs are therefore stored in the

reader’s memory or in a linked database. The situation is sim-

ilar to [21] when we considering the multiple rounds of tag-

collection process.

In contrast to the protocols presented in [21] , in which the

identified tags are mapped to a given frame slot using a hash

function, the DRTC scheme proposed in the present study maps

the identified tags using the variable query length informa-

tion. In the TPP/CSTR protocol, more than 2 tags in one frame-

slot is reduced to 2-collision slot. However, the optimal frame

size is equal to approximately 1.14 times the total number of

tags (N tag) since the hash function results in the creation of
some idle slots and single-tag slots during the mapping pro-

cess. However, if every frame-slot is a 2-collision slot, as shown

in Fig. 6 , the frame size can be reduced to around half the

total number of tags. In other words, the performance of the

reader in checking the staying tags can be significantly im-

proved. Thus, in developing the DRTC mechanism proposed in

this study, the overriding goal is to generate 2-collision slots in

every frame slot during the mapping process.

As described in Section 3.2.2 , the length l n of the query follow-

ing a single-tag response remains unchanged from that of the

current query l c . By contrast, for the case of a collision, l n is

always greater than l c , while for the case of an idle response,

l n is generally less than l c unless the shortcutting condition oc-

curs. In other words, the query length remains unchanged only

for the case of a single-tag response. By exploiting this variable

query length information, each tag can determine the query

state directly without the assistance of the reader. Thus, as de-

scribed below, in DRTC, each tag stores to memory a parameter

l l and a counter to record its slot number.

In the Enhanced STT protocol, all of the tags maintain a counter,

i.e., Slot _ num, to record their slot parameter. The counter value

is set to 1 initially. In addition, the tags store to memory the

last query length as parameter l l . On receiving a query, the tags

then need only to compare the current query length l c with the

stored value l l . If l c differs from l l , the tags infer that no tag

was identified by the reader in the preceding query process.

Hence, the value of Slot _ num remains unchanged. However, if

l c is equal to l l , the tags infer that the reader identified a tag,

and therefore increment the value of Slot _ num by 1.

When the prefix of a tag matches the current query string q c ,

the tag should remain and the Slot _ num counter is locked. Note

that the Slot _ num value also means that the next identified

tag’s sequential number. That is, if a tag prefix matches q c , the

tag is the Slot _ num th tag identified by the reader.

In the frame phase of DRTC process, the reader broadcasts a re-

quest command r (f) and each tag is mapped to the � Slot _ num

2 	 th
frame-slot. Since every staying tag knows the order in which

it is identified by the reader, i.e., Slot _ num, mapping to the

� Slot _ num

2 	 th frame-slot causes all of the frame-slots to be two-

collision slots. On receiving the request command r (f) from the

reader, each tag counts down to its frame-slot and then trans-

mits a long response. Note that the long response comprises

multi-bits and indicates whether the corresponding slot is idle,

single-tag-response, or collision. For example, in the protocol

proposed in [21] , the long response is based on the Philips I-

Code system [27] and uses 10 bits to distinguish single-tag-

response slots from collision slots. In the event that some of

the slots transpire to be single-tag-response slots, the reader

records the slots and initiates the polling phase.

In the polling phase, the reader sends a query to those tags in

single-tag response slots in order to verify their presence. The

total execution time of the DRTC mechanism is given by

T = (t pre f ix + t s) × (M) + f × t l (3)

where t prefix is the time required to transmit a query prefix,

t s is the time required to transmit a short response, M is the

number of tags in a single-tag-response slot, f is the frame size

(equal to approximately half the total number of tags, i.e., N tag)

S.-C. Tsai et al. / Computer Communications 88 (2016) 73–83 79

Fig. 7. Schematic representation of Slot _ num re-allocation mechanism.

