Computer Communications 88 (2016) 73-83

Contents lists available at ScienceDirect

COI’I]pUtCI‘
communications

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Efficient tag reading protocol for large-scale RFID systems with
pre-reading

@ CrossMark

Shuen-Chih Tsai*, Yu-Min Hu, Chen-Hsun Chai, Jung-Shian Li

Department of Electrical Engineering, Institute of Computer and Communication Engineering, National Cheng Kung University, University Road, Tainan 701,
Taiwan, ROC

ARTICLE INFO ABSTRACT

Article history:

Received 3 September 2015
Revised 19 March 2016
Accepted 23 April 2016
Available online 25 April 2016

In large-scale RFID systems, collecting all of the tag IDs is a time-consuming process. A protocol desig-
nated as Smart Trend-Traversal (STT) has been proposed to reduce collisions during the tag collection
process and to dynamically construct the query strings used to interrogate the tags. In general, if the tag
ID information is known to the reader from a previous tag collection round, the efficiency of the cur-
rent round can be significantly improved. Various protocols have been proposed for scanning a known
Keywords: tag set based on the use of a hash function. Accordingly, the present study proposes an Enhanced STT
RFID tag collection scheme based on a blocking protocol and a Distributed Record Tag-Check (DRTC) mechanism. Compared
STT to the conventional STT scheme, the proposed protocol adaptively adjusts the length of the query string
Blocking protocol depending on the response received to the previous query. Moreover, in the DRTC mechanism, the tags
Missing-tag problem determine their transmission slot frame directly without the assistance of the reader, and thus the over-
all overhead of the tag-collection process is reduced. The simulation results show that the Enhanced STT
scheme reduces the total number of queries required to collect the entire tag set compared to the con-
ventional STT method. Moreover, the proposed DRTC mechanism yields an effective reduction in the total

number of frame slots compared to existing protocols such as TPP/CSTR and ECRB.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Radio frequency identification (RFID) technology [1]| has many
important applications nowadays , including item identification,
automatic inventory and asset management, payment, and so on
[9,24,37]. RFID systems have many advantageous features, includ-
ing a relatively low deployment cost, an ability to operate in harsh
environments, the absence of batteries or any form of external
energy source, and so forth. However, in implementing RFID sys-
tems, two problems arise, namely the RFID tag-collection problem
[16] and the RFID missing-tag event problem [21,29]. Various pro-
tocols have been proposed for improving the efficiency of the tag
ID collection process. Moreover, various methods have been devel-
oped for solving the missing-tag problem, i.e., detecting the miss-
ing tags among a set of known tags. However, in previous study,
they usually either process the tag identification collection or de-
tect the missing tags independently. If the process of tag iden-
tification finishes, the process of missing-tag detection will start
separately. In general, the system spends some time on switching
these two processes. Our proposed protocol will switch the pro-

* Corresponding author. Tel.: +886 6 2757575x62400.
E-mail address: pandaorz@gmail.com (S.-C. Tsai).

http://dx.doi.org/10.1016/j.comcom.2016.04.019
0140-3664/© 2016 Elsevier B.V. All rights reserved.

cesses smoothly. We want to solve these two problems together
and let our proposed scheme more efficient.

The present study proposes an Enhanced Smart Trend-Traversal
(Enhanced-STT) scheme based on the STT protocol [18] and to-
gether with a blocking mechanism [35] and a Distributed Record
Tag-Check (DRTC) mechanism. The conventional STT protocol uses
a depth-first-search method to construct the query traverse path.
Moreover, when collisions occur, the number of bits appended to
the query string used to interrogate the tags is dynamically ad-
justed in accordance with the tag ID distribution or the tag pop-
ulation. However, in the Enhanced STT scheme, the query length
is adjusted dynamically in accordance with the response received
from the previous query in order to accelerate the tree traversal
process. In addition, in the DRTC mechanism, the tags determine
their transmission frame-slots directly from an inspection of the
query length. In other words, the reader is not required to transmit
slot information to them, and thus the tag collection overhead is
reduced. Compared to traditional binary tree-based protocols [34],
DRTC has a lower system requirement (i.e., a fewer number of
counters per tag), but retains an excellent performance.

The simulation results confirm that the Enhanced STT protocol
reduces the total number of queries required to collect the en-
tire tag set compared to STT. Moreover, the Enhanced STT scheme

http://dx.doi.org/10.1016/j.comcom.2016.04.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2016.04.019&domain=pdf
mailto:pandaorz@gmail.com
http://dx.doi.org/10.1016/j.comcom.2016.04.019

74 S.-C. Tsai et al./Computer Communications 88 (2016) 73-83

reduces the number of collisions in the tag-collection process, and
therefore reduces both the total tag identification time and the
energy consumption of the active tags. The efficiency of the En-
hanced STT scheme is further evaluated in terms of both the Sys-
tem Efficiency (SE) and the Time System Efficiency (Time_SE). It is
shown that the Time_SE of Enhanced STT is superior to that of STT
and other Query Tree-based (QT-based) protocols. In addition, it is
shown that the DRTC mechanism provides an efficient approach
for checking the IDs of staying tags and reduces the total number
of frame slots required to collect all of the tag IDs compared to ex-
isting protocols such as Three-Phase Protocol with Collision Sensi-
tive Tag Removal (TPP/CSTR) [21] and Enhanced Couple-Resolution
Blocking (ECRB) [35].

The remainder of this paper is organized as follows.
Section 2 reviews the related work in the RFID tag identifica-
tion field. Section 3 introduces the Enhanced STT scheme and
DRTC mechanisms proposed in this study. Section 4 presents and
discusses the simulation results Finally, Section 5 provides some
brief concluding remarks and indicates the intended direction of
future research.

2. Related works

Research in the RFID field focuses predominantly on two main
problems, namely the RFID tag anti-collision problem and the RFID
missing-tag event problem. The former problem involves improv-
ing the efficiency of the tag collection problem by avoiding colli-
sions [16]. The later problem involves scanning a large group of
known tags and identifying any tags which are missing in the
current scanning round [4]. The present study proposes an ap-
proach for reducing the tag identification time by extending the
conventional STT algorithm. STT is a QT-based anti-collision proto-
col. Thus, the following sub-section introduces previous work re-
lating to QT-based protocols. Section 2.2 then reviews existing pro-
posals for dealing with the missing tag event in the second round
(and on) of the tag-collection process.

2.1. RFID tag anti-collision protocols

Existing RFID tag anti-collision protocols generally adopt either
a tree-based approach [11,15,23,25,26,34-36] or an Aloha-based
approach [3,7,8,14,19,20,22,30-32]. Because of scalability in real
life [5], our study adopts tree-based approaches. Among protocols
adopting the former method, the Query Tree (QT) algorithm [2,6],
and Binary Tree (BT) algorithm [34] are among the most common.
In the QT algorithm, the RFID reader uses the tag ID prefix to per-
form the tag-collection process. By contrast, the BT algorithm iden-
tifies the tags by using random binary numbers to partition the
RFID tags into small groups. Meanwhile, in Aloha-based protocols,
the reader first estimates the number of tags within its communi-
cation range and then assigns these tags an appropriate number of
frame slots such that they can return their IDs without contention
[28]. We adopt the mechanism without estimating the number of
tags, because it is more easy to be deployed in real life.

