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Abstract 
Electronic voting systems are inextricably bound to security and cryptographic techniques. Over the 
last decades, countless techniques have been proposed to face the dangers of electronic voting 
systems with mathematical precision. Certainly, the majority of these works address secrecy and 
verifiability. In this chapter security and cryptographic techniques are analyzed with respect to those 
security properties that can be evaluated on the basis of these techniques, namely secrecy, fairness, 
integrity, and verifiability. Furthermore, we shortly discuss their adequacy to ensure further relevant 
properties like eligibility and uniqueness, and evaluate security and cryptographic techniques with 
respect to the costs that come along with their real-world application. We conclude the chapter with a 
summary of the evaluation results, which can serve as guideline for decision-makers. 
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Introduction 
The history of elections reaches back to the ancient Greece and ancient Rome where citizens 

elected public positions. The implementation of elections has changed over thousands of years from 
showing of hands to throwing stones and shards into buckets, up to filling paper ballots and throwing 
them into sealed urns. Since the 1960s, electronic systems are gaining the public interest due to the 
possible benefits of accurate, fast, and cheap elections. Early electronic voting systems were 
implemented as voting machines, only since the 1990s, remote electronic voting systems enter the 
field and turn out to be a promising implementation of absentee voting. Throughout this chapter, we 
consider only remote electronic voting and use the term electronic voting interchangeably.  

Electronic voting systems are inextricably bound to security and cryptographic (SnC) 
techniques to provide secret, fair, and verifiable elections as well as integrity. Note, SnC techniques 
considered throughout this work are detached from identification and authentication mechanisms, as 
this is an orthogonal research direction to this work. Looking back on more than three decades of 
research, there is a wide range of security and cryptographic techniques striving for secure electronic 
voting. These techniques are tailored towards special needs and different compromises are made 
among different properties. Unfortunately, the security model each of the security properties is based 
on is not specified clearly or is specified in different ways for different approaches. This makes it 
difficult to compare the different security and cryptographic techniques proposed for secure electronic 
voting and thus to decide which is appropriate for a special type of election. This gap is addressed 
within this chapter. Thereby, we support decision-makers in finding adequate SnC techniques to 
implement electronic voting with respect to their targeted electoral circumstances. 

We focus our analysis on security and cryptographic techniques. Correspondingly, the focus 
is on those security properties which these techniques can already provide without combining them 
with identification and authentication techniques and without building the whole voting system. These 
are: secrecy, fairness, integrity, and verifiability. The concrete definitions of these security properties 
were derived within an interdisciplinary project between legal and technical scientists. These 
definitions are provided in this chapter. In addition, we developed a common modular security model 
allowing us to deduce the degree of fulfillment of these properties for concrete SnC techniques. This 
security model contains an exhaustive list of adversarial capabilities which were deduced from the 
literature. This security model is presented in this chapter. We, afterwards, select well known SnC 



 

techniques for electronic voting systems from the literature and evaluate them with respect to their 
security model. Moreover, we shortly discuss the SnC techniques’ adequacy to satisfy further security 
properties namely eligibility and uniqueness when combined with corresponding identification and 
authentication techniques, as well as the costs to apply these techniques within real-world 
applications.  

Before diving into the main sections of this chapter, we added a background section. Here, we 
review the related work, provide an overview of the components involved in the electronic voting 
process, and the preliminaries required in the remainder of this work. We conclude the chapter with a 
summary of our work and point the reader to future research directions in the electronic voting 
community.  

Background 
The first part of this section reviews related literature and shows where the present work is 

settled in the current state of the art on SnC techniques. In the second part, we outline components 
generally involved in the electronic voting process. Afterwards, we provide the preliminaries used 
throughout the analysis. More precisely, the preliminaries cover secret sharing techniques, encryption 
schemes, digital signature schemes, zero-knowledge proof systems, and the Benaloh challenge. The 
reader familiar with these preliminaries can safely skip these parts. 

Related Work 
In this subsection, we review comparative surveys and analyses of SnC techniques in 

electronic voting systems and settle our own contribution. In (Rjašková, 2002), the author gives a 
comprehensive overview on cryptographic primitives used in electronic voting and reviews 
cryptographic voting protocols laying the foundations for her own receipt-free protocol. Due to her 
own goal, the main focus of her work is receipt-freeness, i.e., secrecy under special adversarial 
capabilities while our analysis also addresses fairness, vote integrity and verifiability. In (Smith, 
2005), the author provides a comprehensive overview on cryptographic primitives and techniques 
used in electronic voting. Diving into great mathematical detail, the author aims at providing technical 
background for theoretical cryptographic electronic voting schemes. However, in his work, the author 
focuses on cryptographic questions such as the computational complexity to compute certain 
operations. Both, primitives and techniques, are however neither analyzed against legally-derived 
criteria nor based on a common security model. Lambrinoudakis, Tsoumas, Karyda, and 
Ikonomopoulos (2003) published an overview work on security techniques underlying electronic 
voting systems. Both, the classification of these techniques and their analysis does not build upon 
clear methodologies but rather focuses on providing a basic understanding of these protocols. As 
opposed to their work, our chapter focuses on a methodological approach in the classification and 
analysis of SnC techniques, which helps utilizing our results by decision-makers. MacNamara and 
Iedemska (2012) provide an overview work on cryptographic techniques underlying electronic voting 
systems. The authors analyze blind signatures, homomorphic encryption, and mix-nets. The declared 
properties are however not strictly related to the analysis of the techniques such that the analysis and 
its final conclusions remain vague. Mursi, Assassa, Abdelhafez, and Samra (2013) recently published 
a survey in which security techniques underlying electronic voting systems are shortly presented and 
comparatively analyzed. Due to their broad set of security requirements derived from the literature, 
the analysis of these techniques remains abstract. As opposed to their work, the goal of this work is to 
provide security models of SnC techniques with respect to these properties that can be evaluated on 
the basis of these SnC techniques.  

Components 
Usually, the following entities contribute to the overall electronic voting process: An entity is 

declared to be a voter if her identity is contained in the electoral roll. The registration authority is in 
charge of authorizing eligible voters to cast votes. As such, the registration authority holds the 
electoral roll. The tallying authority is the entity in charge of processing cast votes in order to tally the 
election result. The key trustee is an optional entity holding a secret key. In particular, authorities and 



 

trustees are often distributed such that the overall process can be delegated to a set of entities in order 
to incorporate stronger security models. The electronic voting system usually relies on one further 
component, namely the bulletin board. It is a server component to which everyone has read access 
and each authorized entity has corresponding write access. The voting environment consists of the 
hardware as well as the operating system and browser used by the voter to cast her vote. 

Secret Sharing 
Secret sharing allows splitting a secret apart such that individual shares do not allow 

conclusions about the secret but a set of shares allows one to reconstruct the secret.  

Specification 

A secret sharing scheme is a tuple of algorithms (𝑆,𝑅), where 𝑆 is the sharing algorithm, 𝑅 
the reconstruction algorithm. 

 A simple secret sharing scheme can be implemented by the XOR (⊕) operator. Assume a 
dealer wants to share secret 𝑠 among 𝑛 participants. Then the dealer randomly draws 𝑠1, … , 𝑠𝑛−1 and 
computes 𝑠𝑛, such that. 

𝑠 = 𝑠1 ⊕ …⊕ 𝑠𝑛−1 ⊕ 𝑠𝑛 

The dealer provides shareholder 𝑖 with 𝑠𝑖. If all shareholders release their shares, they can 
reconstruct 𝑠 according to the above definition. One drawback (amongst others) of this technique is 
that all shares are needed to reconstruct the shared secret. 

Shamir / Feldman Secret Sharing 

In contrast to the simplest form of secret sharing, a (𝑡,𝑛) threshold secret sharing allows 
reconstructing the secret having 𝑡 < 𝑛 shares. In (Shamir, 1979), the dealer randomly draws values 
𝑟1, … , 𝑟𝑡−1 and generates polynom of degree 𝑡 of the following form 

𝑓(𝑥) = 𝑠 + 𝑟1𝑥 + 𝑟2𝑥2 + ⋯+ 𝑟𝑡−1𝑥𝑡−1  

The dealer computes key shares 𝑓(1), … ,𝑓(𝑛) and provides each participant 𝑖 with her share 
(𝑖,𝑓(𝑖)) for 𝑖 ∈ {1, … ,𝑛}. According to the fundamental theorem of algebra, for an arbitrary t-set of 
shares (𝑖,𝑓(𝑖)), the polynom 𝑓(𝑥) can be reconstructed by the Lagrange interpolation: 

𝑓(𝑥) =  �𝑓(𝑖)
𝑡−1

𝑖=0

⋅�
𝑥 − 𝑥𝑗
𝑥𝑖 − 𝑥𝑗𝑗≠𝑖

 

The secret 𝑠 is given by the equation 𝑠 = 𝑓(0). 

Shamir’s scheme relies on a trusted dealer that has to split the secret properly; otherwise 
corrupt shares cannot be identified and composing distinct sets of 𝑡 shares would result in distinct 
reconstructed values. In verifiable secret sharing schemes, the dealer has to provide proofs that the 
issued secret shares allow to reconstruct the secret afterwards. One technique to extend Shamir’s 
scheme has been proposed by Feldman (Feldman, 1987). Assume two large primes 𝑞,𝑝 are given 
such that 𝑞|(𝑝 − 1) and a generator 𝑔 of order 𝑞. The dealer after generating polynom 𝑓(𝑥) commits 
on this polynom by publishing  

𝑔𝑠 mod 𝑝,𝑔𝑟1  mod 𝑝, … ,𝑔𝑟𝑡−1  mod 𝑝. 

Whenever the dealer issues a share to a shareholder 𝑖, this shareholder can verify that her 
share was created in the correct way by checking the 

𝑔𝑓(𝑖) = 𝑔𝑠 ⋅ 𝑔𝑟1⋅𝑖 ⋅ 𝑔𝑟2⋅𝑖2 ⋅ … ⋅ 𝑔𝑟𝑡−1⋅𝑖𝑡−1  mod 𝑝. 

In the reconstruction phase, each shareholder forwards the proof of the dealer such that only 
correct generated shares are used to reconstruct the secret. 



 

Encryption Schemes 
The motivation behind encryption schemes is to encode confidential messages in a way that 

the code can be transmitted over insecure channels to the intended reader of the message such that this 
person afterwards can decode the received code to obtain the confidential message. 

Specification 

Formally, an encryption scheme is a triple of algorithms (𝐺,𝐸,𝐷) , where 𝐺  is a key 
generation algorithm, 𝐸 is the encryption algorithm, and 𝐷 the corresponding decryption algorithm. 
Encryption schemes can be asymmetric and symmetric: In the symmetric case, encryption key 𝑒 and 
decryption key 𝑑 are equal and therefore not known to the public, while for asymmetric encryption 
schemes 𝑒 ≠ 𝑑  and 𝑒  is known to the public. Asymmetric encryption schemes can be further 
classified into deterministic and probabilistic asymmetric encryption schemes: deterministic schemes 
map identical messages to identical ciphertexts, as opposed to probabilistic encryption schemes that 
integrate randomness into the encryption procedure such that two encryptions of identical messages 
lead to distinct ciphertexts.   In the remainder of this chapter we will denote ciphertexts of a message 
𝑚 encrypted under key 𝑘 by {𝑚}𝑘𝑟 , where 𝑟 denotes the optional randomness. 