3

t

w

t

T

o

t

D

m

S

D

3

o

a

and t l is the time required to transit a long response. As in

TPP/CSTR, the number of missing tags is unknown, and thus the

reader cannot evaluate the total execution time of the polling

phase. However, assuming that missing-tag events are relatively

rare, i.e., tens of missing tags to thousands even tens of thou-

sands of total tags, the execution time of the polling phase can

be effectively ignored. Hence, the total execution time of DRTC

can be given as

T ′ = f × t l . (4)

As discussed earlier, the optimal frame size in TPP/CSTR is equal

to around 1.14 times the total number of tags, N tag . However, in

DRTC, the optimal frame size is equal to only 0.5 times N tag .

In other words, DRTC reduces the frame size by around 56%

compared to TPP/CSTR, and therefore significantly improves the

performance (i.e., execution time) of the reader in checking the

staying tags. Moreover, the reader is not required to send the

Slot _ num parameter to the identified tags since all of the tags

in the system record this parameter in a distributed way. Con-

sequently, the DRTC mechanism does not increase the overall

overhead of the proposed tag identification protocol.

As in the Enhanced Couple-Resolution Blocking (ECRB) proto-

col proposed in [35] , the reader in the current protocol also

exploits the 2-collision concept. However, in ECRB, the reader

needs to broadcast the prefix queries which result in 2-collision

events and tags with matching prefixes then return their entire

ID to the reader. Consequently, the execution time is given by

T ECRB = (t pre f ix + t tagID) × � N tag

2

	 (5)

The term (t pre f ix + t tagID) is greater than t l intuitively. Thus, of

the two protocols, the DRTC protocol results in a lower execu-

tion time when checking the staying tags.

It is noted that a problem occurs if some of the tags re-

ceive a query incorrectly during the tag-collection process.

In such a situation, an error will occur when updating the

Slot _ num counter value. In theory, Assumption 1 given in

Section 3.1 should prevent such a scenario from occurring.

However, in real-world systems, this problem must be taken

into account.

• Re-allocation mechanism:

If having executed the DRTC mechanism some of the time-slots

transpire to be idle slots, the reader initiates a Slot _ num re-

allocation process to remove the idle slots and rearrange the

Slot _ num values of the remaining tags accordingly. Specifically,

the reader broadcasts a Slot _ num reallocation command con-

taining a parameter s , where s is the former Slot _ num value

of an idle slot. On receiving this command, each tag with a

Slot _ num value equal to or greater than s counts up to a pa-

rameter de _ n . Once the reader has broadcast reallocation com-

mands containing the Slot _ num values of all the idle slots,

it broadcasts a reallocation termination command. On receiv-

ing this command, each tag reduces the value of its Slot _ num

counter by (2 × de _ n) . In addition, the reader decreases the to-

tal tag number, N tag , by decreasing an amount equal to (2 ×
number of re-allocation command sends).

Consider the illustrative case shown in Fig. 7 . Assume that in

the polling phase, the reader finds that tags with Slot _ num

values equal to 3, 5, 6, 7, 8, 11 and 12 are missing. The

reader thus broadcasts Slot _ num reallocation commands with

s = 9 , s = 9 , and s = 13 and then issues a reallocation termina-

tion command. On receiving the reallocation commands, slots

with Slot _ num values equal to 9 and 10 reduce their Slot _ num

counter by 2 × 2 = 4 . Meanwhile, slots with Slot _ num values

equal to 13, 14, 15 and 16 reduce their Slot _ num counters by

2 × 3 = 6 .
The protocol proposed in this study deliberately uses a simple

mechanism to remove idle slots since it is assumed that the

tags in the RFID network have a low mobility and therefore

generally remain within the reader’s communication range (i.e.,

most of the tags are staying tags). In dynamic environments,

the simplistic reallocation mechanism may result in a signifi-

cant increase in the overall overhead of the tag collection pro-

cess. Thus, a threshold value should be applied such that a new

tag-collection round is initiated if the number of missing tags

exceeds the specified threshold value.