Irrespective of the anti-collision protocol employed, it is neces-
sary to deal with two different types of tags, namely staying tags
and arriving tags. Staying tags are tags identified by the reader
in a previous tag-collection round which are also present in the
current round. By contrast, arriving tags are tags which appear in
the reader’s communication range for the first time in the present
round. In other words, they are unknown to the reader prior to
the current round. As described above, in attempting to improve
the efficiency of the tag-collection process, the present study ex-
tends the conventional QT-based STT protocol. Thus, the follow-
ing discussions briefly review the original QT algorithm and its
variants.

2.1.1. QT protocol and variants

In the QT protocol, the tag set is split using the tag ID prefix in
order to construct a query tree. Having constructed this tree, the
reader then broadcasts tag ID queries in a breadth-first manner.
The reader maintains a queue (Q) of query strings and initializes
this queue with two 1-bit strings, i.e., 0 and 1, at the beginning
of each tag-collection round. The reader then de-queues a query
string from Q in order to interrogate the tags within its commu-
nication range. Any tags having a prefix which matches the query
transmit their IDs to the reader. If the tag IDs arrives at the reader
in different time slots, they can be successfully recognized. How-
ever, if multiple tags respond simultaneously, the reader detects
a collision event and splits the original query bib,...b). into two
sub-tree queries where b; € {0, 1}, i.e., b1b,...b,.0 and b1b, ... b1,
which it then enqueues to the end of its queue. In the event that
the reader detects just one tag response or no tag response, re-
ferred to as a single-tag-response query and an idle query, respec-
tively, it concludes that query byb,...b. is the end of the current
sub-tree, and labels the query string “end” accordingly. The reader
then dequeues the next query string from Q and repeats the in-
terrogation process. The process is repeated iteratively in this way
until all of the query strings in Q are labelled as “end”.

In the QT-based Adaptive Query Splitting (AQS) protocol [13],
the single-tag-response and idle queries obtained in the previ-
ous tag-collection round are stored by the reader in a candidate
queue (CQ). At beginning of each tag-collection round, the queries
in CQ are copied to Q and are then sequentially dequeued in or-
der to identify the staying tags and arriving tags, respectively. The
Couple-Resolution Blocking (CRB) protocol [35] extends AQS by in-
troducing a blocking mechanism. In the proposed approach, the
reader “mutes” arriving tags as it is identifying the staying tags
in order to prevent collisions between them. CRB distinguishes be-
tween the two types of tags by allowing the reader and all the
tags to store both the last reader ID and the frame number. CRB
divides the tag-collision process into two phases, namely a staying
tag identification phase (Phase 1) and an arriving tag identification
phase (Phase 2). In Phase 1, the reader dequeues two queries from
Q and transmits a concatenated query including both queries. Since
the arriving tags are muted in Phase 1, the reader interprets the oc-
currence of a collision event as meaning that the two tags are still
present (i.e., they are staying tags). Importantly, this “2-collision”
concept yields a significant reduction in the time required to iden-
tify the staying tags compared to the original AQS protocol. En-
hanced CRB combines two similar prefixes into one query. Thus,
sending this query can further reduce the bits sent by reader.

2.1.2. Smart trend-traversal protocol

Various protocols based on QT have been proposed in which
the reader broadcasts queries in a depth-first rather than breadth-
first manner [10,18,33]. In such protocols, when a query b1b,...b;.
results in a collision, the reader infers that the current query is
at a higher bit-level in the query tree, and thus the next query
is set to byb,...b,.0 such that the reader traverses down to the
child node in the query tree. In the event of a single-tag-response,
the next query is set as (b1b,...b;) + 1 and traverses horizontally
to the node located immediately to the right of the child node in
the tree. Finally, if an idle query occurs, the next query is set to
biby...bi._41if b, =0 (i.e, by is a left child node), or byb,...b;._4
if b =1 (i.e., by is a right child node), such that the query tra-
verses in the right upper direction and converge to the next prefix
node. Fig. 1 presents an illustrative example of the STT protocol.
There are 5 tags in the query tree. Each node represents the status
of a query, including collision, single-tag-response and idle. Note
that the numbers on the graph show the sequence step in the STT
process.

S.-C. Tsai et al./ Computer Communications 88 (2016) 73-83 75

(o) C: Collision
- tag ,Q S: Single-tag-response
| N I: Idle

AR
cleRiolfe
6060 008

Fig. 1. Illustrative example of STT protocol.

T AT RN

TagE TagC TagG TagB Tag A TagF TagD

Fig. 2. Mapping of tags to frame slots using hash function.

2.2. RFID missing-tag event

In many RFID applications, it is necessary to monitor a very
large number of tags. Furthermore, the tag IDs recorded at the
reader or in a linked database require constant maintenance as
new tags enter the network or existing tags leave. For large-scale
systems, scanning the RFID tag set repeatedly using the original
anti-collision protocol is highly inefficient; particularly if most of
the tags are staying tags and their IDs are therefore already known
to the reader. In such a situation, a more intuitive approach is sim-
ply to identify the tags which were previously known to the reader
but no longer appear in the current round (i.e., the so-called RFID
missing-tag problem [21,29]).

To monitor the missing tags, a reader can use a hash function
to map the tags to a frame slot. As shown in Fig. 2, each tag is
pseudo-randomly mapped to a frame slot. In performing the roll
call, the reader broadcasts a request < r, f >, where r is a random
number and f is the frame size. Therefore, all tags know the frame
size. While receiving the request, each tag calculates the slot num-
ber s = H(id, r) mod f, where id is the tag identification and H is a
hash function. Each tag will decrement their slot number s. When
a tag decreases to 0 and send a response which is a 16-bit ran-
dom number. If only one tag whose slot number is O responses,
the reader will receive a 16-bit random number and reply an ACK,
and then the tag responses its identification. If two more tags re-
sponses at the same time, the reader will detect a collision and
dose not reply any ACK. The tags keep silent until next round. The
reader repeats this process and knows which tags should appear
in each time slot, and therefore easily detects any tags which are
missing.

In [29], the proposed scheme, Trusted Reader Protocol (TRP), let
the tag reply random bits instead of its identification. The length
of the random bits is less than tag ID’, so that the execution time
can be decreased. The authors in [21] proposed five protocols for
solving the missing-tag problem. First four protocols use only one
hash function, the fifth one uses two hash functions. In our study,
we will focus on one hash function and improves it without hash
function. That means the requirement of the RFID system is lower.

3. Enhanced STT protocol with distributed record tag-check
mechanism

This section describes the RFID tag identification protocol pro-
posed in the present study. As discussed in the following, the pro-
posed protocol differs from existing methods in two key regards.