There exist a large number of encryption schemes, among which the most important 
symmetric schemes are DES (Data Encryption Standard) and AES (Advanced Encryption Standard). 
The first asymmetric and one the most influential deterministic asymmetric encryption scheme is RSA 
(Rivest, Shamir, & Adleman, 1978), and well-established probabilistic encryption asymmetric 
schemes are ElGamal (ElGamal, 1985) and Paillier (Paillier, 1999). In the remainder of this chapter, 
we focus on asymmetric encryption schemes as they build the basis of most electronic voting systems. 
A wide range of security notions expresses the security of asymmetric encryption schemes, among 
which the most important are Indistinguishability under chosen-plaintext attack (IND-CPA), 
Indistinguishability under non-adaptive chosen ciphertext attack (IND-CCA), and Inditinguishability 
under adaptive chosen ciphertext attack (IND-CCA2). 

ElGamal Encryption Scheme 

In this section we outline the ElGamal encryption scheme introduced in (ElGamal, 1985). 
This scheme turns out to be of value for electronic voting system due to its important homomorphic 
properties. Homomorphic cryptosystems allow the functional operations on plaintexts that result in a 
different functional operation on the corresponding ciphertext. Given two algebraic groups (𝑃,⊕) 
and(𝐶,⊗), then 𝜙 is a homomorphic mapping between groups (𝑃,⊕) and (𝐶,⊗) if for all 𝑝1,𝑝2 ∈ 𝑃, 
it follows that  

𝜙(𝑝1 ⊕ 𝑝2) =  𝜙(𝑝1) ⊗𝜙(𝑝2). 

As outlined in the following, the homomorphic character of the ElGamal cryptosystems allow 
to implement a number of operation, such as the re-encryption of ciphertexts. 

Key Generation 

The key generation algorithm outputs a large prime 𝑝, a generator 𝑔 for the multiplicative 
group 𝑍𝑝∗ . Furthermore, the algorithm outputs a random number 𝑥 ← {2, … ,𝑝 − 2} as private key and 
(𝑔,𝑝,𝑦 = 𝑔𝑥  (mod 𝑝)) as public key. 

Joint Feldman Distributed Key Generation 

We present an adaptation (Gennaro et al., 1999) of the distributed key generation scheme 
introduced in (Feldman, 1987). Goal of this scheme is to establish a joint public key such that the 
corresponding secret key is not known to anybody. 

1. Participant 𝑖 generates a polynomial of degree t over 𝑍𝑞, 

𝑝𝑖(𝑥) =  𝑎𝑖,0 + 𝑎𝑖,1𝑥 + ⋯+  𝑎𝑖,𝑡𝑥𝑡, 



 

 

where 𝑎𝑖,0  denotes the shared secret. For each participant 𝑗 , participant 𝑖  then computes 
𝑥𝑖,𝑗  = 𝑝𝑖(𝑗)  and provides 𝑗  with that value. Furthermore, 𝑖  commits on the generated 
polynomial 𝑝𝑖 by publishing the values 𝑋𝑖,𝑘 =  𝑔𝑎𝑖,𝑘   for all 0 ≤  𝑘 ≤  𝑡. 

2. Each participant 𝑗 verifies the shares obtained from all other participants by checking if 
equation  

𝑔𝑥𝑖,𝑗  =  �𝑋𝑖,𝑘
𝑗𝑘

𝑡

𝑘=0

 mod 𝑝 

is satisfied. If this equation holds, 𝑗 accepts, otherwise 𝑗 publishes a complaint about 𝑖. If 𝑖 is 
accused by more than 𝑡 participants or if 𝑖 does demonstrably not follow the protocol, 𝑖 is 
excluded and 𝑎𝑖,0 is set to 0, while 𝑋𝑖,0 is set to 1. 

3. The public value is computed by 𝑦 = 𝑔𝑎 ⋅ ∏ 𝑋𝑖,0𝑛
𝑖=1  mod 𝑝, while the secret value can be 

computed as 𝑥 = 𝑎 + ∑ 𝑥𝑖,0𝑛
𝑖=1  mod 𝑝. The voter thereafter is able to compute the secret 

value if at least 𝑡 out of 𝑛 tellers behaved properly. 

Encryption 

Given a public key (𝑔,𝑝,𝑦), a message 𝑚 ← {0, … ,𝑝 − 1} is encrypted with randomness 
𝑟 ← {2, … ,𝑝 − 2} in the following way: 

 (𝑐1, 𝑐2)  =  (𝑔𝑟,𝑚 ⋅  𝑦𝑟) mod 𝑝 

Decryption  

Given a ciphertext (𝑐1, 𝑐2) encrypted under public key (𝑔, 𝑝,𝑦), message 𝑚 is reconstructed 
as follows: 

𝑚 = 𝑐2 ⋅ 𝑐1−𝑥 

Homomorphic Property 
The ElGamal encryption scheme satisfies an important property for electronic voting systems, 

namely it is homomorphic. Given two ElGamal ciphertexts 𝑐𝑖 =  (𝑔𝑟,𝑚1 ⋅ 𝑦𝑟) and 𝑐𝑗 = (𝑔𝑠,𝑚2 ⋅ 𝑦𝑠) 
for messages 𝑚1,𝑚2, it holds that 𝑐𝑖 ⋅ 𝑐𝑗 is a valid ciphertext of message 𝑚1 ⋅ 𝑚2 as shown below. 

𝑐 = 𝑐𝑖 ⋅ 𝑐𝑗 = (𝑔𝑟,𝑚1 ⋅ 𝑦𝑟) ⋅ (𝑔𝑠,𝑚2 ⋅ 𝑦𝑠) = (𝑔𝑟+𝑠,𝑚1 ⋅ 𝑚2 ⋅ 𝑦𝑟+𝑠) mod 𝑝 

For electronic voting, it might be more useful to add messages rather than multiplying them. 
Therefore, the ElGamal encryption scheme has been extended towards additive homomorphism. The 
resulting scheme is called Exponential ElGamal (Cramer, Gennaro, Schoenmakers, 1997) and 
ciphertexts consequently have the following form:  

 (𝑐1, 𝑐2)  =  (𝑔𝑟,𝑔𝑚 ⋅  𝑦𝑟) mod 𝑝 

It can easily be seen that the multiplication of individual ciphertexts results in the addition of 
the underlying plaintexts. 

𝑐 = 𝑐𝑖 ⋅ 𝑐𝑗 = (𝑔𝑟,𝑔𝑚1 ⋅ 𝑦𝑟) ⋅ (𝑔𝑠,𝑔𝑚2 ⋅ 𝑦𝑠) = (𝑔𝑟+𝑠,𝑔𝑚1+𝑚2 ⋅ 𝑦𝑟+𝑠) mod 𝑝 

It should be noted that decryption of this ciphertext does not immediately results in 𝑚, but 
rather in 𝑔𝑚. Finally, the discrete logarithm of 𝑔𝑚1+𝑚2 must be computed, which is only feasible for 
small exponents. 

Re-encryption  



 

Given a ciphertext (𝑐1, 𝑐2) =  (𝑔𝑟,𝑚 ⋅  𝑦𝑟) mod 𝑝 encrypted under public key (𝑝,𝑔,𝑦), this 
ciphertext can be re-encrpyted using randomness 𝑠 ←  {2, … ,𝑝 − 2} in the following way: 

(𝑐1′ , 𝑐2′ ) =  (𝑔𝑟 ⋅  𝑔𝑠,𝑚 ⋅  𝑦𝑟 ⋅  𝑦𝑠) mod 𝑝 

The concept of re-encryption is extended to a set of ciphertexts encrypted under the same 
public key in straight-forward manner. 

Distributed Decryption 

So far, the concept of distributed key generation has been abstract. The concept proves 
however to be of great importance to distributed decryption. In distributed decryption, a ciphertext is 
partially decrypted by participants such that the partial decryption can be used to reconstruct the 
plaintext based on the Lagrange interpolation. Let an ElGamal ciphertext 𝑐 = (𝑐1, 𝑐2)  be given. 
Throughout the decryption phase, voter 𝑣𝑖 computes her partial decryption 

𝑐1(𝑖) = 𝑐1
𝑥𝑖 

and publishes a proof showing that 

log𝑐1 𝑐1(𝑖) = 𝑥𝑖 = log𝑔 𝑦𝑖 

If the voter's proof does not convince the majority of voters, they decide to reconstruct her 
private credential share in a distributed way relying on the Lagrange interpolation of the committed 
shares of the private key shares of voter 𝑣𝑖. The honest participants are capable of reconstructing 𝑥𝑖 
and hence 𝑐1(𝑖) = 𝑐1

𝑥𝑖. 

Once, all voters' partial decryptions 𝑐1(𝑖) are available, the plaintext is reconstructed by 

𝑚 =
𝑐2

∏ 𝑐1(𝑖)𝑛
𝑖=1

 

Digital Signatures 
The goal of signature schemes is to ensure the integrity and authenticity of messages with 

respect to the sender as well as non-repudiation.  

Specification 

A signature scheme is a triple of algorithms (𝐺, 𝑆,𝑉), where 𝐺 is a key generation algorithm, 
𝑆 is the signing algorithm, and 𝑉 the verification algorithm. The most significant security properties 
of digital signature schemes are universal unforgeability (UU), selective unforgeability (SU), and 
existential unforgeability (EU). 

RSA Signature 

Key Generation: Given two large primes 𝑝, 𝑞, two values 𝑛 = 𝑝 ⋅ 𝑞 and 𝜑(𝑛) = (𝑝 − 1) ⋅
(𝑞 − 1) are computed. A value 𝑒 with 1 < 𝑒 < 𝜑(𝑛) co-prime to 𝜑(𝑛) is randomly chosen and 𝑑 is 
determined such that 

𝑒 ⋅ 𝑑 ≡ 1 mod 𝜑(𝑛). 

The verification key is (𝑒,𝑛), the signing key is 𝑑. 

Signing: Given the signing key 𝑑, a message 𝑚 < 𝑛 is signed according to the following 
equation: 

𝑠 = 𝑚𝑑  mod 𝑛 

Verification: Given a verification key (𝑒, 𝑛) , signature 𝑠  on message 𝑚  is valid if the 
following equation holds: 

𝑠𝑒 = 𝑚 mod 𝑛 



 

RSA Blind Signature 

The RSA blind signature scheme has been invented in (Chaum 1981) and extends the 
standard RSA signature. 

Blinding: The blinder randomly chooses a blinding factor  𝑘 ← 𝑍𝑛∗  , blinds her message 𝑚 
and sends the corresponding value 

𝑏 = 𝐻(𝑚) ⋅ 𝑘𝑒 mod 𝑛. 

to the signer.  

Signing: The signer signs this value with her public key and sends the corresponding value 𝑠′ 

𝑠′ = 𝑏𝑑 = (𝐻(𝑚) ⋅ 𝑘𝑒)𝑑 = (𝐻(𝑚))𝑑 ⋅ 𝑘𝑒𝑑 = �𝐻(𝑚)�𝑑 ⋅ 𝑘 (mod 𝑛). 

back to the blinder.  