.3.2. E-STT with blocking protocol

In the arriving tag phase, the reader has been identified staying

ags and want to find out arriving tags. Thus, the reader uses E-STT

ith blocking protocol(E-STT/BP) which is as same as E-STT essen-

ially. The E-STT/BP differs only from the initial value Slot _ num .

he initial value Slot _ num of E-STT is set to zero. However, the

ne of E-STT/BP is set to N tag for mapping the arriving tags to

heir frame slots. The arriving tags become the staying tags next

RTC/BP round.

In this tag-collection process, the reader broadcasts the com-

and with parameter N tag . In addition, the arriving tags set their

lot _ num values to N tag in preparation for the next round of the

RTC mechanism.

.4. Reader and tag pseudocode

This section summarizes the basic steps in the reader and tag

perations in the proposed protocol. The basic reader operation is

s follows:

1. Set identified tag number to N tag .

Send Staying Frame Phase command (for staying tags).

Then send request command r (f), f = � N tag

2 	 .
2. 1st- phase Distributed Record Tag-Check.

3. Send Slot _ num re-allocation command.

4. Send 2nd- phase command, with parameters (send N tag to tag,

set Slot _ num = N tag).

5. 2nd- phase Enhanced STT with blocking protocol. (For unidenti-

fied tags).

Meanwhile, the basic tag operation is as follows:

1. Initialize Slot _ num counter to 1.

2. On receiving Staying Frame Phase command and request r (f),

(a) Send Long_Response in � Slot _ num

2 	 th slot.

(b) On receiving Slot _ num re-allocation command.

3. On receiving Phase 2 command with N tag ,

(a) If Slot _ num == 1 , set Slot _ num = N tag ;

(b) On receiving a query q c , compare its length l c to previous

query length l l .

If l c equals l l , set Slot _ num = Slot _ num + 1 .

(c) Set l = l c ;
l

80 S.-C. Tsai et al. / Computer Communications 88 (2016) 73–83

Table 5

Notations used in proposed protocol.

Notation Description

q c = b 1 b 2 . . . b lc Current query prefix

q n Next query prefix

l c The length of current query

l l The length of last query

i The number of consecutive collisions

x i The number of appending bits

K The total length of tag ID

N tag The total number of tags record in reader

Slot _ num The counter value used in 1st- phase

CurF The current frame number

NextF The next frame number

rRID The reader’s ID record in reader

tRID The reader’s ID record in tag

f The frame length in request command

Table 6

Pseudocode of reader operation.

Reader operation:

1 CurF = NextF ;

2 N extF = N extF + 1 ;

3 Phase = 1 ; N tag = 0 ; q c = 0

4 Transmit the 1st- phase command with rRID, CurF , and

NextF

5 if Phase == 1 then

6 f = � N tag

2
	 ;

7 if f > 0 then

8 Transmit request command r (f);

9 Receiving tags response until f slots;

10 while there are some empty slot do

11 Transmit Slot _ num reallocation command with s ;

12 end while

13 Transmit reallocation ending command;

14 Transmit the 2nd- phase command with N tag ;

15 Phase = 2 ;

16 end if

17 end if

18 while Phase == 2 do

19 Transmit the query q c ;

20 if The reader detects Collision then

21 if q = q c 0 was visited and idle then

22 q n ← (b 1 b 2 . . . b lc−1 10) ;

23 end if

24 else

25 i = i + 1 ;

26 q n ← q c ;

27 if l c + x i > K then

28 for j = 1 to K − l c do

29 q n ← q n 0

30 end for

31 else

32 for j = 1 to x i do

33 q n ← q n 0;

34 end for

35 end if

36 if The reader detects Idle then

37 i = 0 ;

38 if q = (b 1 b 2 . . . b lc−1) was visite d and collide d then

39 q n ← (b 1 b 2 . . . b lc−1 10) ;

40 else if sum (q c) == length (q c)

41 Phase = 1 ;

42 else if b lc == 0 then

43 q n ← b 1 b 2 . . . b lc−1

44 else

45 q n ← (b 1 b 2 . . . b lc−1) + 1

46 end if

47 else if detects Single-tag-response then

48 i = 0 ;

49 N tag = N tag + 1 ;

50 q n ← (b 1 b 2 . . . b lc) + 1 ;

51 end if

52 q c ← q n
53 end while

t

p

d

T

w

i

n

t

c

b

t

S

n

n

(d) If pre f ix (ID) == q c , transmit ID;

The notations used in the proposed algorithm are summarized in

Table 5 . Meanwhile, the pseudocode for the reader and tag opera-

tions is presented in Table 6 and 7 .