According to query construction rules, the QT protocol adds
only a single bit to the query string following a collision event.

However, such an approach not only increases the risk of further
collisions (due to the larger number of query strings), but also re-
sults in a slower (i.e., 1 bit-level) downward traversal rate of the
query tree. The STT protocol uses two deterministic parameters (r
and w) to move down (or up) the query tree more rapidly.

In developing the tag identification protocol, it is argued that
the time required to obtain all of the single-tag responses can be
reduced by progressively increasing the number of bits appended
to the query string following consecutive collision events. Impor-
tantly, such an approach increases the traversal rate and poten-
tially avoids some collision nodes. However, by appending more
than 1 bit to the query, some of the nodes in the query tree may
be missed during the downward traversal process. Thus, in the En-
hanced STT protocol, the interrogation process moves up 1 bit-level
in the query tree each time an idle query response occurs. Fur-
thermore, a blocking technique is applied to improve the perfor-
mance of the identification protocol in checking the staying tags
within the reader’s communication range. Whenever an idle query
(or collision) occurs, the length of the following query is decreased
(or increased). In other words, in the proposed protocol, the next
query length remains unchanged only when a single-tag response
is received. Importantly, this variable query length is exploited to
develop a Distributed Record Tag-Check (DRTC) mechanism, which
enables each tag to record its transmission “Slot number” directly
without the assistance of the reader. In other words, the reader is
not required to transmit frame-slot information to the tags, and
thus the overall overhead of the tag-collection process is reduced.

3.1. System assumptions

In developing the proposed tag-collection protocol, the follow-
ing assumptions are imposed:

« Assumption 1: The signals between the reader and the tags
are transmitted over an error-free wireless channel. As a result,
data errors occur only when multiple tags respond simultane-
ously, resulting in a collision event at the reader.

« Assumption 2: Once the current tag identification round be-
gins, the tags in the reader’s communication range remain un-
changed until the round terminates since if a tag arrives in the
reader’s communication range just after the reader has broad-
cast its query, it may miss the opportunity to be identified.

- Assumption 3: A tag entering or leaving the reader’s communi-
cation range are independent of one another.

Note that all three assumptions are consistent with those
used in previous studies on RFID anti-collision protocols
[2,6,10,12,13,18,33-35]. For the fairness of comparisons between
our algorithm and previous studies, this paper still holds these
assumptions. Our study focus on the algorithm of protocols. Al-
though the issues, e.g. transmission on the error-prone channel,
are important, it is out of the scope in our research and should be
studied separately.

3.2. Enhanced STT (E-STT)

3.2.1. Dynamic query down

In the tag-collection phase, the conventional STT scheme tra-
verses only 1-bit level down whenever it encounters a collision
node. Thus, if many collisions occur consecutively, STT traverses
query tree very slowly. Accordingly, as described above, the En-
hanced STT scheme utilizes a Dynamic Query Down (DQD) mech-
anism, in which a gradually increasing number of bits is appended
to the query string each time consecutive collisions occur. Steps 1
to 3 in Fig. 5 (Example 1) present an illustrative example of the
proposed approach. Table 1 and 2 compare the respective opera-
tions of the DQD and STT protocols. It is seen that the DQD scheme

76 S.-C. Tsai et al./Computer Communications 88 (2016) 73-83

- - ~
(@] tAhe same tag as (A) N, -~ ~
with longer prefix
n -
N
-~ - N_ B - ~

4 X 5 6 ~
n+ ‘ ' ‘
Zz N /!

e Q2 O 0
[NeleNeleleJele
6OOO0O00

(a) Example 2.1

O - the same tag as (A) N, -~ - S

with longer prefix 0 @ D
n ~
- o P

A B ~
& o I
"

. A A

Q. @ 0 0
o NeRelelelele
clevevee

(b) Example 2.2

Fig. 3. Undesirable DQD outcome.

Table 1
Example 1 - DQD.
Step Query string Status Appending
0 Ny (©) null
1 N0 (@) +1
2 Ny000 (@) +2
3 Ny000000 (S) +3
Table 2
Example 1 - STT.
Step Query string Status Appending
0 No (@] null
1 N0 (@) +1
2 No00 (@) +1
3 Ny000 (@) +1
4 Ny0000 Q) +1
5 Ny00000 (@] +1
6 Np000000 (S) +1

saves a total of three queries in identifying the first single-tag re-
sponse node compared to the conventional STT protocol. In the
present study, the term “appending pattern” is used to define the
strategy adopted by the reader in appending bits to the query fol-
lowing each consecutive collision.

In the original STT protocol, if an idle query occurs at the left-
child node, the next query traverses to the child node to the right
of this node. By contrast, in the Enhanced STT protocol proposed
in this study, an idle response from a left-child node is followed
by a query to the parent node since this node may not yet have
been visited in the traversal process. However, if the parent node
is a collision node, a closed-loop is formed and the traversal pro-
cedure cannot continue. Thus, in the present study, a shortcutting
mechanism is applied to avoid this closed-loop scenario and to
improve the overall efficiency of the query tree traversal process.
Note that in contrast to the shortcutting mechanism proposed in
[33], in the present study, when a collision occurs at the (K — 1)th
bit-level, the traversal process still visits the two child nodes and
results in two single-tag-response nodes. Note that this strategy
is deliberately adopted since the resulting variation in the query
length is taken as the basis for the DRTC mechanism proposed in
Section 3.3.

Importantly, while appending additional bits to the query string
enables the query tree to be traversed more rapidly, it may cause
two undesirable outcomes, as shown in Figs. 3a and 3b, respec-
tively. Fig. 3a (Example 2.1) shows the case where the next query
exceeds the next shortest prefix node. If node Ny with current
query ¢ results in a collision and consecutive collisions then oc-
cur, the reader constructs the next query by appending 4 bits to
qc, i.e., qn = qc0000. However query q-0000 in level n +4 may re-
sult in an idle (I) response. Thus, the Enhanced STT scheme tra-

O - ic same tag as (A) N, _~ - S
with longer prefix D
n 7
/ \
0 A _~ N_B -
m & JONN)
, \
7 \ 1A \

L] L]
L] L]

a 4D
@G Qoo
bEOEED

@@”

-
-~ \

@ - Single-tag-response
Q -Idle
O - Collision

/2@\

B 4B
Q O ﬁ ole(L Je
boo0 boD 6o

Fig. 5. Illustrative example of query construction rules.

verses 1 bit-level to query q-000, and so on. Fig. 3b (Example 2.2)
shows the case where the next query exceeds the next shortest
prefix node, but the query is happened to the prefix of the next
single tag, and thus a single-tag response (S) occurs. Since a tag
is successfully identified, the query process traverses to the right
horizontally, sets g, = q-0001 and results in an idle response (I).
In both examples described above, the Enhanced STT protocol
results in three more idle queries than the original STT scheme.
Furthermore, for the case considered in Example 2.2, the Enhanced
STT scheme uses more bits than in Example 2.1. In practice, Exam-
ple 2.2 represents the worst-case scenario for the performance of
the Enhanced STT scheme relative to the STT protocol (see Fig. 4).
In the event of consecutive collisions, the next query is formed
by adding x; 0's to ¢.. The next shortest prefix node is node A
and is located 1 bit-level down in the query tree. The reader first
identifies node 1 with a query of length n + x;. It then encounters

S.-C. Tsai et al./ Computer Communications 88 (2016) 73-83 77

Table 3
Appending pattern table.