Unblinding: The blinder removes the blinding factor 

𝑠 =
𝑠′

𝑘
=
�𝐻(𝑚)�𝑑 ⋅ 𝑘 

𝑘
= �𝐻(𝑚)�𝑑  (mod 𝑛) 

and obtains the signer’s signature on her message 𝑚. Without further authentication step, the blinder 
can publish the message and the signature. Note that in the blinding phase, message 𝑚 must be hashed 
in order to avoid exploits of RSA’s malleability, i.e., a malicious blinder could obtain signatures 
𝑚1
𝑑 ,𝑚2

𝑑 and deduce a new valid signature for 𝑚1 ∗ 𝑚2 due to the fact that (𝑚1 ∗ 𝑚2)𝑑 = �𝑚1
𝑑 ∗ 𝑚2

𝑑�. 

Zero-Knowledge Proof Systems 
Zero-knowledge (ZK) proof systems are the cryptographic tool to prove the validity of 

statements without revealing anything beyond the validity of this statement.  

Specification 

A ZK proof system is given by a tuple of algorithms (𝑃,𝑉) , where 𝑃  is the prover of 
statements and 𝑉 is the verifier of these statements. A ZK proof system for given language 𝐿 satisfies 
three properties: 1) each valid statement can be proven (completeness), 2) no invalid statements can 
be proven (soundness), a malicious verifier does not learn anything beyond the validity of the 
statement (zero-knowledge). We will outline one prominent ZK proofs used in electronic voting 
systems, namely proof of knowledge of discrete logarithm, which can be used to exclude replay 
attacks in distributed key generation. There exist numerous further specific ZK proofs, e.g., 
designated-verifier proofs, proof of equality of discrete logarithms, 1-out-of-L encryption proofs, 
disjunctive proof of equality between discrete logarithms. We refer the interested reader to (Smith, 
2005) for detailed information. 

Proof of Knowledge of Discrete Logarithm 

In (Schnorr, 1989), Schnorr invented a protocol to prove the knowledge of discrete logarithm. 
Given basis 𝑔 ← 𝑍𝑝, value 𝑦 ← 𝑍𝑝, the prover wants prove that she knows 𝑙 such that 𝑦 = 𝑔𝑙 where 𝑔 
and 𝑦 are publicly known. The protocol is summarized as follows: 

1. The prover randomly draws 𝑟 ← 𝑍𝑝 and outputs 𝑎 = 𝑔𝑟 

2. The verifier randomly draws 𝑐 ← 𝑍𝑝 and outputs 𝑐 

3. The prover computes 𝑧 = 𝑟 + 𝑙 ⋅ 𝑐 and outputs 𝑧 

4. The verifier checks if 𝑔𝑧 = 𝑎 ⋅ 𝑦𝑐 

Benaloh Challenge 



 

In (Benaloh, 2006), Benaloh invented a concept to prove the integrity of encryptions in ZK 
proof manner. Assume a user intends to encrypt message 𝑚 with a public encryption key 𝑝𝑘 using the 
ElGamal encryption scheme in an arbitrary system. Then, in accordance to the encryption algorithm, 
the system draws randomly 𝑟 ← {2, … ,𝑝 − 2} and computes 

 (𝑐1, 𝑐2)  =  (𝑔𝑟,𝑚 ⋅  𝑦𝑟)  mod 𝑝. 

The question arises how the user can be sure that the system encrypted the right value, 
anyway the output will be indistinguishable by definition for all input values. Benaloh proposed the 
following procedure: After encrypting 𝑚, the system commits on the encryption process by providing 
the user with 𝐻�(𝑐1, 𝑐2)�. The user thereafter (unpredictably) decides if she audits or accepts the 
encryption process of the device. If she decides to audit the process, the device returns the 
randomness 𝑟 . The user can verify the correct encryption by computing  (𝑐1′ , 𝑐2′ )  =  (𝑔𝑟,𝑚 ⋅
 𝑦𝑟) mod 𝑝 locally or with the help of an external institution and checks if 𝐻�(𝑐1, 𝑐2)� = 𝐻�(𝑐1′ , 𝑐2′ )�. 
After the verification process, the voter has to re-run the entire encryption process. If the user at some 
point decides to obtain the ciphertext, the system provides the voter with (𝑐1, 𝑐2) and a signature on it. 

 

 

Electronic Voting System Properties 
The conduction of elections is generally bound to legal constraints. For instance, the German 

Constitution prescribes the implementation of the six election principles universal, direct, free, equal, 
secret elections, as well as the public nature of the election. The principles must be refined into more 
concrete technical properties in order to apply them to voting technology. This has been done in an 
interdisciplinary dialogue. We identified 17 technical properties. Some can be directly addressed by 
the SnC technique, namely the properties secrecy, fairness, integrity, and verifiability, while others 
can only be evaluated on the basis of SnC techniques enriched with identification and authentication 
mechanisms; these are eligibility and uniqueness. Further technical properties can only be evaluated 
based on the fully implemented and organizationally running system, like usability and system 
availability. Correspondingly, the focus of this work is on secrecy, fairness, integrity, and 
verifiability. 

Note, in the following analysis we do not consider how definite the relation between a voter 
and her cast vote is as this relation mainly depends on the form of identification and authentication, 
namely a voter who authenticates via password may easily forward her password, while a voter 
authenticating via her national ID card may not do so. On the other hand, with regard to secrecy, we 
merely consider any relation between a voter and her vote as crucial, independent of the precise 
identification and authentication mechanisms, e.g. also considering the voter’s IP address.  

 

Secrecy, Fairness, Integrity, and Verifiability  
Secrecy and fairness are closely related and stem from an election principle enshrined in 

many national and international constitutions, namely the secret election principle. Amongst other 
principles, integrity is derived from the universal and equal election principles. Verifiability on the 
other hand implements the public nature principle on a technical level. Even though the public nature 
principle is not embodied in all democratic states’ constitutions, it turns out to be of central 
importance for electronic voting systems for two reasons: first, electronic voting systems face the 
dangers of large-scale manipulations (Mercuri, 2002); second, it might increase trust in the voting 
system. Our interdisciplinary project work led us to the following definitions:  

Secrecy: For each voter 𝑣 that cast a vote for an arbitrary candidate 𝑐, it holds that the adversary 
cannot get more evidence about the fact if the voter selected 𝑐 or any other selection 𝑐′ as he can get 
from the final tally. Note that a selection depends on the electoral systems and might include the 



 

voting for multiple candidates, for instance in ranked voting methods. In this paper, we focus on 
single-candidate elections. 

Fairness: The adversary cannot obtain any evidence about any cast intention before the end of the 
election.  

Integrity: Integrity is composed of three sub-properties: 

Cast-as-intended: The voter’s cast vote corresponds to her intention. Note that votes are 
usually prepared before being cast to ensure secrecy by techniques like. 

Stored-as-cast: The voter’s cast vote is stored for tabulation the way she cast it.  

Tallied-as-stored: All votes have been tallied the way they were stored. 

Verifiability: In analogy to the integrity definition, verifiability is composed of three sub-properties: 

Cast-as-intended: The voter can individually verify the proof that her vote has been cast the 
way she intended to cast it.  

Stored-as-cast: The voter can individually verify the proof that her vote has been stored for 
tabulation the way she cast it.  

Tallied-as-stored: Anybody can verify the proof that all votes have been tallied the way they 
were stored.  

The proofs mentioned above must be sound; hence, there must be no possibility for the 
adversary to generate proofs for wrong statements that pass the verification step. Note, thereby, we 
define verifiability as the strongest form of integrity. In the literature, verifiability is often also 
referred to as end-to-end verifiability, if all three verifiability sub-properties are given.  

In practice, the average voter is not able to verify these proofs manually as these proofs are 
usually based on complicated cryptographic primitives. Therefore, she needs to rely on some support. 
Correspondingly, we define verify not by voters being personally able to verify proofs manually, but 
rather they can use arbitrary hard-/software to verify proofs. Verifiability is only given if the hardware 
is provided from different manufacturers and the software from different developers because then 
voters can choose which manufacturers and which developers to trust and use their hardware and 
software respectively, where software includes the operating system. We give some examples for a 
better understanding in the later analysis: Consider the Benaloh challenge (Adida, 2006) 
implementation in the Helios system (Adida, 2008): In theory, the system allows to output auditing 
data for external auditing of the encryption process. The implementation as used in Helios embodies 
the possibility to forward auditing data from the JavaScript to external auditors. Cast-as-intended 
verifiability is not ensured in this implementation as voters conduct the verification process within 
their voting environment, i.e., the environment that they use to cast a vote. This voting environment 
covers the hardware as well as the operating system and browser used by the voter. One way of 
ensuring cast-as-intended integrity without adversarial assumptions has been indicated in (Karayumak 
et al., 2011). The authors propose to outsource the auditing process via QR codes to an external 
device, e.g., smartphone, in order to achieve cast-as-intended verifiability. 

Further Security Properties 
Electronic voting systems have to ensure more security properties than secrecy, fairness, 

integrity, and verifiability. In addition, they must ensure that only eligible voters can cast valid votes 
(eligibility) and each eligible voter can cast exactly one valid vote (uniqueness). As these can only be 
ensured by combining SnC techniques with corresponding identification and authentication 
mechanisms, these two properties are not considered in the main analysis. However, as the different 
SnC techniques have to be compatible with the different identification and authentication 
mechanisms, we add a brief general discussion of the SnC techniques’ adequacy with respect to 
eligibility and uniqueness. 

Evaluation Criteria 



 

Throughout this section, we specify the evaluation criteria for SnC techniques used in the 
following analysis. As first evaluation criterion, we specify the underlying security model of the SnC 
techniques thereby measuring the strength of techniques with respect to secrecy, fairness, integrity, 
and verifiability. Our second class of evaluation criteria covers the adequacy of security and 
cryptographic techniques to address further properties, including further security properties, as well 
as costs. 

Security Model for Security Properties 
The criterion security model consists of two distinct sub-criteria addressing the secrecy, 

fairness, integrity, and verifiability property. The first criterion determines the adversary model 
against which a technique can maintain secrecy, fairness, and integrity. The second criterion analyses 
the degree of verifiability provided by the corresponding technique. 

Adversary Model 

We specify adversary models by a capability-based approach as proposed in (Amenaza 
Technologies Limited, 2005). In the capability-based approach, the SnC technique is related to a 
mapping between security properties and assumptions (exclusion of adversarial capabilities) under 
which those properties can be ensured. Consequently, the adversary is defined by his capabilities at 
disposal.  

In the next step, adversarial capabilities are determined that allow composing adversary models. The 
adversarial capabilities are based on a literature review and the composition of several existing 
approaches defining security models (Dolev & Yao, 1981; Langer, 2010; Carlos et al., 2013). We 
classify the identified adversarial capabilities in four subclasses, namely communication-based, 
corruption-based, computational capabilities, and timing capabilities. In the following paragraphs, we 
introduce the different categories and the corresponding adversarial capabilities. 