3.5. Design complexity comparison

Table 8 compares the design complexity of the proposed En-

hanced STT with DRTC protocol with that of other protocols pre-

sented in the literature. In realizing the blocking protocol, the tags

need to store parameters such as tRID and TF . Thus, of all the

protocols shown in Table 8 , only the original STT protocol pre-

serves the memory-less feature of the original QT protocol. In ad-

dition, the hash function is not necessary in our algorithm. But it

is needed when finding missing tag in other algorithms. The com-

plexity of our algorithm is O(1) so that the algorithm can save the

computing time and power. Moreover, our algorithm would reduce

costs of equipment.

4. Performance evaluation

4.1. Simulation setup

The performance of the Enhanced STT protocol was evaluated

by means of MATLAB simulations and compared with that of the

conventional STT protocol. Note that the DRTC mechanism has no

direct counterpart in the literature. Moreover, its performance has

already been evaluated in Section 3.2 . Thus, its performance is not

discussed here. As for the QT evaluation process performed in [17] ,

the present study evaluates the performance of the Enhanced STT

protocol in terms of two metrics, namely the System Efficiency (SE)

and the Time System Efficiency (T ime _ SE).

The SE metric evaluates the efficiency of the protocol in using

the frame slots, and is defined as follows:

SE =

Q S

Q Total

=

Q S

Q I + Q S + Q C

(6)

where Q S is the number of single-tag response queries and Q Total is

the total number of queries used in identifying the complete tag

set. In other words, Q Total is the sum of the single-tag response

queries (Q S), idle queries (Q I) and collision queries (Q C). The time

durations of these queries are different. Specifically, the time du-

ration of the idle queries is much shorter than that of the single-

tag-response queries or collision queries since in an idle query, the

tags do not need to transmit their IDs to the reader. Since the

queries have different durations, a time system efficiency is intro-

duced. In computing the T ime _ SE, the idle queries are normalized
o the length of the other two types of query through a multi-

licative factor β such that all three types of query have the same

uration. The T ime _ SE metric is computed as follows:

 ime _ SE =

Q S

βQ I + Q S + Q C

=

Q S

Q Total + (β − 1) Q I

(7)

here β is taken as 0.13 in the present evaluations. As described

n [17] . β represents the ratio of the number of idle queries to the

umber of collision queries, and has a value of 0.13 according to

he EPC global standard specification.

As discussed in [17] , maximizing the SE requires the reader to

ollect all of the tags in the system using the minimum total num-

er of queries. Regarding the T ime _ SE, a trade-off exists between

he number of collision queries and the total number of queries.

pecifically, the T ime _ SE improves when a small increase in the

umber of idle queries results in a significant reduction in the

umber of collision queries. In addition to the SE and T ime _ SE

S.-C. Tsai et al. / Computer Communications 88 (2016) 73–83 81

Table 7

Pseudocode of tag operation.