Cons. Appending Query length Skipped queries S; = {sj|li_y + 1,li_y +2,....[; = 1}
collision i pattern x; Li=1i1+x_4 #of S;isNi=x;1—1,ifx; > 1

0 Xo=1 lh=1 -

1 X1 = Lh=lp+x =2 S1=¢,Ny=0

2 X, =3 L=h+x;=4 52:{11+1212*1}:{3},N2:]

3 X3 =4 Lb=L+x,=7 S3={b+1,b+2=13-1}={5,6}, N3 =2

4 X4 = Ih=hL+x3=11 S4={l3+1,m,13+X3—]=l4—l}={8¢9,10},N4=3
5 Is=1I4+% =16

S5:{l4+1,...¢l4+X4*1:l5fl}¢N5:X47‘l

X; — 1’s consecutive idle queries 2,3.... After x; — 1's idle queries,
the reader identifies node B. In other words, the proposed protocol
saves x; — 1 queries in identifying node 1, but wastes x; — 1 queries
in identifying node B.

As described above, x; is progressively increased following con-
secutive collisions. In other words, a large value of x; appended to
the query indicates that multiple consecutive collisions have oc-
curred. In practice, the total number of saved queries in previous
collisions will be greater than the total number of idle queries
wasted. Thus, it is expected that the total number of collision
queries in the Enhanced STT scheme is lower than that in the tra-
ditional STT scheme.

In general, let (I; + 1) be the next single-tag-response node and
let the appending pattern table have the form shown in Table 3.
The total number of wasted idle queries is equal to x; — 1. Mean-
while, the total number of saved queries is equal to

Qsaved:Zs:Z(xj—l _1) (1)

j=1

Qsaveq 1S greater than zero when i > 2 since it is assumed that
Xo is 1 and S; = ¢. The probability of i > 2 is given by

P(i=2)+P({i=3)+..=> P(j).li<K (2)
j=1

Assuming that the probability of the next bit being 0 is equal to
0.5, the probability of i > 2 is around 0.125 for the node located at
the K — 3 bit-level above since i > 2 means that there are at least
three consecutive 0’s after g.. The total number of queries required
to complete the tag identification process in STT is directly propor-
tional to the tag population. Thus, for a large tag population, the
Enhanced STT scheme proposed in the present study based on the
DQD mechanism yields a significant reduction in the total number
of queries required.

3.2.2. Query construction rules

The construction of the next query g, depends on the response
received to query ¢.. As described earlier, the reader may receive
three different responses, namely collision, idle or single-tag. The
query construction rules for each type of response are described in
the following.

« Collision:
When the reader detects a collision, it infers that the current
query string qc = b1b, ... b, is at a higher bit-level and should
traverse down to a lower bit-level. The reader first checks if the
shortcutting condition exists. If the query string q; = q:0 has
been visited and resulted in an idle response, the next query
string is set as qn = b1b,...b;._110. As a result, the query pro-
cess skips an idle and double query string q;. However, if the
shortcutting condition does not exist, the next query string is
constructed using the DQD mechanism, as described above. The
choice of the number of bits to append to the current query

string qc = byb, ... b is determined from an appending pattern
table. In general, the reader appends x; bits of 0’s to q.. Thus,
gn =qc0...0. Note that subscript i denotes the number of con-
secutive collisions, and its value increases by one each time a
collision occurs. Importantly, if the current query length [plus
X; exceeds the total tag ID length K (i.e., 96 bits), g, is simply
truncated to 96 bits. It is seen from the preceding discussions
that the length of query I, following a collision event is always
longer than the length of the current query I.

Idle:

When the reader detects an idle response, it indicates that the
current query qc = byb, ...b;. is at a lower bit-level and should
traverse up the query tree to a higher bit-level. The consecu-
tive collision subscript i is thus set to zero. As for the collision
case described above, the reader first checks for the presence of
the shortcutting condition. If the idle response occurs at a left-
child node, i.e., b, is 0, and the query string g, = byb,...b;._;
has been visited and results in collision, then the next query is
set as qn = b1b,...b;._110. Else; if b is 0 but g, = b1by...b;_4
has not been visited, the next query string g, is set as ¢,
qn = b1by...b._; in order to query the parent node. Note that
if this shortcutting process is not performed, a closed loop will
be formed. For example, if g =010 results in a collision and
¢’ = 0100 results in an idle response, the next query string q’’
will be set to 010 if shortcutting is not performed. If the idle re-
sponse occurs at a right-child node, i.e., b is 1, the next query
should be sent to/directed to the upper-right node relative to
qc, i.e., qn = (b1by...bjc_1) + 1. It is noted from the preceding
discussions that the length of query I, following an idle re-
sponse is always shorter than that of the current query [. if
shortcutting is not performed. However, [, is greater than I by
one if shortcutting is performed. In other words, the length of
query I, following an idle response is always different from that
of I irrespective of whether or not shortcutting is performed.
Single-tag response:

When the reader detects a single-tag response, the query
should traverse horizontally to the right in order to identify the
node next to the current node. The next query string is there-
fore set as gy = qc + 1. The length of query I, following a single-
tag response is equal to that of the current query [.. In other
words, [, is unchanged.

The following discussions demonstrate the query construction
rules described above using Example 1 in Fig. 5 for illustration
purposes. The query construction steps are shown in Fig. 5 and
Table 4. In Steps 1 to 3, the number of appended bits is progres-
sively increased following multiple consecutive collisions. More-
over, Steps 8 and 9 relate to the shortcutting process following
collision. Specifically, knowing from Step 7 that the left-child node
was idle, the reader appends ‘10’ to the query in Step 8. Steps 15
and 16 relate to the shortcutting in idle condition since in Step 14,
the parent node was visited and found to collide.

As described above, the query length is changed following an
idle response or a collision, but remains unchanged following a

78 S.-C. Tsai et al./Computer Communications 88 (2016) 73-83

Table 4
Query construction steps for Example 1.
Step Query string Status
0 No ©
1 N0 (@]
2 Ny000 (@]
3 N;000000 (S)
4 Ny000001 (S)
5 Ny000010 (S)
6 N,000011 n
7 Ny00010 (I
8 Ny0001 (@]
9 N,000110 (S)
10 Np000111 (S)
1 Ny001000 (S)
12 Ny001001 (1)
13 Ny00101 n
14 Ny0011 (@]
15 Ny00110 (I
16 Ny001110 (S)
17 Ny001111 (S)

single-tag response. In the present study, the variation (or not) be-
tween I and I, is exploited to develop a mechanism designated as
Distributed Record Tag-Check (DRTC) for improving the efficiency
of the tag identification process in checking for staying tags.