Communication-based Capabilities 

Originally, the Dolev-Yao communication and adversary model (Dolev & Yao, 1981) considered an 
adversary controlling the network between abstract entities. In a recent work (Carlos et al., 2013), 
Carlos et al. extended the Dolev-Yao communication model to fit security ceremonies (such as 
electronic voting) thereby distinguishing between human entities and computer systems. In the voting 
scenario, an adversary might control network channels between computer systems (e.g. the Internet), 
network channels between human entities (e.g. postal mail), or network channels between human 
entities and computer systems (e.g. the voter reading content on the display or interacting with her 
computer systems via typing and moving the mouse). In accordance to the extended Dolev-Yao 
model (Carlos et al., 2013), the following communication-based capabilities are specified: 

1. The adversary can drop messages from the network channel. 

2. The adversary can read messages on the network channel. 

3. The adversary can inject messages on the network channel. 

In the voting scenario, it might be enough for the adversary to determine the sender of a specific 
message in order to violate a voting system property. To address this issue adequately, Langer 
(Langer, 2010) specifies the following communication-based capabilities: 

4. The adversary can recognize the sender of messages on the network channel. 

5. The adversary can notice the usage of a network channel. 

Corruption-based Capabilities 
The first corruption-based capability models adversaries capable of controlling single human entities 
involved in the election process. A human entity corrupted by the adversary is completely under 
adversarial control. These human entities might for instance be tallying authorities or key 



 

shareholders but not voters, as they are handled separately in the following. Therefore, the following 
corruption-based capability is specified: 

6. The adversary can corrupt a human entity. 

As opposed to other human entities involved in the election process, we acknowledge that voters 
generally try to defend against adversarial attacks by cheating the adversary. This stems from the fact 
that without any adversarial action, voters do not have any motive not to vote according to their real 
intention. Therefore, adversaries cannot completely control the voter. Nevertheless, the adversary 
might try to influence voters by a variety of approaches in order to achieve his goal. Therefore, with 
respect to electronic voting, Langer (2010) extended these capabilities by new network channels that 
allow expressing more fine-grained security models such as indirect or bidirectional network channels 
between the voter and the adversary.  

The adversary might convince the voter into proving her vote to the adversary in order to experience 
certain benefits. This capability stems from attacks in which the voter intends to forward objects 
obtained throughout the voting process in order to prove the way she voted (refer for instance to 
(Adida & Neff, 2009)). Therefore, Langer (2010) specifies the following corruption-based capability: 

7. The adversary can obtain objects from a voter. 

Adversaries might also be capable of sending objects to the voter. Objects an adversary might send in 
advance to the voting phase are instructions as abstaining from the election, signatures for Italian 
attacks (refer for instance to (Teague, Ramchen, & Naish, 2008)) or a random value in order to launch 
a randomization attack (refer for instance to (Ryan & Teague, 2009)). This capability models the 
adversary’s power to blackmail or convince voters in advance to the voting phase into voting 
according to the adversary’s intention. Therefore, Langer (2010) specifies the following corruption-
based capability: 

8. The adversary can send objects to a voter. 

Having made explicit all the capabilities with respect to human entities, we now consider the second 
type of entities in our voting systems: computer systems. Computer systems are often not directly 
controlled by human entities and should therefore be separated from authorities or voters. Therefore, 
we introduce the following corruption-based capability: 

9. The adversary can corrupt a computer system. 

Computational Capabilities 
Several works, e.g. (Sandler & Wallach, 2008), acknowledge the weaknesses of cryptosystems as they 
might be broken within few years. Voting systems might therefore differ with respect to the 
adversarial computational power against which they are able to defend certain security properties. 
Therefore, the following capability is specified: 

10. The adversary is computationally unrestricted. 

Note, unless otherwise stated, we restrict our attention in this chapter to computational rather than 
information-theoretic secrecy. To us, this seems most natural as information theoretic security 
generally comes along with unrealistic assumptions. We refer the interested reader to (Moran & Naor, 
2007) for information-theoretic secrecy in electronic voting systems. 

Timing Capabilities 
Moreover, the adversary might possess the above listed capabilities only throughout a restricted time 
span. This restriction is for instance motivated by the facts that the adversary might not observe all 
voters simultaneously casting their votes (i.e. the network channels between voters and their computer 
systems), and might not continuously have access to channels between human entities (for instance 
refer to (Carlos et al., 2013)). Therefore, we specify the following timing capability: 

11. The adversary has capability [1 - 10] during a specified period of time. 



 

Degree of Verifiability 

We evaluate SnC techniques with respect to the degree of verifiability they can assure. As a 
result of the integrity analysis, one can derive how many integrity sub-properties are ensured without 
posing assumptions on the adversarial capabilities. In the following analysis, all integrity sub-
properties are of equal importance. We therefore define the second security model criterion degree of 
verifiability by a ratio of the form zero/one/two/three out of three. Note that we restrict our attention 
to computational rather than information-theoretic verifiability. We justify this constraint by the fact 
that verification usually takes place during or immediately after the voting phase, thus time is very 
restricted. We furthermore deliberately assume that the adversary cannot alter data written on the 
bulletin board, i.e., data which has been written on the bulletin board cannot be undetectably 
manipulated. This assumption is justified by the fact that the bulletin board is under the continuous 
supervision of the general public. 

Criteria for further Properties 
We also briefly study the relation between SnC techniques with properties that go beyond 

secrecy, fairness, integrity, and verifiability. First, SnC techniques are discussed with respect to their 
adequacy to implement eligibility and uniqueness. Second, we postulate that electronic voting should 
not higher the burden for democratic processes, but should rather be better competitive with 
conventional voting systems. We therefore evaluate SnC techniques and their designated 
implementation according to the criteria cost, covering administrative, architectural, and 
computational resources. These costs highly depend on the concrete implementation including the 
identification and authentication in place. Therefore, we leave this aspect for future work. 

Analysis of Security and Cryptographic Techniques 
The goal of this section is to review established and well known SnC techniques in electronic 

voting systems and evaluate them with respect to the defined evaluation criteria. In the first part of 
this section, we provide the reader with some background information about the structure of this 
section and the selection process. Thereafter, we describe and analyze the selected SnC techniques. 

Background 
We structure the SnC techniques according to the secrecy technique in place and thus similar 

to (Volkamer, 2009) according to the phase (pre-voting, voting, post-voting) in which the link 
between a voter and her vote is broken. Thus, we first consider simple and more complex code voting 
in the pre-voting phase. Then, online randomized authentication token and blind signature approaches 
are discussed as the most popular representatives for the second phase. As representatives of the third 
phase we consider shuffles and homomorphic cryptosystems.  

Furthermore, we extend these standard techniques by the two concrete voting protocols – 
Civitas (Clarkson, Chong, & Myers, 2008) and Pretty Good Democracy (Ryan & Teague, 2009) –  as 
each of them combines two different of the previously mentioned techniques. 

Accordingly, we start describing the SnC techniques from a secrecy perspective, and if 
possible enhance the description towards verifiability.  

For each described SnC technique, we identify the security model underlying secrecy, 
fairness, integrity, and verifiability. Note, due to the lack of space, we do not outline the complete 
security model but merely restrict our attention to assumptions which require the smallest number of 
distinct adversarial capabilities. We conclude the analysis with the analysis of further properties. 

Approaches ensuring Secrecy in the Pre-Voting Phase 
A technique is assigned to the pre-voting phase, if the voter’s interaction with the electronic 

voting system is never associated with her identity; hence, the relation between a voter and her cast 
vote is broken in advance to the voting phase. The only representatives in this group of techniques are 



 

the various code voting schemes which are discussed in this section. The idea of code voting goes 
back to the work of Chaum (Chaum, 2001).  

Description 
In the pre-voting phase, the registration authority prepares unique codebooks for all eligible 

voters: a codebook contains the codebook ID and a three-column table, where each candidate has a 
voting code and an acknowledge code assigned. After the generation of these books, the registration 
authority randomly assigns codebooks to voters and provides the tallying authority all issued 
codebooks.  The voter must not receive her codebook over her voting environment (but for instance 
via postal mail). Thereby, the link between a voter and her vote is already broken in the pre-voting 
phase. In the voting phase, the voter casts her vote by sending the codebook ID and the voting code 
next to the preferred candidate to the tallying authority. The tallying authority re-interprets the code, 
identifies the chosen candidate and stores a vote for that candidate. Thereafter, the tallying authority 
returns the corresponding acknowledge code to the voter. Thereby, the voter gets assurance that her 
voting code was not manipulated or dropped by her system or on the communication channel. A voter 
can use her codebook ID to cast several votes giving her the possibility of vote updating. In this case, 
the voter’s old vote is replaced by her new vote. In the post-voting phase, the tallying authority 
publishes all interpreted candidates on the bulletin board. This allows any observer to tally the result. 

In order to improve the degree of verifiability, VeryVote (Joaquim, Ribeiro, & Ferreira, 2009) 
has been proposed. That scheme integrates the idea of code voting with MarkPledge (Neff, 2004) 
codes. A generic election authority generates codebooks for each voter in which each candidate has a 
unique voting code assigned. Furthermore, each codebook has a special acknowledge code, a so 
called MarkPledge code which is outlined in the following. In advance to the election, for each voter, 
the authority generates 𝑛 − 1 probabilistic bit encryptions of 0 and one bit encryption of 1, denoted by 
𝐵𝑖𝑡𝐸𝑛𝑐(0) and  𝐵𝑖𝑡𝐸𝑛𝑐(1) respectively. The authority commits on them by publishing them on the 
bulletin board together with the voter’s identity. Afterwards, a public challenge 𝑠𝑟𝑒𝑣 (which is used 
to derive individual challenges in the voting phase) is distributively computed. Due to encoding 
properties 𝐵𝑖𝑡𝐸𝑛𝑐(1) is partially opened independently of the challenge, while the partial opening of 
𝐵𝑖𝑡𝐸𝑛𝑐(0) depends on the challenge. The static, partial opening of the 𝐵𝑖𝑡𝐸𝑛𝑐(1)  encryption is 
referred to as MarkPledge code. After the voter cast her voting code to the election authority, her code 
is interpreted. The authority assigns the 𝐵𝑖𝑡𝐸𝑛𝑐(1) to the chosen candidate and 𝐵𝑖𝑡𝐸𝑛𝑐(0) randomly 
to the other candidates. The combination of candidates with the voter respective bit encryptions 
corresponds to the voter’s encrypted ballot. Depending on the individual challenge, the authority 
reveals partial randomness used to generate the 𝐵𝑖𝑡𝐸𝑛𝑐(0) values and the 𝐵𝑖𝑡𝐸𝑛𝑐(1) value within the 
ballot. The authority publishes the partial decryptions of the ballot (the acknowledge codes), which is 
exactly the voter’s receipt. The revealing of partial randomness values does not interfere with the 
secrecy property, which is discussed in (Joaquim, Ribeiro, & Ferreira, 2009). The voter can 
individually verify that on her public receipt, her acknowledge (MarkPledge) code appears next to her 
selected candidate. Furthermore, any observer can verify that the published randomness values 
correspond to the challenge and that the 𝐵𝑖𝑡𝐸𝑛𝑐(𝑥) encryptions correspond to the claimed 𝑎𝑐𝑘(𝑥) 
codes, among which there is the MarkPledge code, only known to the authority and the voter. After 
the voting phase, published ballots are anonymized and ballots are decrypted by a set of trustees.  