Tag operation:

1 Slot _ num = 1 ;

2 Receive message m from the reader;

3 while m ! = the frame ending command do

4 if m is the 1st- phase command

and tRID == rRID and T F == CurF then

5 Respond = 1 ;

6 else

7 Respond = 0 ;

8 end if

9 if m is the request command r (f) and Respond == 1 then

10 Transmit Long_Response in � Slot _ num
2

	 th slot;

11 if m is the Slot _ num reallocation command with s then

12 if Slot _ num ≥ s then

13 de _ n = de _ n + 1 ;

14 end if

15 if m is the reallocation ending command then

16 Slot _ num = Slot _ num − 2 × de _ n ;

17 end if

18 if m is the 2nd- phase command with N tag then

19 if Slot _ num == 1 then

20 Slot _ num = N tag ;

21 end if

22 Respond = not Respond ;

23 tRID = rRID ;

24 T F = NextF ;

25 end if

26 if m is a query and Respond == 1 then

27 l c = length (m) ;

28 if l l == l c then

29 Slot _ num = Slot _ num + 1 ;

30 end if

31 if pre f ix (ID) == m then

32 Transmit ID;

33 end if

34 end if

35 Receive message m from the reader;

36 end while

m

p

o

r

S

t

o

T

i

T

s

p

w

t

t

t

Table 9

Trial appending patterns and frequency of x i .

X 1 Freq. X 2 Freq. X 3 Freq. X 4 Freq.

x 1 1 1671 1 1685 1 1689 1 1690

x 2 2 853 1 850 1 846 1 845

x 3 3 74 2 285 1 285 1 285

x 4 4 3 3 21 2 72 1 72

x 5 5 1 4 1 3 5 1 21

x 6 6 0 5 0 4 1 1 3

x 7 7 0 6 0 5 0 1 1

x 8 8 0 7 0 6 0 1 0

Table 10

Simulation results for SE and T IME _ SE given different

appending patterns.

K = 96 bits, N tag = 50 0 0

X 1 X 2 X 3 X 4 (STT-s)

Q Tatal 14091 13826 13685 13644

Q C 3195 3374 3422 3429

Q I 5896 5452 5263 5205

SE 0 .355 0 .361 0 .365 0 .366

T ime _ SE 0 .558 0 .550 0 .549 0 .548

t

S

a

t

t

m

I

u

g

u

d

t

a

m

t

f

w

fi

t

Y

w

l

S

etrics, this study also evaluates the performance of the proposed

rotocol by investigating the reduction achieved in the numbers

f total queries (Q Total); idle queries (Q I) and collision queries (Q C),

espectively, compared to the original STT scheme.

To determine the optimal appending pattern for the Enhanced

TT protocol, a preliminary set of simulations was performed using

he six appending patterns shown in Table 9 given the assumption

f a RFID system containing 50 0 0 tags. The corresponding SE and

 ime _ SE results are shown in Table 10 . It is observed that append-

ng pattern X 1 results in the highest Time S E of the various patterns.

hus, X 1 was taken as the default pattern for the Enhanced STT

cheme in all of the remaining simulations. However, appending

attern X 4 was taken as the appending pattern for the STT-s (STT

ith shortcutting) scheme. Note that STT-s is a particular case of

he Enhanced STT protocol in which the appending pattern con-

ains only 1’s. In other words, the query process traverses down

he query tree 1-bit level each time it encounters a collision.
Table 8

Design complexity comparison.

DRTC on enhanced

STT

Enhanced STT STT

Counters in tag 1 N N

Prefix matcher Y Y Y

Hash function N N N

Blocking protocol Y Y N

Tag-collection

process

Improve from STT Improve from STT Improve from

Missing-tag

detection

Frame-slots /

2-collision

Known prefix /

2-collision

Repeat STT ag
The simulations commenced by investigating the effect of the

otal number of tags on the performance of the Enhanced STT,

TT and STT-s protocols. In performing the simulations, N tag was

ssigned values of 10 0 0, 30 0 0, 50 0 0, 10 0 0 0 and 20 0 0 0, respec-

ively. The tag ID length was specified as 96 bits, because the

ags’electronic product code usually has 96 bits. This setting will

ake it closer real world. And the tags were randomly generated.