3.3. Distributed record tag-check on E-STT with blocking protocol

In our proposed scheme, the reader identifies all tags first time
by the Enhanced-STT. After that the reader will do the Distributed
Record Tag-Check on E-STT with Blocking Protocol (DRTC/BP) ev-
ery times. And the time of tag collection process will be saved
much more, especially in an inventory system. The blocking fea-
ture has an advantage in the case, but it does not in a dynamic
application case. DRTC/BP comprises two phases, namely staying
tag phase: Distributed Record Tag-Check (DRTC) and arriving tag
phase: Enhanced STT with blocking protocol (E-STT/BP). Note that
the Enhanced STT has been described in Section 3.2. E-STT/BP
extends STT so that having blocking feature which describes in
Section 3.3.2.

3.3.1. Distributed record tag-check mechanism

There are two parts in DRTC. The first part identifies the miss-
ing tags by the slotted frame. The second part shortens the length
of the slotted frame to decrease the execution time.

« Distributed record by tags:

The “distributed record” concept used in the present study is
adopted from the Three-Phase Protocol with Collision Sensitive
Tag Removal (TPP/CSTR) method proposed in [21]. In order to
realize the distributed record concept, this study further uses
the blocking protocol presented in [35] to distinguish the stay-
ing tags from the arriving tags. As described earlier, the staying
tags are those tags which were identified in a previous tag-
collection process and whose IDs are therefore stored in the
reader’s memory or in a linked database. The situation is sim-
ilar to [21] when we considering the multiple rounds of tag-
collection process.

In contrast to the protocols presented in [21], in which the
identified tags are mapped to a given frame slot using a hash
function, the DRTC scheme proposed in the present study maps
the identified tags using the variable query length informa-
tion. In the TPP/CSTR protocol, more than 2 tags in one frame-
slot is reduced to 2-collision slot. However, the optimal frame
size is equal to approximately 1.14 times the total number of
tags (Ng) since the hash function results in the creation of

frame f°

L+ [23 [a4fs el]s]
VANAWAN Y

Fig. 6. Basic concept of DRTC mechanism.

some idle slots and single-tag slots during the mapping pro-
cess. However, if every frame-slot is a 2-collision slot, as shown
in Fig. 6, the frame size can be reduced to around half the
total number of tags. In other words, the performance of the
reader in checking the staying tags can be significantly im-
proved. Thus, in developing the DRTC mechanism proposed in
this study, the overriding goal is to generate 2-collision slots in
every frame slot during the mapping process.

As described in Section 3.2.2, the length I, of the query follow-
ing a single-tag response remains unchanged from that of the
current query l.. By contrast, for the case of a collision, I, is
always greater than I., while for the case of an idle response,
I is generally less than I. unless the shortcutting condition oc-
curs. In other words, the query length remains unchanged only
for the case of a single-tag response. By exploiting this variable
query length information, each tag can determine the query
state directly without the assistance of the reader. Thus, as de-
scribed below, in DRTC, each tag stores to memory a parameter
I; and a counter to record its slot number.

In the Enhanced STT protocol, all of the tags maintain a counter,
i.e., Slot_num, to record their slot parameter. The counter value
is set to 1 initially. In addition, the tags store to memory the
last query length as parameter ;. On receiving a query, the tags
then need only to compare the current query length [. with the
stored value [. If I differs from I, the tags infer that no tag
was identified by the reader in the preceding query process.
Hence, the value of Slot_num remains unchanged. However, if
lc is equal to [}, the tags infer that the reader identified a tag,
and therefore increment the value of Slot_num by 1.

When the prefix of a tag matches the current query string qc,
the tag should remain and the Slot_num counter is locked. Note
that the Slot_num value also means that the next identified
tag’s sequential number. That is, if a tag prefix matches g, the
tag is the Slot_numth tag identified by the reader.

In the frame phase of DRTC process, the reader broadcasts a re-
quest command r(f) and each tag is mapped to the[sm—%]th
frame-slot. Since every staying tag knows the order in which
it is identified by the reader, i.e., Slot_num, mapping to the
(Mlth frame-slot causes all of the frame-slots to be two-
collision slots. On receiving the request command r(f) from the
reader, each tag counts down to its frame-slot and then trans-
mits a long response. Note that the long response comprises
multi-bits and indicates whether the corresponding slot is idle,
single-tag-response, or collision. For example, in the protocol
proposed in [21], the long response is based on the Philips I-
Code system [27] and uses 10 bits to distinguish single-tag-
response slots from collision slots. In the event that some of
the slots transpire to be single-tag-response slots, the reader
records the slots and initiates the polling phase.

In the polling phase, the reader sends a query to those tags in
single-tag response slots in order to verify their presence. The
total execution time of the DRTC mechanism is given by

T= (tprefix +t) x (M) + fxg (3)

where s is the time required to transmit a query prefix,
ts is the time required to transmit a short response, M is the
number of tags in a single-tag-response slot, f is the frame size
(equal to approximately half the total number of tags, i.e., Nig)

S.-C. Tsai et al./ Computer Communications 88 (2016) 73-83 79

and t; is the time required to transit a long response. As in
TPP/CSTR, the number of missing tags is unknown, and thus the
reader cannot evaluate the total execution time of the polling
phase. However, assuming that missing-tag events are relatively
rare, i.e., tens of missing tags to thousands even tens of thou-
sands of total tags, the execution time of the polling phase can
be effectively ignored. Hence, the total execution time of DRTC
can be given as

T = fxt. (4)

As discussed earlier, the optimal frame size in TPP/CSTR is equal
to around 1.14 times the total number of tags, Nig. However, in
DRTC, the optimal frame size is equal to only 0.5 times Niqg.
In other words, DRTC reduces the frame size by around 56%
compared to TPP/CSTR, and therefore significantly improves the
performance (i.e., execution time) of the reader in checking the
staying tags. Moreover, the reader is not required to send the
Slot_num parameter to the identified tags since all of the tags
in the system record this parameter in a distributed way. Con-
sequently, the DRTC mechanism does not increase the overall
overhead of the proposed tag identification protocol.

As in the Enhanced Couple-Resolution Blocking (ECRB) proto-
col proposed in [35], the reader in the current protocol also
exploits the 2-collision concept. However, in ECRB, the reader
needs to broadcast the prefix queries which result in 2-collision
events and tags with matching prefixes then return their entire
ID to the reader. Consequently, the execution time is given by

Ntag

Tecrs = (Eprefix + teagin) X [2 1 (5)

The term (tprefix + tragip) is greater than ¢ intuitively. Thus, of
the two protocols, the DRTC protocol results in a lower execu-
tion time when checking the staying tags.