While this improvement regarding verifiability is rather complicated, one can think of the 
following simple straightforward improvement: After the voter cast her voting code, the 
corresponding acknowledge code is also published on a bulletin board. After the voting phase, the 
authority assigns each acknowledge code with the corresponding candidate. The following analysis 
shows that both improvements result in the same security model. 

Security Model 

Adversary Model: As opposed to most other SnC techniques, secrecy in the code voting 
approach does neither assume the voting environment nor the standard communication channel 
between the voter and the tallying authority to be trustworthy. All information the adversary might 
obtain controlling the environment or this communication channel cannot be mapped to the 



 

corresponding selection. On the other hand side, it must be assumed that the adversary cannot read the 
channel between the registration authority and the voter (C2). However, the registration and tallying 
authority must be trusted not to collaborate because then the registration authority would keep track of 
which codebook was sent to which voter while the tallying authority knows which candidate was 
selected from which codebook. Note that, in the improved version, the adversary only needs to control 
the registration authority (C6). For both approaches - the straightforward improvement, and the 
VeryVote approach - the election/tallying authority is generic (the authority’s duties might be 
separated) such that a final adversary model cannot be assessed. Nonetheless, both approaches rely on 
the fact that the voter must not be under adversarial control otherwise she can forward her codebook 
to the adversary. Thereby, she maintains the link between her identity and her vote due to the 
published acknowledge code. Hence, the adversary must not obtain information from the voter (C7). 

Fairness in the code voting approach relies on the proper behavior of the generic election 
authority (C6) because this authority knows the relation between codes and candidates and 
furthermore receives voters’ selected codes allowing this authority to compute intermediate results. 
After a voter cast her voting code, the corresponding acknowledge code is published on the bulletin 
board. If the voter forwards her voting material to the adversary (C7), the adversary can learn the 
voter’s selection and compute an intermediate result. 

Due to the fact that in the post-voting phase, acknowledge codes are publicly mapped to 
candidates, cast-as-intended integrity is not built upon any assumptions. With respect to stored-as-
cast integrity, a malicious registration authority (C6) could assign identical codebooks to voters that 
predictably make the same selection. In that case, acknowledge codes are published once and the 
tallying authority (C6) could discard all votes with the same acknowledge code; correspondingly no 
additional candidate is stored. Finally, tallied-as-stored integrity does not rely on any adversarial 
assumptions.  

Degree of Verifiability: The integrity analysis shows that cast-as-intended and tallied-as-
stored are verifiable. Consequently, the degree of verifiability equals two out of three.  

Further Properties and further Criteria 
Eligibility and uniqueness depend on the authorities’ proper behavior. Voters might forward 

their codebook to the adversary thereby violating either eligibility or uniqueness because the 
adversary has all information necessary to cast a vote. Sticking to conventional voting systems, the 
channel between the registration authority and the voter might be implemented by postal mail, which 
is the main pillar of the security assurance; hence in the pre-voting phase, each voter receives a letter 
containing a random codebook. This might result in significant administrative costs.  

Approaches ensuring Secrecy in the Voting Phase 
A technique is assigned to the voting phase, if the link between a voter and her vote is broken 

as part of the interaction with the electronic voting system. Generally, those techniques involve 
several voter interactions with the system. Representatives of this group are online randomized 
authentication tokens and blind signature approaches.  

Online Randomized Authentication Token 

The concept of randomized authentication tokens might be interpreted as a separation of 
duties between a registration and tallying authority. Randomized authentication tokens are used in the 
POLYAS voting system, which is used for the GI (German Computer Science Society) elections 
(Olembo, Kahlert, Neumann, & Volkamer, 2012). 

Description 
In the pre-voting phase, the registration authority generates random tokens for all eligible 

voters. In the voting phase, once an eligible voter authenticates towards the registration authority 
throughout the voting phase, the voter’s ID is marked in the electoral roll and a random token is 



 

returned to the voter. This random token is forwarded to the tallying authority. Note that the entire 
registration process might also be offline; then the approach would be a pre-voting approach and 
tokens could be returned randomly to the voter similar to the code voting approach. After the voter 
received her randomized authentication token, she can continue with making her selection, and 
subsequently cast her vote. Therefore, the voter prepares a tuple containing her token and her 
selection and casts this tuple to the tallying authority. The server accepts the vote if the associated 
token has been forwarded by the registration authority during registration. The voter might use her 
token several times, in order to update her vote. In the post-voting phase, tallying authority separates 
the tokens from the votes and publishes the votes on the bulletin board. The registration authority 
publishes the issued tokens on the bulletin board. 

One might consider the following improvement: In order to cast her vote 𝑣 , the voter 
uniquely identifies her vote by generating a large random number 𝑟 and casting the tuple 

(𝑣||𝑟) 

to the tallying authority, which is published in the post-voting phase. 

Security Model 
Adversary Model: If the adversary does not know the link between a voter and the assigned 

token, the adversary might use the IP address to infer the sender’s identity and to establish a link 
between the voter and her vote, thereby violating secrecy. Hence, it is assumed that the adversary 
cannot determine the origin of messages on the channel between voters and the tallying authority 
(C4). Secrecy in the randomized authentication token approach relies on the distribution of trust 
among the registration and the tallying authority. If both authorities collaborate, then the link between 
a voter and her vote can be established. This leads to the following assumption that the adversary 
cannot control the registration and the tallying authority simultaneously (C6). For the sake of 
verifiability, votes are unique. Therefore, it must be assumed that the voter is not under adversarial 
control before the post-voting phase (C7: before post-voting). Furthermore, it must be assumed that 
the adversary does not control the voting environment (C9). 

The technique of randomized authentication tokens ensures fairness under the assumption 
that the tallying authority does not publish votes unless the election is declared terminated (C6). If the 
adversary is capable of controlling the voter’s voting environment (C9), it can learn this voter’s 
selection. Finally, if the adversary can read the channel between the voter and the tallying authority 
(C2), this adversary can compute an intermediate result.  

Due to the fact that published votes are human-readable, cast-as-intended integrity is 
implicitly given. Analogous to the previous techniques, stored-as-cast integrity relies on several 
assumptions as the following attack indicates: If the adversary controls several voters’ machines (C9) 
and the tallying authority (C6), voters casting identical votes could be provided with identical 
randomness by their machines. If the authority additionally only stores one vote from these voters and 
discards other, stored-as-cast integrity is violated. This attack has been defined by Küsters and 
Truderung (2012) as clash attack. Because any public observer can re-compute the final result from 
the stored votes ensuring, tallied-as-stored integrity does not rely on any adversarial assumptions. 

Degree of Verifiability: The above analysis shows that cast-as-intended and tallied-as-stored 
verifiability are given, while stored-as-cast integrity relies on the absence of several adversarial 
capabilities; hence, two out of three sub-properties are verifiable. 

Further Properties and further Criteria 

There are three ways to violate eligibility or uniqueness: If voters abstain from the election 
after receiving their token, the tallying authority might use these tokens to vote on their behalf. 
Second, the registration authority might provide tokens to ineligible voters. Third, voters might 
forward their tokens to ineligible voters. The concept does not rely on complex cryptography and 
neither voters nor authorities need to conduct complex computations. Even low-resource devices with 
authentication capabilities might be used to store tokens and release them in the voting phase. Only 



 

three servers and administration staff to these servers will be involved which can be provided at low 
costs. 

Blind Signatures 

Originally, blind signatures were introduced to implement digital cash (Chaum, 1981) and 
have later one been applied to electronic voting systems (Fujioka, Okamoto, & Ohta, 1992). Blind 
signatures are a specific form of digital signatures in which a signer signs a blinder’s message without 
knowing the message’s content after the blinder’s successful authentication. Hence, the signer’s 
signature on this message confirms the authentication process of the message’s origin. Already in 
2000, a simple implementation of blind signatures was used in smartcards to execute a student 
parliament election at the University of Osnabrück, Germany (Klink, 2006).  

Description 
Similar to code voting, the blind signature technique is based on a separation of duty 

approach with two authorities, a registration and a tallying authority. Blind signature based voting 
systems separate the voting phase into a registration and a vote-casting step.  

According to (Fujioka, Okamoto, & Ohta, 1992), a voter makes her selection 𝑣𝑖, blinds this 
selection, sends the blinded vote to the registration authority, and authenticates towards the 
registration authority. The authority conducts the eligibility check and signs the blinded vote in case 
the voter is eligible. The signed blinded vote is returned to the voter. The voter unblinds her vote in 
such a way that the signature verifies for the unblinded vote; hence the voter obtains an officially 
signed vote. In the vote-casting step, the voter casts her signed vote to the tallying authority. The 
authority checks the validity of the signature and stores the vote if the verification succeeds. In the 
post-voting phase, the tallying authority publishes all valid data received from voters together with the 
result on the bulletin board. 

In (Okamoto, 1996; Okamoto, 1997; Xia & Schneider, 2006), beside others, this voting 
protocol has been improved regarding verifiability. The system relies on several registration and 
tallying authorities. In the pre-voting phase, the voter draws a random value 𝑎𝑖 ← 𝑍𝑞 and calculates 
ℎ𝑖 = 𝑔𝑎𝑖. The voter makes her selection 𝑣𝑖 and draws a random number 𝑟𝑖. She computes 

𝑚𝑖 = 𝑔𝑣𝑖 ⋅ ℎ𝑖
𝑟𝑖  mod 𝑝 

Using a fixed randomness 𝑎𝑖, the voter can compute 𝑚𝑖 in several ways by changing 𝑣𝑖, 𝑟𝑖. The only 
constraint for the voter is to satisfy equation 

𝑣𝑖 + 𝑎𝑖 ⋅ 𝑟𝑖 ≡ 𝑣𝑖′ + 𝑎𝑖 ⋅ 𝑟𝑖′ mod 𝑞. 

The voter thereafter draws a blinding factor 𝑘 and calculates 

𝑥𝑖 = 𝐻(𝑚𝑖||ℎ𝑖) ⋅ 𝑘𝑒 

The voter signs her blinded value, authenticates and sends tuple (𝑠𝑖𝑔(𝑠𝑘𝑖, 𝑥𝑖), 𝑥𝑖) to the authority. In 
accordance to the above description, the registration authority blindly signs the value 𝑥𝑖 and returns it 
the voter. The voter in turns unblinds it and obtains 

𝑠𝑖 = 𝐻(𝑚𝑖||ℎ𝑖)𝑑 

In the voting phase, the voter posts (𝑚𝑖||ℎ𝑖, 𝑠𝑖) on the bulletin board and sends (𝑚𝑖, 𝑣𝑖 , 𝑟𝑖) to the 
tallying authority. In the post-voting phase, the registration authority publishes the list of tuples 
�(𝑠𝑖𝑔(𝑠𝑘1,𝑥1), 𝑥1), … , (𝑠𝑖𝑔(𝑠𝑘𝑘,𝑥𝑘),𝑥𝑘)�. The tallying authority publishes a randomized list of votes 
(𝑣1, … , 𝑣𝑘) together with a ZK proof showing that for each 𝑣𝑖 there is a 𝑚𝑖

′ on the bulletin board such 
that the authority knows 𝑟𝑖 such that 𝑚𝑖

′ = 𝑔𝑣𝑖ℎ𝑖
𝑟𝑖 without revealing the relation between 𝑣𝑖 and 𝑚𝑖

′. 