n other words, the tag IDs were uniformly distributed. The sim-

lations then considered the case of different tag ID distributions

iven a constant total number of tags (i.e., N tag = 50 0 0). The sim-

lations considered four tag ID distributions, namely: (1) a normal

istribution with mean 2 K−1 , i.e., the tags are congregated at cen-

ral of 2 K ; (2) a normal distribution with mean 2 K−2 , i.e., the tags

re congregated at the quarter of 2 K ; (3) a normal distribution with

ean 2 K−1 + 2 K−2 , i.e., the tags are congregated at the third quar-

er of 2 K ; and (4) an equal division of the tag set into two groups

For each simulation environment, 30 simulations were per-

ormed using a different tag set on every occasion. The results

ere then verified by means of the statistical means and 95% con-

dence intervals of the corresponding evaluation metrics. The sta-

istical mean was computed as

¯
 =

∑ y i
N sim

(8)

here y i is the simulation result and N sim

is the number of simu-

ations.

The statistical variance is given by

2 =

∑ (y i − Ȳ) 2

(N − 1)
(9)
sim

ECRB PRB TPP/CSTR

N 3 1

Y N N

N N Y

Y Y N

 QT Query tree Binary tree Tag IDs store in

database

ain Known prefix /

2-collision

BT / 2-collision Frame-slots /

2-collision

82 S.-C. Tsai et al. / Computer Communications 88 (2016) 73–83

Table 11

Simulation results for query given different tag populations.

Comparison Q Total 95% confidence interval Q C 95% confidence interval Q I 95% confidence interval

STT-s –8 .86% (–8 .98%, –8.74%) 4 .01% (3 .70%, 4.32%) –22 .14% (–22 .31%, –21.97%)

E-STT –5 .75% (–5 .91%, –5.60%) –3 .40% (–3 .78%, –3.25%) –11 .33% (–11 .57%, –11.10%)

Table 12

Simulation results for SE and T ime _ SE given different tag populations.

SE 95% confidence interval T ime _ SE 95% confidence interval

STT 0 .339 (0 .338, 0.340) 0 .549 (0 .548, 0.550)

STT-s 0 .372 (0 .371, 0.373) 0 .553 (0 .551, 0.553)

E-STT 0 .359 (0 .358, 0.360) 0 .562 (0 .561, 0.563)

Table 13

Simulation results of query comparison given different tag distributions.

Comparison Q Total 95% confidence interval Q C 95% confidence interval Q I 95% confidence interval

STT-s –8 .86% (–8 .96%, –8.76%) 4 .02% (3 .82%, 4.19%) –22 .12% (–22 .30%, –21.96%)

E-STT –5 .71% (–5 .85%, –5.65%) –3 .40% (–3 .66%, –8.13%) –11 .34% (–11 .55%, –11.12%)

Table 14

Simulation results of SE and T ime _ SE in varying tag distribution.

SE 95% confidence interval T ime _ SE 95% confidence interval

STT 0 .339 (0 .338, 0.340) 0 .549 (0 .547, 0.550)

STT-s 0 .372 (0 .370, 0.373) 0 .553 (0 .551, 0.553)

E-STT 0 .359 (0 .358, 0.360) 0 .562 (0 .561, 0.563)

Table 15

Comparison of SE and T ime _ SE for different tree-based

protocols.

SE T ime _ SE

BS 0 .34 0 .40

QT 0 .34 0 .40

QTI 0 .376 0 .41

STT 0 .339 0 .549

STT-s 0 .372 0 .552

E-STT 0 .359 0 .562

v

a

r

p

t

t

Q

s

l

t

p

a

h

a

5

s

C

t

d

s

Thus, the 95% confidence interval can be derived as (
Ȳ − Z 0 . 05

2
× S√

N sim

, Ȳ + Z 0 . 05
2

× S√

N sim

)
(10)

where Z 0 . 05
2

is 1.96.