It is noted that a problem occurs if some of the tags re-
ceive a query incorrectly during the tag-collection process.
In such a situation, an error will occur when updating the
Slot_num counter value. In theory, Assumption 1 given in
Section 3.1 should prevent such a scenario from occurring.
However, in real-world systems, this problem must be taken
into account.

Re-allocation mechanism:

If having executed the DRTC mechanism some of the time-slots
transpire to be idle slots, the reader initiates a Slot_num re-
allocation process to remove the idle slots and rearrange the
Slot_num values of the remaining tags accordingly. Specifically,
the reader broadcasts a Slot_num reallocation command con-
taining a parameter s, where s is the former Slot_num value
of an idle slot. On receiving this command, each tag with a
Slot_num value equal to or greater than s counts up to a pa-
rameter de_n. Once the reader has broadcast reallocation com-
mands containing the Slot_num values of all the idle slots,
it broadcasts a reallocation termination command. On receiv-
ing this command, each tag reduces the value of its Slot_num
counter by (2 x de_n). In addition, the reader decreases the to-
tal tag number, Ng, by decreasing an amount equal to (2x
number of re-allocation command sends).

Consider the illustrative case shown in Fig. 7. Assume that in
the polling phase, the reader finds that tags with Slot_num
values equal to 3, 5, 6, 7, 8 11 and 12 are missing. The
reader thus broadcasts Slot_num reallocation commands with
s=9,s=9, and s = 13 and then issues a reallocation termina-
tion command. On receiving the reallocation commands, slots
with Slot_num values equal to 9 and 10 reduce their Slot_num
counter by 2 x 2 =4. Meanwhile, slots with Slot_num values
equal to 13, 14, 15 and 16 reduce their Slot_num counters by
2x3=6.

(2x2) @2x3) 23
‘ 12 ‘ 3.4 ‘ 5.6 ‘ 7.8 ‘ 9,10 ‘ 1,12 ‘ 13,14 ‘ 15,16 ‘
’ 12 ‘ 34 ‘ 5.6 ‘ 78 | 9,10 ‘ ‘ ‘ ‘

Reader broadcasts s =9, s =9 and s = 13 for re-allocation mechanism

Fig. 7. Schematic representation of Slot_num re-allocation mechanism.

The protocol proposed in this study deliberately uses a simple
mechanism to remove idle slots since it is assumed that the
tags in the RFID network have a low mobility and therefore
generally remain within the reader’s communication range (i.e.,
most of the tags are staying tags). In dynamic environments,
the simplistic reallocation mechanism may result in a signifi-
cant increase in the overall overhead of the tag collection pro-
cess. Thus, a threshold value should be applied such that a new
tag-collection round is initiated if the number of missing tags
exceeds the specified threshold value.

3.3.2. E-STT with blocking protocol

In the arriving tag phase, the reader has been identified staying
tags and want to find out arriving tags. Thus, the reader uses E-STT
with blocking protocol(E-STT/BP) which is as same as E-STT essen-
tially. The E-STT/BP differs only from the initial value Slot_num.
The initial value Slot_num of E-STT is set to zero. However, the
one of E-STT/BP is set to Nig for mapping the arriving tags to
their frame slots. The arriving tags become the staying tags next
DRTC/BP round.

In this tag-collection process, the reader broadcasts the com-
mand with parameter Ngg. In addition, the arriving tags set their
Slot_num values to N in preparation for the next round of the
DRTC mechanism.

3.4. Reader and tag pseudocode

This section summarizes the basic steps in the reader and tag
operations in the proposed protocol. The basic reader operation is
as follows:

1. Set identified tag number to Niqg.
Send Staying Frame Phase command (for staying tags).
Then send request command r(f), f = |'Nt2"g'|.

2. 1st-phase Distributed Record Tag-Check.

. Send Slot_num re-allocation command.

4. Send 2nd-phase command, with parameters (send Ngg to tag,
set Slot_num = Niqg).

5. 2nd-phase Enhanced STT with blocking protocol. (For unidenti-
fied tags).

w

Meanwhile, the basic tag operation is as follows:

1. Initialize Slot_num counter to 1.
2. On receiving Staying Frame Phase command and request r(f),

(a) Send Long_Response in |'5’°f—2”“m'|th slot.

(b) On receiving Slot_num re-allocation command.
3. On receiving Phase 2 command with Nigg,
(a) If Slot_num == 1, set Slot_num = Niqg;
(b) On receiving a query ¢c, compare its length I to previous
query length I,.
If I equals [), set Slot_num = Slot_num + 1.
(c) Set I} = Ig;

80 S.-C. Tsai et al./Computer Communications 88 (2016) 73-83

Table 5
Notations used in proposed protocol.
Notation Description
qc = byby...b. Current query prefix
qn Next query prefix
I The length of current query
I The length of last query
i The number of consecutive collisions
Xi The number of appending bits
K The total length of tag ID
Niag The total number of tags record in reader
Slot_num The counter value used in 1st-phase
CurF The current frame number
NextF The next frame number
rRID The reader’s ID record in reader
tRID The reader’s ID record in tag
f The frame length in request command

(d) If prefix(ID) == qc, transmit ID;

The notations used in the proposed algorithm are summarized in
Table 5. Meanwhile, the pseudocode for the reader and tag opera-
tions is presented in Table 6 and 7.

3.5. Design complexity comparison

Table 8 compares the design complexity of the proposed En-
hanced STT with DRTC protocol with that of other protocols pre-
sented in the literature. In realizing the blocking protocol, the tags
need to store parameters such as tRID and TF. Thus, of all the
protocols shown in Table 8, only the original STT protocol pre-
serves the memory-less feature of the original QT protocol. In ad-
dition, the hash function is not necessary in our algorithm. But it
is needed when finding missing tag in other algorithms. The com-
plexity of our algorithm is O(1) so that the algorithm can save the
computing time and power. Moreover, our algorithm would reduce
costs of equipment.

4. Performance evaluation
4.1. Simulation setup

The performance of the Enhanced STT protocol was evaluated
by means of MATLAB simulations and compared with that of the
conventional STT protocol. Note that the DRTC mechanism has no
direct counterpart in the literature. Moreover, its performance has
already been evaluated in Section 3.2. Thus, its performance is not
discussed here. As for the QT evaluation process performed in [17],
the present study evaluates the performance of the Enhanced STT
protocol in terms of two metrics, namely the System Efficiency (SE)
and the Time System Efficiency (Time_SE).

The SE metric evaluates the efficiency of the protocol in using
the frame slots, and is defined as follows:

L Qs
QTotul QI+Q§+QC

where Qs is the number of single-tag response queries and Qpyq iS
the total number of queries used in identifying the complete tag
set. In other words, Qg is the sum of the single-tag response
queries (Qs), idle queries (Q;) and collision queries (Q¢). The time
durations of these queries are different. Specifically, the time du-
ration of the idle queries is much shorter than that of the single-
tag-response queries or collision queries since in an idle query, the
tags do not need to transmit their IDs to the reader. Since the
queries have different durations, a time system efficiency is intro-
duced. In computing the Time_SE, the idle queries are normalized

SE

(6)

Table 6
Pseudocode of reader operation.