Security Model 
Adversary Model: Secrecy in the blind signature approach relies on the anonymous 

transmission of data to the tallying authority (C4). In (Okamoto, 1996; Okamoto, 1997), the voter can 



 

be under adversarial control, as the voter can generate receipts for different selections by switching 
𝑣𝑖, 𝑟𝑖  such that 𝑚𝑖 = 𝑔𝑣𝑖 ⋅ ℎ𝑖

𝑟𝑖  mod 𝑝 is satisfied. However, it must be assumed that the adversary 
does not control the voting environment (C9); otherwise the adversary can easily obtain a voter’s 
selection and 𝑎𝑖 and consequently detect fake receipts. 

The tallying authority has access to intermediate results at any time; hence, fairness relies on 
the trustworthiness of that authority (C6). The adversary can also compute intermediate results if he is 
capable of reading the channel between the voter and the tallying authority (C2). Finally, a voting 
environment under adversarial control can release the selection(s) cast over that environment (C9). 

After the voter unblinds her commitment, she can verify the validity of the authority’s 
signature without restricting the adversary anyhow; hence, cast-as-intended integrity does not build 
upon environmental assumptions. The voter publishes her committed vote on the bulletin board. 
However, an attack similar to the code voting attack is possible: If the authority controls several 
voters’ machines (C9), she could choose 𝑎𝑖, 𝑟𝑖 identically for voters casting identical votes while all 
would refer to the same entry on the bulletin board without noticing. If additionally the bulletin board 
behaves dishonestly (C6 or C9), these voters would find (𝑚𝑖||ℎ𝑖, 𝑠𝑖) on the bulletin board while only 
one vote is stored. Stored-as-cast integrity therefore depends on the absence of the listed adversarial 
capabilities. In the post-voting phase, the tallying authority publishes a list of votes and proves that 
each vote corresponds to exactly one de-committed vote stored on the bulletin board; this ensures 
tallied-as-stored integrity without any assumptions. 

Degree of Verifiability: The above integrity analysis shows that cast-as-intended and tallied-
as-stored are verifiable; hence, two out of three sub-properties are verifiable. 

Further Properties and further Criteria 
If voters abstain from the election, the registration authority can issue valid signatures for 

own commitments and consequently cast valid votes, thereby violating eligibility or uniqueness. In 
the simplest approach, blind signatures rely on a registration, a tallying authority, and a bulletin board. 
The process foresees the registration authority to sign a blinded item while the tallying authority 
verifies the signature in the voting phase; the voter’s task is to blind and unblind her item. Hence the 
computational effort and administrative effort is at a low level for both authorities and the voter, and 
hence costs are moderately.  

Approaches ensuring Secrecy in the Post-Voting Phase 

The techniques discussed in this section have in common that there is a link between the voter 
and her encrypted vote; therefore, a voter usually posts her encrypted vote together with her ID or her 
pseudonym on the bulletin board.  The two representatives of this class of SnCs are homomorphic 
cryptosystems and shuffle techniques.  

Homomorphic Cryptosystems 

Rather than decrypting individual votes, first the encrypted sum of all encrypted votes is 
computed and then this value is decrypted to determine the result. This is possible if an encryption 
schemes with additive homomorphic properties, such as Exponential ElGamal scheme (Cramer, 
Gennaro, Schoenmakers, 1997) or the Paillier scheme (Paillier, 1999) is in place. The homomorphic 
cryptosystem approach has been implemented in Helios 2.0 and has been used to conduct the 
President election at the Université catholique de Louvain. An experience report and analysis of the 
real-world use can be found in (Adida, Pereira, de Marneffe, & Quisquater, 2009).  

 

Description 
In the simplest case of referendum (Yes/No election), homomorphic encryption schemes can 

be implemented in a straightforward manner. First voter 𝑖 makes her selection 𝑣𝑖 ∈ {0,1} and encrypts 



 

her selection with the public key of the key trustees 𝑝𝑘. In order to be convinced that her encrypted 
ballot contains the vote she intends to cast, the Benaloh challenge is in place. The voter thereafter 
binds her authentication data to her encrypted vote, e.g., by posting her name together with {𝑣𝑖}𝑝𝑘

𝑟𝑖  on 
the bulletin board. The voter furthermore provides a proof that her vote is a valid vote in order to 
prevent malicious voters from over-voting (i.e., a proof showing that 𝑣𝑖 ∈ {0,1}). The voter can 
convince herself that her vote was stored in an unaltered way on the bulletin board by checking if her 
name appears next to her encrypted vote and the corresponding proof.  

In the post-voting phase, the public can calculate the encrypted result by multiplying the 
encrypted individual votes. 

𝑅 = {𝑣1}𝑝𝑘
𝑟1 ⋅ … ⋅ {𝑣𝑛}𝑝𝑘

𝑟𝑛 . 

The result can be computed by decrypting the product 𝑅 with the corresponding secret key; 
hence  

𝑟 = 𝐷(𝑠𝑘,𝑅). 

Finally, the key trustees prove that they properly decrypted, i.e. that they decrypted the 
product of encrypted votes with the proper secret shares by generating a ZK proof of correct 
decryption based on a ZK proof of equality of discrete logarithms.  

Security Model 
Adversary Model: The secrecy of homomorphic cryptosystems is based upon the 

trustworthiness of the key trustees. Hence, under the assumptions that the threshold of key trustees 
behaves properly (C6), individual votes are not decrypted and secrecy therefore is ensured. In the 
voting phase, voters only receive encrypted votes and proofs for the purpose of verifiability. Even 
voters forwarding this data cannot break secrecy, because this information cannot be used to 
reconstruct the voter’s selection. Furthermore, it must be assumed that the adversary does not control 
the voting environment (C9); otherwise the voter’s selection might be forwarded to the adversary. 

Under the assumption that the threshold set of key trustees is trustworthy (C6), homomorphic 
cryptosystems provide fairness because individual votes are not decrypted at any time. Furthermore, 
the voter’s voting environment must not be under adversarial control (C9) in order not to release any 
voter’s selection thereby providing intermediate results. 

Without posing assumptions on the adversarial behavior, homomorphic cryptosystems ensure 
cast-as-intended integrity due to the Benaloh challenge, stored-as-cast integrity due to publishing 
their identifiable encrypted votes, and tallied-as-stored integrity due to the ZK proofs of correct 
decryption. 

Degree of Verifiability: The integrity analysis shows that the homomorphic cryptosystem 
approach is verifiable. 

Further Properties and further Criteria 

In the homomorphic approach, eligibility and uniqueness strongly depend on the 
authentication data a voter assigns to her encrypted vote. Due to the fact that identification and 
authentication mechanisms are not considered in this work, eligibility and uniqueness are not 
evaluated for this approach. It turns out that homomorphic cryptosystems for electronic voting suffer 
a significant drawback, namely the computational effort. Rather than providing the sum 𝑣1 +⋯+ 𝑣𝑛 
of all votes, decryption of the Exponential ElGamal ciphertext yields 𝑔𝑣1+⋯+𝑣𝑛 . This bottleneck 
might be overcome by the more efficient Paillier homomorphic cryptosystem. Furthermore, voters 
need to provide evidence that their cast votes encode valid votes. Implementing complex ZK proofs 
on low-resource devices might be problematic, hence the costs when implementing this approach 
might be considered to be high. 

Shuffles 



 

In (Chaum, 1981), Chaum invented the technique of digitally shuffling messages in order to 
allow anonymous communication over insecure communication networks. Shuffles implement 
communication protocols among a set of shuffle nodes where each node receives a batch of incoming 
messages, shuffles them according to a secret and random permutation, modifies their appearance 
(this will be specified shortly), and forwards the anonymized messages to the next shuffle node.  

Applied in electronic voting systems, shuffles are used to break the link between a voter and 
her encrypted vote before decrypting the vote. Two shuffle implementations are distinguished: 
decryption shuffles and re-encryption shuffles. Due to their impact on electronic voting systems, in 
this work we merely consider re-encryption shuffles (decryption shuffles are e.g. used in (Clarkson & 
Myers, 2005)). The first verifiable re-encryption shuffle was presented by (Sako & Kilian, 1995). 
Many techniques have been presented to make these shuffles efficiently verifiable, among which we 
refer the reader to (Wikström, D., 2005; Chase et al., 2012). These verifiable re-encryption shuffles 
rely on the use of malleable encryption schemes, i.e., schemes that allow re-encryption of ciphertexts 
without seeing and changing the contained plaintext. In (Jakobsson, Juels, & Rivest, 2002), the 
authors propose randomized partial checking as technique to improve the efficiency significantly, 
while at the same time reducing the degree of verifiability provided. The shuffle-based approach has 
been used in the Norwegian municipality elections in 2011 (Gjøsteen, 2010) while all shuffle nodes 
were provided by the same company (OSCE/ODIHR, 2012). 

Description 

Generally speaking, a voter encrypts her vote with the public key of the key trustees 𝑝𝑘. The 
voter thereafter binds her authentication data to her encrypted vote, e.g., by posting her name together 
with {𝑣𝑖}𝑝𝑘

𝑟𝑖
1

 on the bulletin board. Analogous to the homomorphic approach, the voter can convince 
herself that her vote encoded in the ciphertext due to the Benaloh challenge. The voter can 
furthermore convince herself that her vote was stored in an unaltered way on the bulletin board. After 
the voting phase, encrypted votes are separated from the voter’s ID and passed through a verifiable re-
encryption shuffle; all data generated by each shuffle node is published on the bulletin board. The set 
of encrypted votes published by the last shuffle note is decrypted vote by vote by the threshold set of 
key trustees and published on the bulletin board. Afterwards these votes are tallied and the result is 

published as well. Here, each shuffle node 𝑗 re-encrypts each voter’s encrypted vote {𝑣𝑖}𝑝𝑘
𝑟𝑖
𝑗−1

 with 
additional randomness 𝑟𝑗1 … , 𝑟𝑗𝑛  resulting in overall randomness 𝑟1

𝑗 … , 𝑟𝑛
𝑗 , draws a random 

permutation 𝜓𝑗, and performs the following transition for all votes: 

𝜙{𝑣1}𝑝𝑘
𝑟1
𝑗−1

, … ,𝜙{𝑣𝑛}𝑝𝑘
𝑟𝑛
𝑗−1

→ 𝜓𝑗 �𝜙{𝑣1}𝑝𝑘
𝑟1
𝑗

� , … ,𝜓𝑗 �𝜙{𝑣𝑛}𝑝𝑘
𝑟𝑛
𝑗
� 

Each shuffle node has to prove that the correct processing of received ciphertexts. Therefore, each 
node proves that incoming ciphertexts contain the same plaintexts as the outgoing ciphertexts without 
revealing the plaintexts. One approach is based on the Chaum-Pedersen protocol (Chaum & Pedersen, 

1992) which allows a shuffle node to prove that for all 𝑖 ∈ {1, … ,𝑛},  𝜓𝑗 �𝜙{𝑣𝑖}𝑝𝑘
𝑟𝑖
𝑗

�, is a re-encryption 

of 𝜙{𝑣𝑖}𝑝𝑘
𝑟𝑖
𝑗

 without revealing the relation. This proof can be implemented based on a 2 × 2 shuffle 
proof which is realized by OR-ing ZK proofs of equality of discrete logarithms as proposed in (Smith, 
2005).  