4.2. Simulation results

Table 11 shows the performance of the STT-s and Enhanced

STT schemes in reducing the various types of query within the

RFID system relative to the original STT scheme. The simulation re-

sults are obtained for uniformly distributed RFID systems with N tag

= 10 0 0, 30 0 0, 50 0 0, 10 0 0 0, and 20 0 0 0 tags. Note that the plot-

ted points correspond to the statistical mean of the corresponding

metric in every case, and the margin of error is the 95% confidence

interval. In general, the results show that none of the metrics are

affected by the size of the tag set in any of the considered proto-

cols. This result is to be expected since the tag populations consid-

ered in the present simulations are relatively sparse compared to

the whole tag ID space, which is of the order of 2 96 . It is observed

that even for N tag = 20 0 0 0, the query tree does not become sat-

urated as in [18] . Table 12 summarizes the simulation results ob-

tained for the SE and Time SE performances of the three schemes.

It is seen that the SE of the Enhanced STT scheme is slightly lower

than that of the STT-s scheme, but higher than that of the origi-

nal STT scheme. Furthermore, it is observed that the Enhanced STT

scheme has the highest Time SE of the three schemes.

Table 13 and 14 show the four different tag distributions con-

sidered in the present study. The four distributions were found

to yield very similar simulation results. Thus, the results are pre-

sented in the forms shown in Table 13 and 14 . It is observed that

the results are very similar to those presented in Table 11 and 12 .

In other words, STT and its variants are unaffected by the tag ID

distribution. This result is reasonable since STT has the ability to

adaptively adjust its Query Traversal Path (QTP) depending on the

distribution of the tags [17] . For example, if the tag IDs are con-

centrated primarily in the left part of the query tree, STT (and its
ariants) traverse down the tree to identify the locally dense tags

nd then traverse back up the tree to the more sparse areas. As a

esult, the performance is similar. Table 13 and 14 summarize the

erformance of the various STT schemes for the different tag dis-

ributions.

Finally, Table 15 compares the SE and T ime _ SE performances of

he three STT protocols with those of the Binary Splitting (BS),

uery Tree (QT) and Query Tree Improved (QTI) protocols pre-

ented in [17] . It is seen that while the STT protocols obtain a

ower SE than the QTI protocol, they achieve a higher T ime _ SE

han the BS, QT or QTI protocols. In addition, it is seen that the

roposed Enhanced STT protocol achieves the highest T ime _ SE of

ll the considered schemes. From inspection, its T ime _ SE is 1.8%

igher than that of STT with shortcutting, 2.4% higher than STT,

nd 40.5% higher than QT.

. Conclusion and future work

5.1. Conclusion

This paper has presented a tag identification protocol for RFID

ystems designated as Enhanced STT with Distributed Record Tag-

heck (DRTC). In previous study, they usually either process the

ag identification collection or detect the missing tags indepen-

ently. We solve these two problems together and let our proposed

cheme more efficient.

http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0002
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0002
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0002
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0002
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0019
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0019
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0019
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0022
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0022
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0022
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0024
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0024
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0024
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0024
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0025
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0025
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0025
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0025
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0026
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0026
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0026
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0027
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0027
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0028
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0028
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0028
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0029
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0029
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0029
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0029
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0031
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0031
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0032
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0032
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0035
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0035
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0035
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0037

	Efficient tag reading protocol for large-scale RFID systems with pre-reading
	1 Introduction
	2 Related works
	2.1 RFID tag anti-collision protocols
	2.1.1 QT protocol and variants
	2.1.2 Smart trend-traversal protocol

	2.2 RFID missing-tag event

	3 Enhanced STT protocol with distributed record tag-check mechanism
	3.1 System assumptions
	3.2 Enhanced STT (E-STT)
	3.2.1 Dynamic query down
	3.2.2 Query construction rules

	3.3 Distributed record tag-check on E-STT with blocking protocol
	3.3.1 Distributed record tag-check mechanism
	3.3.2 E-STT with blocking protocol

	3.4 Reader and tag pseudocode
	3.5 Design complexity comparison

	4 Performance evaluation
	4.1 Simulation setup
	4.2 Simulation results

	5 Conclusion and future work
	5.1 Conclusion
	5.2 Future work

	 References