Reader operation:

1 CurF = NextF;

2 NextF = NextF + 1;

3 Phase =1; Nygg=0; q-=0

4 Transmit the 1st-phase command with rRID, CurF, and

NextF

5 if Phase == 1 then

6 f=I"%1;

7 if f> 0 then

8 Transmit request command r(f);

9 Receiving tags response until f slots;

10 while there are some empty slot do

11 Transmit Slot_num reallocation command with s;
12 end while

13 Transmit reallocation ending command;

14 Transmit the 2nd-phase command with Nigg;
15 Phase = 2;

16 end if

17 end if

18 while Phase == 2 do

19 Transmit the query q.;

20 if The reader detects Collision then
21 if ¢ = q.0 was visited and idle then

22 Gn < (b1by...bi_110) ;

23 end if

24 else

25 i=i+1;

26 qn < qc

27 if I + x; > K then

28 for j=1to K- I. do

29 qn < qn0

30 end for

31 else

32 for j=1 to x; do

33 Gn < qn0;

34 end for

35 end if

36 if The reader detects Idle then
37 i=0;

38 if g = (b1b,...b,._;) was visited and collided then
39 qn < (byby...bi_110) ;

40 else if sum(q.) == length(q.)
41 Phase = 1;

42 else if b, == 0 then

43 Gn < biby ... b4

44 else

45 qn < (b1by...b_q) +1
46 end if

47 else if detects Single-tag-response then
48 i=0;

49 Niag = Neag + 1;

50 qn < (b1by...b) +1;
51 end if

52 qc < qn

53 end while

to the length of the other two types of query through a multi-
plicative factor g such that all three types of query have the same
duration. The Time_SE metric is computed as follows:

Qs _ Qs
IBQI"FQ§+QC a QTotal"'(,B_])Ql
where B is taken as 0.13 in the present evaluations. As described
in [17]. B represents the ratio of the number of idle queries to the
number of collision queries, and has a value of 0.13 according to
the EPC global standard specification.

As discussed in [17], maximizing the SE requires the reader to
collect all of the tags in the system using the minimum total num-
ber of queries. Regarding the Time_SE, a trade-off exists between
the number of collision queries and the total number of queries.
Specifically, the Time_SE improves when a small increase in the
number of idle queries results in a significant reduction in the
number of collision queries. In addition to the SE and Time_SE

Time_SE = (7)

S.-C. Tsai et al./ Computer Communications 88 (2016) 73-83 81

Table 7
Pseudocode of tag operation.

Tag operation:
1 Slot_num =1;
2 Receive message m from the reader;
3 while m! = the frame ending command do
4 if m is the 1st-phase command
and (RID == rRID and TF == CurF then

5 Respond = 1;

6 else

7 Respond = 0;

8 end if

9 if m is the request command r(f) and Respond == 1 then
10 Transmit Long_Response in (5'”‘3””m]th slot;

11 if m is the Slot_num reallocation command with s then
12 if Slot_num > s then

13 de_n=de_n+1;

14 end if

15 if m is the reallocation ending command then

16 Slot_num = Slot_num — 2 x de_n;

17 end if

18 if m is the 2nd-phase command with N¢g then
19 if Slot_num == 1 then

20 Slot_num = Niqg;

21 end if

22 Respond = not Respond;

23 tRID = rRID;

24 TF = NextF;

25 end if

26 if m is a query and Respond == 1 then
27 lc = length(m);

28 if [, == [, then

29 Slot_num = Slot_num + 1;
30 end if

31 if prefix(ID) == m then
32 Transmit ID;

33 end if

34 end if

35 Receive message m from the reader;
36 end while

metrics, this study also evaluates the performance of the proposed
protocol by investigating the reduction achieved in the numbers
of total queries (Qpyq); idle queries (Q;) and collision queries (Qc¢),
respectively, compared to the original STT scheme.

To determine the optimal appending pattern for the Enhanced
STT protocol, a preliminary set of simulations was performed using
the six appending patterns shown in Table 9 given the assumption
of a RFID system containing 5000 tags. The corresponding SE and
Time_SE results are shown in Table 10. It is observed that append-
ing pattern X; results in the highest TimesE of the various patterns.
Thus, X; was taken as the default pattern for the Enhanced STT
scheme in all of the remaining simulations. However, appending
pattern X4 was taken as the appending pattern for the STT-s (STT
with shortcutting) scheme. Note that STT-s is a particular case of
the Enhanced STT protocol in which the appending pattern con-

Table 9
Trial appending patterns and frequency of x;.

X; Freq. X Freq. X3 Freq. X, Freq.

X 1 1671 1 1685 1 1689 1 1690

X 2 853 1 850 1 846 1 845

x3 3 74 2 285 1 285 1 285

Xy 4 3 3 21 2 72 1 72

Xs 5 1 4 1 3 5 1 21

X5 6 0 5 0 4 1 1 3

x; 7 0 6 0 5 0 1 1

x3 8 0 7 0 6 0 1 0
Table 10

Simulation results for SE and TIME_SE given different
appending patterns.

K = 96bits, Nygg = 5000

X1 Xz X3 X4(STT-s)
Qrutal 14091 13826 13685 13644
Qc 3195 3374 3422 3429
Q 5896 5452 5263 5205
SE 0355 0361 0365 0.366

Time_SE 0.558 0.550 0.549 0.548

The simulations commenced by investigating the effect of the
total number of tags on the performance of the Enhanced STT,
STT and STT-s protocols. In performing the simulations, Nig was
assigned values of 1000, 3000, 5000, 10000 and 20000, respec-
tively. The tag ID length was specified as 96 bits, because the
tags’electronic product code usually has 96 bits. This setting will
make it closer real world. And the tags were randomly generated.
In other words, the tag IDs were uniformly distributed. The sim-
ulations then considered the case of different tag ID distributions
given a constant total number of tags (i.e., Nygg = 5000). The sim-
ulations considered four tag ID distributions, namely: (1) a normal
distribution with mean 2K-1, i.e., the tags are congregated at cen-
tral of 2X; (2) a normal distribution with mean 2X-2, i.e., the tags
are congregated at the quarter of 2X; (3) a normal distribution with
mean 2K-1 4 2K=2 je the tags are congregated at the third quar-
ter of 2X; and (4) an equal division of the tag set into two groups

For each simulation environment, 30 simulations were per-
formed using a different tag set on every occasion. The results
were then verified by means of the statistical means and 95% con-
fidence intervals of the corresponding evaluation metrics. The sta-
tistical mean was computed as
7 Yi
Y Z Nsim (8)
where y; is the simulation result and Ng;;,, is the number of simu-
lations.