Security Model 
Adversary Model: The secrecy relies on the trustworthiness of at least one shuffling node; 

hence, it must be assumed that not all shuffling are under adversarial control (C6). It must be assumed 
that the threshold set of key trustees is trustworthy (C6) and does not decrypt those encrypted votes 
that are published on the bulletin board together with the voters’ names. Furthermore, a malicious 
voting environment would easily break secrecy by forwarding the voter’s selection to the adversary or 



 

by maliciously fixing the randomness used to encrypt the voter’s selection. Hence, it is assumed that 
the adversary cannot control the voting environment (C9). 

Similar to the homomorphic cryptosystem approach, fairness can be ensured under the 
assumption that the threshold set of key trustees is trustworthy (C6) and the voter’s voting 
environment is trusted (C9). 

In analogy to the homomorphic cryptosystem approach, without posing assumptions on the 
adversarial behavior, the shuffle-based approach ensures cast-as-intended integrity due to the Benaloh 
challenge, stored-as-cast integrity due to publishing their identifiable encrypted votes, and tallied-as-
stored integrity due to the ZK proofs of correct shuffling and decryption. 

Degree of Verifiability: The shuffle-based approach is verifiable.  

Further Properties and further Criteria 
Similar to the homomorphic approach, eligibility and uniqueness cannot be evaluated without 

further details on the identification and authentication mechanism. Shuffles require a significant 
number of computations for shuffle nodes, key trustees as well as public observers (which might also 
be each individual voter). In a shuffle, each shuffle node has to operate on the entire set of ciphertexts 
and provide proofs for the correct operation. To that end, re-encryption shuffles are among the most 
costly approaches to ensure secrecy in electronic voting. 

Combination of Phases 
In the final part of the analysis, we consider techniques that ensure secrecy and verifiability 

by integrating previously analyzed SnC techniques thereby addressing special-purpose security 
models. 

Civitas 

In this section, we present the Civitas system (Clarkson, Chong, & Myers, 2008). Civitas 
defends secrecy against adversaries that interact with the voter and observe the voter throughout the 
voting phase. In this system, tallying authorities are also key trustees. 

Description 

In the pre-voting phase, voter 𝑣 authenticates towards a set of registration authorities. Each 
registration authority 𝑖 ∈ {1, … ,𝑛} generates a so-called credential share 𝑐𝑣𝑖  that afterwards is used by 
the voter to cast her vote. Note, that each credential can be used to cast several votes in order to allow 
vote updating. Each registration authority encrypts its credential share for voter 𝑣  with the key 
trustees’ public key 𝑝𝑘 using a multiplicative homomorphic encryption scheme and publishes the 
resulting ciphertext �𝑐𝑣𝑖 �𝑝𝑘

𝑟𝑖  on the bulletin board next to the voter’s identity in the electoral roll. The 
registration authority provides the voter with 𝑐𝑣𝑖  and a designated-verifier proof (convincing only the 
designated voter) showing that �𝑐𝑣𝑖 �𝑝𝑘

𝑟𝑖  is an encryption of 𝑐𝑣𝑖 . Finally, the voter calculates her 
credential by multiplying all the credential shares received from the different registration authorities: 

𝑐𝑣 = � 𝑐𝑣𝑖 .
𝑖∈{1,…,𝑛}

 

As such, credentials implement the first part of the secrecy ensuring mechanism of Civitas 
which happens in the pre-voting phase. Once, the voter obtained her credential 𝑐𝑣 she can cast her 
vote 𝑣𝑣 in the voting phase by preparing a tuple of the encrypted credential and the encrypted vote 

�{𝑐𝑣}𝑝𝑘
𝑟𝑣 , {𝑣𝑣}𝑝𝑘

𝑟𝑣′ � 



 

together with two ZK proofs showing the well-formedness of the vote and that the voter knows both 
𝑐𝑣 and 𝑣𝑣 in order to avoid replay attacks. The tuple is published on the bulletin board. In case of vote 
updating the new tuple is published in addition.  In case a voter is forced by a coercer to forward her 
credential, she can replace one credential share, e.g., 𝑐𝑣1 by a random share 𝑐𝑟, and generate a fake 
credential 

𝑐𝑣
𝑓 = 𝑐𝑟 ⋅ � 𝑐𝑣𝑖

𝑖∈{2,…,𝑛}

. 

The coercer can then also publish a vote using 𝑐𝑣
𝑓on the bulletin board. In the post-voting phase, the 

threshold set of key trustees conduct the second part of the secrecy ensuring mechanism: The 
encrypted credentials published by the registration authorities in the pre-voting phase on the bulletin 
board and the encrypted credentials associated to cast votes from the bulletin board satisfy the 
following property due to the underlying encryption scheme: 

� � 𝑐𝑣𝑖
𝑖∈{1,…,𝑛}

�

𝑝𝑘

𝑟

= � �𝑐𝑣𝑖 �𝑝𝑘
𝑟𝑖

𝑖∈{1,…,𝑛}

 

In the following, the cast credential and the encrypted credential composed from the encrypted 
credential shares are shuffled. Once these encrypted credentials are shuffled, the authority needs to 
identify which cast votes are associated to valid credentials and which to fake credentials without 
violating secrecy. Therefore, the distributed threshold set of key trustees conducts a verifiable 
plaintext equivalence test due to (Jakobsson & Juels, 2000) for each cast (shuffled) credential against 
all valid (shuffled) credentials. If a cast credential is not valid, the associated vote is discarded. 
Finally, votes associated to valid credentials are distributively and verifiably decrypted as presented in 
the section on distributed ElGamal decryption. 

Security Model 

Adversary Model: In order to defend secrecy against coercers observing the voter during the 
vote casting process, Civitas relies on the assumption that voters are not under adversarial control in 
the pre-voting phase (C7, C8: pre-voting). In order to cast her intended selection throughout the 
voting phase, it must be assumed that there is a moment in the voting phase in which the adversary 
cannot control the voter. Hence, the adversary cannot notice the usage of the channel between the 
voter and her voting environment throughout the complete voting phase (C5: not entire voting phase). 
Civitas relies on the fact that there is at least one registration authority that is fully trusted (C6) and 
the adversary cannot observe the communication channel between the voter and the trusted 
registration authority (C5). Otherwise, if the adversary after the pre-voting phase obtains all key 
material from the voter, the adversary could decrypt the communication between the voter and that 
authority and therefore obtain the voter’s real credential. Furthermore it must be assumed that a 
threshold set of key trustees is trusted (C6) in order to not illegitimately decrypt votes, associated 
credentials, and/or valid credentials posted by the registration authorities together with voter’s names 
in the electoral role. Finally, the system assumes that the adversary does not control the voter’s voting 
environment (C9); otherwise the environment could forward the voter’s selection or even her real 
credential thereby violating secrecy. In (Neumann & Volkamer, 2012), Civitas has been practically 
improved with respect to secrecy. In the improved version, assumptions (C7, C8: pre-voting) and (C5) 
are instantiated by a supervised registration authority. 

Civitas ensures fairness by a threshold encryption scheme analogous to the homomorphic 
cryptosystem and shuffle techniques; hence the threshold set of key trustees must be trusted (C6). 
Furthermore, a malicious voting environment (C9) might release the voter’s real credential together 
with the vote that was cast with that credential. 

Civitas ensures cast-as-intended integrity under the assumption that the voting environment is 
trusted (C9) with respect to storing the voter’s real credential. Hence, a manipulated voting 



 

environment could assign an invalid credential to the voter’s intended vote. Civitas allows voters to 
verify that their cast vote is stored unalteredly on the bulletin board, such that stored-as-cast integrity 
does not rely on adversarial assumptions. Tallied-as-stored integrity is given without adversarial 
restrictions due to corresponding ZK proofs. 

Degree of Verifiability: As shown above, Civitas provides stored-as-cast and tallied-as-
stored verifiability; hence, two out of three properties are verifiable. 

Further Properties and further Criteria 

Under the assumption that at least half of the registration authorities are trustworthy, 
ineligible voters cannot obtain credentials (Shirazi, Neumann, Ciolacu, & Volkamer, 2011). 
Alternatively, voters could forward their real credentials thereby allowing the adversary to vote on 
behalf of them. Essentially, this is prevented by the use of real and fake credentials that cannot be 
distinguished by the adversary by the assumptions made for secrecy. Hence, Civitas tends to ensure 
eligibility and uniqueness in particular strong interpretations. Civitas ensures secrecy under specific 
adversary thereby posing an immense computational workload on the key trustees. The 
computationally most costly part boils down to the removal of unauthorized votes. There have been 
considerable amount of work on improving complexity of the tallying phase in (Weber, Araujo, & 
Buchmann, 2007; Spycher et al., 2011). Furthermore, voters are in charge of many computations, 
starting from distributed credential share acquisition and credential composition along with ZK proof 
verifications, up to the ballot preparation and the corresponding ZK proofs showing the proper 
behavior of the voter. 

Pretty Good Democracy 

In this section, we discuss Pretty Good Democracy (PGD) as presented in (Ryan & Teague, 
2009), a combination of code voting and shuffles. PGD is based on the code voting technique, but 
improves secrecy with respect to voters intending to prove how they voted. Note, there exists another 
proposal - Pretty Understandable Democracy (PUD) proposed by Budurushi et al. (2013) - which also 
combines code voting and shuffles Due to the fact that PUD is not yet widely established in the 
scientific literature, we refrain from its analysis and decided to focus on the analysis of PGD. 

Description  

In the pre-voting phase, the voting authority generates 𝑘 ⋅ 𝑛 ⋅ (𝑚 + 1) random codes, where 𝑘 
is the parameter of additionally generated codebooks used throughout the auditing process, 𝑛 is the 
numbers of voters and 𝑚 is the number of candidates, and encrypts each code with the key trustees’ 
common public key. These encrypted codes contain voting codes and acknowledge codes and are 
posted on the bulletin board. In the following, the encrypted codes are verifiable shuffled by the key 
trustees and a table 𝑃 of encrypted codes is constructed. Each row of 𝑃 corresponds to a generated 
codebook and is given by the codebook’s ID, encrypted codes for 𝑚 candidates and one acknowledge 
code for that codebook. 

𝑖, �𝑐𝑖,1�𝑝𝑘, … , �𝑐𝑖,𝑚�𝑝𝑘, �𝑐𝑖,𝑎𝑐𝑘�𝑝𝑘 

The registration authority in collaboration with the key trustees distributively decrypts the 
codebooks and forwards codebooks in sealed envelopes to the returning officer. After auditing 
random codebooks, the returning officer randomly assigns a codebook to each eligible voter.  
Thereafter, the ordering of encrypted codes on each codebook in table 𝑃 is permuted, resulting in the 
table 𝑄. As opposed to pure shuffling, the permutation of the shuffle must be reconstructed in the 
post-voting phase to tally the result. Therefore, each key trustee permutes and re-encrypts the codes in 
the codebook, and homomorphically adds his permutation value to the previous permutation values in 
that codebook. Hence, the resulting permutation 𝜙 of encrypted codes on codebook 𝑖 is stored in the 
codebook without anybody knowing this permutation. Therefore, after permuting the codebooks in 𝑃, 
rows in the resulting table 𝑄 have the following form: 



 

𝑖, �𝑐𝑖,𝜙(1)�𝑝𝑘, … , �𝑐𝑖,𝜙(𝑚)�𝑝𝑘, �𝑐𝑖,𝑎𝑐𝑘�𝑝𝑘, {𝜙𝑖}𝑝𝑘 

In the voting, phase, the voter authenticates towards the voting server. She afterwards makes her 
selection and sends her codebook’s ID with her selected voting code to the voting server. The voting 
server encrypts her voting code, generates a ZK proof of knowledge of the code and posts the 
encrypted voting code together with the ZK proof in the corresponding row on the bulletin board. The 
key trustees run plaintext equivalence tests between the cast voting code and the codes on the 
corresponding codebook in table 𝑄. If a match on is found, this code is marked in the codebook on the 
bulletin board. Finally, the corresponding acknowledge code is distributively decrypted by the key 
trustees and returned to the voter. In the post-voting phase, for each row the index of the marked code 
is encrypted and homomorphically added to the encrypted permutation value {𝜙𝑖}𝑝𝑘. The resulting 
encryptions encode the selected candidate index. Hence, these encrypted are verifiably shuffled and 
decrypted by the key trustees.  

Security Model 
Adversary Model: With respect to the codebook channel and the channel between a voter 

and the bulletin board, no assumptions must be made regarding secrecy. Even a voter forwarding her 
acknowledge code cannot convince the adversary about her selection due to the fact that there is only 
one acknowledge code for her codebook. Hence, even publishing the acknowledge code does not 
violate secrecy. Even an adversary controlling the voting environment cannot break secrecy. 
However, if the voting server (C6) reveals the voter’s identity together with her cast voting code and 
the registration authority (C6) reveals the candidate assigned to that voting code, secrecy is violated. 

The threshold set of key trustees must also be trusted (C6) with respect to fairness in order 
not to decrypt and interpret voting codes throughout the voting phase. 

Cast-as-intended integrity relies on the fact that the registration authority (C6) and the voting 
environment (C9) do not collaborate. If they do so, the voting environment can contact the 
registration authority to cast a different voting code of that specific codebook rather the voter’s voting 
code. Stored-as-cast integrity is not given due to the following attack: If a malicious voting sever (C6) 
receives a voter’s voting code, it might contact the malicious registration authority (C6) to obtain 
valid voting codes of that specific code sheet. The voting sever would then proceed with a different 
voting code than the one sent by the voter. Tallied-as-stored verifiability is ensured due to the 
auditing process of the candidate permutation and the verifiable shuffling and verifiable decryption. 

Ryan (2011) proposes an improvement towards trust in the registration authority. In that 
work, the author presents a distributed codebook generation and printing approach, which allows 
distributed registration authorities to print and distribute individual digits of valid codes to voters such 
that none of these authorities knows a complete voting code. Thereby, the adversary must only be 
assumed not to control all registration authorities simultaneously (C6). 

Degree of Verifiability: The above integrity analysis shows that only tallied-as-stored is 
verifiable; hence, one out of three sub-properties is verifiable.  

Further Properties and further Criteria 
In order to allow ineligible voters to cast votes, they must obtain valid codebooks and 

authenticate towards the voting server. Hence, if the registration authority and the voting server 
collaborate, eligibility and uniqueness can be violated. Furthermore, a threshold set key trustees might 
illegitimately decrypt codebooks and forward them to the voting server that posts a vote for that 
codebook. The amount of ZK proofs generated throughout the pre-voting and post-voting phase is 
high. Furthermore, throughout the voting phase, a significant amount of communication is needed 
among the key trustees in order to run distributed plaintext equivalence tests and distributively 
decrypt the proper acknowledge codes for all voters. To that end, the computational cost of PDG is 
relatively high. 



 

Conclusion and Future Directions 
Due to the wide range of contrary security requirements, electronic voting, and in particular, 

remote electronic voting goes hand in hand with security and cryptographic techniques. Constantly, 
new security notions and techniques are proposed to face the dangers of particularly crucial 
adversarial assumptions. To date, there is an overwhelming amount of works that focus on security 
and cryptographic techniques in electronic voting systems. However, throughout the literature, from a 
real-world perspective (e.g., political decision-makers) two disappointing trends can be seen: First, 
security notions of SnC techniques are often tailored towards the specific techniques, which makes 
their comparison hard or even impossible. Second, techniques are not considered thoroughly in their 
real-world environment and decisive factors for their real-world application are not taken into 
account. Consequently, this leads to a crucial gap between theoretical achievements and practical 
applications.  

To bridge this gap, in this chapter we specify secrecy, fairness, integrity, and verifiability in a 
restrictive way and present a modular security model that allows evaluating these properties. Based on 
the presented methodology, we analyze a number of SnC techniques with respect to further properties 
that go beyond pure security considerations, namely cost. This criterion turns out to be indispensable 
for the real-world establishment of electronic voting systems. While the focus of this work is on 
remote electronic voting, most of the techniques discussed here can also find their application in 
polling station electronic voting. 

The insights gained from this work are interesting from a practical point of view. The 
rigorous interpretation of secrecy, fairness, integrity, and verifiability in electronic voting systems 
first allows practitioners to determine techniques adequate for their needs and second shows that 
techniques and systems often claimed to provide verifiability do not fulfill our rigorous interpretation. 
It turns out that techniques classified into the pre-voting and voting phases face difficulties in 
detecting illegitimate vote removal. This stems from that fact that manipulated voting environments 
might generate identical encodings of identical selections such that voters cannot detect the absence of 
their individual vote. One way of overcoming this drawback might be to involve the voter in the 
labeling of her vote, e.g., by choosing the randomness used to encrypt her vote. In this case, however 
it must be emphasized that significant compromises with respect to secrecy must be made because 
voters might forward their label also to the adversary and consequently prove their vote. Techniques 
classified into the post-voting phase apparently do not suffer that drawback, as the voter’s identity can 
be associated to her vote until the tallying process begins. Though, in this case, forced-abstention 
attacks can be mounted. 

As final advice, we encourage decision-makers and technical staff involved in the 
implementation of electronic voting to conduct a threat and risk analysis with respect to their own 
electoral circumstances in order to identify the proper SnC technique to be implemented. Code voting 
and its improved derivation Pretty Good Democracy prove to guarantee secrecy and integrity even 
over manipulated voting environments coming at the cost of a secure channel implementation. Blind 
signatures have been early implemented for electronic voting systems and prove to be adequate for 
low-resource devices (e.g. smartcards) while simultaneously offering accessibility towards the general 
public. Both code voting and blind signatures must however improve towards stored-as-cast 
verifiability. Homomorphic cryptosystems and shuffles provide verifiability and ensure secrecy under 
reasonable assumptions. It must however be noted that these techniques come at significant 
computational and administrative costs and might therefore not be appropriate for all electoral 
circumstances. Civitas ensures secrecy against adversaries actively influencing the voter throughout 
the voting phase and is therefore a special-purpose system. Verifiability cannot be ensured by the 
system while at the same time both administrative and computational effort is overwhelming. In Table 
1 we summarize the results of our evaluation. 

In the future, SnC techniques must be completely integrated in a systemic perspective, in 
particular including identification and authentication mechanisms. Only by integrating these 
mechanisms into SnC techniques, precise security models can be assessed for eligibility and 



 

uniqueness, and for further properties derived from the law such as anonymity and accountability. 
Furthermore, only the integration of SnC techniques into systems allows estimating overall costs. 

Furthermore, the principle of public nature goes beyond pure verifiability but rather requires 
that all essential steps of the voting process must be understandable to the voter.  
  



 

 

Technique Secrecy Fairness Integrity / Verifiability 
Code Voting The adversary cannot read the channel between the 

registration authority and the voter. 

The adversary cannot control the registration 
authority.  

The adversary cannot obtain information from the 
voter 

The adversary cannot control the registration 
authority.  
 
The adversary cannot obtain information from the 
voter. 

Cast-as-intended: verifiable 
Stored-as-cast: The adversary cannot control the 
registration authority and the tallying authority 
simultaneously. 
Tallied-as-stored: verifiable 

Online Randomized 
Authentication 
Token 

The adversary cannot determine the origin of 
messages on the channel between voters and the 
tallying authority. 

The adversary cannot control the registration and 
the tallying authority simultaneously. 

The adversary cannot obtain information from the 
voter before the post-voting phase. 

The adversary cannot control the voting 
environment. 

The adversary cannot read the channel between the 
voter and the tallying authority. 
 
The adversary cannot control the tallying authority. 
 
The adversary cannot control the voting 
environment. 

Cast-as-intended: verifiable 
Stored-as-cast: The adversary cannot control the 
voting environment and the tallying authority 
simultaneously. 
Tallied-as-stored: verifiable 

Blind Signatures The adversary cannot determine the sender of 
messages towards the tallying authority. 

The adversary cannot control the voting 
environment. 

The adversary cannot read the channel between the 
voter and the tallying authority. 

The adversary cannot control the voting 
environment. 

The adversary cannot control the tallying authority. 

Cast-as-intended: verifiable 

Stored-as-cast: The adversary the voting 
environment and the bulletin board simultaneously. 

Tallied-as-stored: verifiable 

Homomorphic 
Cryptosystems 

The adversary cannot control a threshold set of key 
trustees. 

The adversary cannot control the voting 
environment. 

The adversary cannot control a threshold set of key 
trustees. 

The adversary cannot control the voting 
environment. 

Cast-as-intended: verifiable 

Stored-as-cast: verifiable 

Tallied-as-stored: verifiable 

Shuffles The adversary cannot control all shuffle nodes. 

The adversary cannot control a threshold set of key 
trustees. 

The adversary cannot control the voting 
environment. 

The adversary cannot control a threshold set of key 
trustees. 

The adversary cannot control the voting 
environment. 

Cast-as-intended: verifiable 

Stored-as-cast: verifiable 

Tallied-as-stored: verifiable. 



 

 Technique Secrecy Fairness Integrity / Verifiability 

Civitas The adversary cannot send/obtain information 
to/from the voter in the pre-voting phase. 

The adversary cannot notice the usage of the 
channel between the voter and her voting 
environment throughout the complete voting phase. 

The adversary cannot control all registration 
authorities. 

The adversary cannot control a threshold set of key 
trustees. 

The adversary cannot control the voting 
environment. 

The adversary cannot control a threshold set of key 
trustees. 

The adversary cannot control the voting 
environment. 

Cast-as-intended: The adversary cannot control the 
voting environment. 

Stored-as-cast: verifiable 

Tallied-as-stored: verifiable 

 

Pretty Good 
Democracy 

The adversary cannot control the registration 
authority and the voting server simultaneously. 

The adversary cannot control a threshold of key 
trustees. 

The adversary cannot control a threshold set of key 
trustees. 

 

Cast-as-intended: The adversary cannot control the 
registration authority and voting environment 
simultaneously. 

Stored-as-cast: The adversary cannot control the 
registration authority and voting server 
simultaneously. 

Tallied-as-stored: verifiable 
Table 1. Overview on Security and Cryptographic Techniques and their Relation to Secrecy, Fairness, Integrity, and Verifiability. Note that the entries in the 
table blocks are conjunctions, i.e., all assumptions in one block must be satisfied. 
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