The statistical variance is given by

tains only 1's. In other words, the query process traverses down 5 i — Y)?
the query tree 1-bit level each time it encounters a collision. = (Ngm — 1) 9)
sim
Table 8
Design complexity comparison.
DRTC on enhanced Enhanced STT STT ECRB PRB TPP/CSTR
STT
Counters in tag 1 N N N 3 1
Prefix matcher Y Y Y Y N N
Hash function N N N N N Y
Blocking protocol Y Y N Y Y N

Tag-collection Improve from STT mprove from STT

mprove from QT

Query tree Binary tree Tag IDs store in

process database
Missing-tag Frame-slots / Known prefix | Repeat STT again Known prefix / BT / 2-collision Frame-slots /
detection 2-collision 2-collision 2-collision 2-collision

82 S.-C. Tsai et al./Computer Communications 88 (2016) 73-83
Table 11
Simulation results for query given different tag populations.
Comparison Qg 95% confidence interval Q¢ 95% confidence interval — Q 95% confidence interval
STT-s -8.86% (-8.98%, -8.74%) 4.01% (3.70%, 4.32%) -22.14% (-22.31%, -21.97%)
E-STT -5.75% (-5.91%, -5.60%) -3.40% (-3.78%, -3.25%) -11.33% (-11.57%, -11.10%)
Table 12
Simulation results for SE and Time_SE given different tag populations.
SE 95% confidence interval ~ Time_SE 95% confidence interval
STT 0339 (0.338, 0.340) 0.549 (0.548, 0.550)
STT-s 0372 (0371, 0.373) 0.553 (0.551, 0.553)
E-STT 0359 (0.358, 0.360) 0.562 (0.561, 0.563)
Table 13
Simulation results of query comparison given different tag distributions.
Comparison Qg 95% confidence interval Q¢ 95% confidence interval — Q; 95% confidence interval
STT-s -8.86% (-8.96%, -8.76%) 4,02% (3.82%, 4.19%) -22.12% (-22.30%, -21.96%)
E-STT -5.71% (-5.85%, -5.65%) -3.40% (-3.66%, -8.13%) -11.34% (-11.55%, -11.12%)
Table 14
Simulation results of SE and Time_SE in varying tag distribution.
SE 95% confidence interval ~ Time_SE 95% confidence interval
STT 0339 (0.338, 0.340) 0.549 (0.547, 0.550)
STT-s 0.372 (0.370, 0.373) 0.553 (0.551, 0.553)
E-STT 0359 (0.358, 0.360) 0.562 (0.561, 0.563)
Thus, the 95% confidence interval can be derived as Table 15
Comparison of SE and Time_SE for different tree-based
_ S _ S protocols.
Y —Zoos x Y +Zo0os x 10
005 N + 005 N (10) SE Time_SE
vV Nsim vV Nsim
: BS 0.34 0.40
where Zg g5 is 1.96.
005 QT 0.34 0.40
QTI 0.376 0.41
4.2. Simulation results STT 0339 0.549
STT-s 0.372 0.552
E-STT 0.359 0.562

Table 11 shows the performance of the STT-s and Enhanced
STT schemes in reducing the various types of query within the
RFID system relative to the original STT scheme. The simulation re-
sults are obtained for uniformly distributed RFID systems with Nigg
= 1000, 3000, 5000, 10000, and 20000 tags. Note that the plot-
ted points correspond to the statistical mean of the corresponding
metric in every case, and the margin of error is the 95% confidence
interval. In general, the results show that none of the metrics are
affected by the size of the tag set in any of the considered proto-
cols. This result is to be expected since the tag populations consid-
ered in the present simulations are relatively sparse compared to
the whole tag ID space, which is of the order of 29, It is observed
that even for Nig = 20000, the query tree does not become sat-
urated as in [18]. Table 12 summarizes the simulation results ob-
tained for the SE and Time SE performances of the three schemes.
It is seen that the SE of the Enhanced STT scheme is slightly lower
than that of the STT-s scheme, but higher than that of the origi-
nal STT scheme. Furthermore, it is observed that the Enhanced STT
scheme has the highest Time SE of the three schemes.

Table 13 and 14 show the four different tag distributions con-
sidered in the present study. The four distributions were found
to yield very similar simulation results. Thus, the results are pre-
sented in the forms shown in Table 13 and 14. It is observed that
the results are very similar to those presented in Table 11 and 12.
In other words, STT and its variants are unaffected by the tag ID
distribution. This result is reasonable since STT has the ability to
adaptively adjust its Query Traversal Path (QTP) depending on the
distribution of the tags [17]. For example, if the tag IDs are con-
centrated primarily in the left part of the query tree, STT (and its

variants) traverse down the tree to identify the locally dense tags
and then traverse back up the tree to the more sparse areas. As a
result, the performance is similar. Table 13 and 14 summarize the
performance of the various STT schemes for the different tag dis-
tributions.

Finally, Table 15 compares the SE and Time_SE performances of
the three STT protocols with those of the Binary Splitting (BS),
Query Tree (QT) and Query Tree Improved (QTI) protocols pre-
sented in [17]. It is seen that while the STT protocols obtain a
lower SE than the QTI protocol, they achieve a higher Time_SE
than the BS, QT or QTI protocols. In addition, it is seen that the
proposed Enhanced STT protocol achieves the highest Time_SE of
all the considered schemes. From inspection, its Time_SE is 1.8%
higher than that of STT with shortcutting, 2.4% higher than STT,
and 40.5% higher than QT.

5. Conclusion and future work
5.1. Conclusion

This paper has presented a tag identification protocol for RFID
systems designated as Enhanced STT with Distributed Record Tag-
Check (DRTC). In previous study, they usually either process the
tag identification collection or detect the missing tags indepen-
dently. We solve these two problems together and let our proposed
scheme more efficient.

http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0002
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0002
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0002
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0002
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0019
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0019
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0019
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0022
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0022
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0022
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0024
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0024
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0024
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0024
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0025
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0025
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0025
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0025
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0026
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0026
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0026
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0027
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0027
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0028
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0028
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0028
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0029
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0029
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0029
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0029
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0031
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0031
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0032
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0032
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0035
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0035
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0035
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30158-X/sbref0037

	Efficient tag reading protocol for large-scale RFID systems with pre-reading
	1 Introduction
	2 Related works
	2.1 RFID tag anti-collision protocols
	2.1.1 QT protocol and variants
	2.1.2 Smart trend-traversal protocol

	2.2 RFID missing-tag event

	3 Enhanced STT protocol with distributed record tag-check mechanism
	3.1 System assumptions
	3.2 Enhanced STT (E-STT)
	3.2.1 Dynamic query down
	3.2.2 Query construction rules

	3.3 Distributed record tag-check on E-STT with blocking protocol
	3.3.1 Distributed record tag-check mechanism
	3.3.2 E-STT with blocking protocol

	3.4 Reader and tag pseudocode
	3.5 Design complexity comparison

	4 Performance evaluation
	4.1 Simulation setup
	4.2 Simulation results

	5 Conclusion and future work
	5.1 Conclusion
	5.2 Future work

	 References

