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a b s t r a c t 

Face recognition has achieved great success owing to the fast development of deep neural networks in

the past few years. Different loss functions can be used in a deep neural network resulting in different

performance. Most recently some loss functions have been proposed, which have advanced the state of

the art. However, they cannot solve the problem of margin bias which is present in class imbalanced

datasets, having the so-called long-tailed distributions. In this paper, we propose to solve the margin

bias problem by setting a minimum margin for all pairs of classes. We present a new loss function,

Minimum Margin Loss (MML), which is aimed at enlarging the margin of those overclose class centre

pairs so as to enhance the discriminative ability of the deep features. MML, together with Softmax Loss

and Centre Loss, supervises the training process to balance the margins of all classes irrespective of their

class distributions. We implemented MML in Inception-ResNet-v1 and conducted extensive experiments

on seven face recognition benchmark datasets, MegaFace, FaceScrub, LFW, SLLFW, YTF, IJB-B and IJB-C.

Experimental results show that the proposed MML loss function has led to new state of the art in face

recognition, reducing the negative effect of margin bias.

© 2019 Elsevier Ltd. All rights reserved.
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. Introduction

In the past ten years, deep neural network (DNN) based

ethods have achieved great progress in various computer vision

asks, including face recognition [1] , person re-identification [2] ,

bject detection [3] and action recognition [4] . The progress on

ace recognition is particularly remarkable due largely to two

mportant factors – larger face datasets and better loss functions. 

The quantity and quality of the face datasets used for training

irectly influence the performance of a DNN model in face recog-

ition. Currently, there are a few large-scale face datasets that

re publicly available, for example, MS-Celeb-1M [5] , VGGFace2

6] , MegaFace [7] and CASIA WebFace [8] . As shown in Table 1 ,

ASIA WebFace consists of 0.5M face images; VGGFace2 contains

otally 3M face images but only from 9K identities; MS-Celeb-1M

nd MegaFace both contain more images and more identities, thus

hould have greater potential for training a better DNN model.

owever, both MS-Celeb-1M and MegaFace have the problem of

ong-tailed distribution [9] , which means a minority of people

wns a majority of face images and a large number of people have

ery limited face images. Using datasets with long-tailed distri-
∗ Corresponding author at: Room 16G20, Shore Road, Newtownabbey, Co. Antrim,

K BT370QB.
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ution, the trained model tends to overfit the classes with rich

amples thus weakening the generalisation ability on the long-

ailed portion [9] . Specifically, the classes with rich samples tend

o have a relatively large margin between their class centres; con-

ersely, the classes with limited samples tend to have a relatively

mall margin between their class centres as they only occupy a

mall region in space and are thus easy to be compressed. This

argin bias problem is due to long-tailed class distribution, which

eads to performance drop on face recognition [9] . 

Besides the training set and its class distribution, another

mportant factor affecting performance is the loss function which

irects the network to optimise its weights during the training

rocess. The current best performing loss functions can be roughly

ivided into two types: the loss functions based on Euclidean

istance and the loss functions based on Cosine distance. Most

f them are derived from Softmax Loss by adding a penalty or

odifying softmax directly. 

The loss functions based on Euclidean distance include Con-

rastive Loss [10] , Triplet Loss [11] , Centre Loss [12] , Range Loss [9] ,

nd Marginal Loss [13] . These functions are aimed at improving

he discriminative ability of features by maximising the inter-class

istance or minimising the intra-class distance. Contrastive Loss

equires that the network takes two types of sample pairs as

nputs — the positive sample pairs (two faces from the same class)

nd the negative sample pairs (two face images from the different

lasses). Contrastive Loss minimises the Euclidean distance of the

https://doi.org/10.1016/j.patcog.2019.107012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.107012&domain=pdf
mailto:h.wang@ulster.ac.uk
https://doi.org/10.1016/j.patcog.2019.107012
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Table 1 

Statistics for recent public available large-scale face datasets. 

MS-Celeb-1M VGGFace2 MegaFace CASIA 

#Identities 100K 9K 672K 11K 

#Images 10M 3M 5M 0.5M 

Avg per Person 105 323 7 47 
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positive pairs and penalises the negative pairs that have a distance

smaller than a threshold. Triplet Loss uses the triplet as the input

which includes a positive sample, a negative sample and an anchor.

An anchor is also a positive sample, which is initially closer to

some negative samples than it is to some positive samples. During

the training, the anchor-positive pairs are pulled together while

the anchor-negative pairs are pushed apart as much as possible.

However, the selection of the sample pairs and the triplets is la-

borious and time-consuming for both Contrastive Loss and Triplet

Loss. Centre Loss, Marginal Loss and Range Loss add another

penalty to implement the joint supervision with Softmax Loss.

Specifically, Centre Loss adds a penalty to Softmax by calculating

and restricting the distances between the within-class samples

and the corresponding class centre. Marginal Loss considers all the

sample pairs in a batch and forces the sample pairs from different

classes to have a margin larger than a threshold θ while forcing

the samples from the same class to have a margin smaller than

the threshold θ . It is however overstrict to force the two farthest

samples in a class to have a distance smaller than that of two

nearest samples from different classes, which makes the training

procedure hard to converge. Range Loss calculates the distances of

the samples within each class, and chooses the pair of two sam-

ples which have the largest distance as the intra-class constraint;

simultaneously, Range Loss calculates the distance of each pair of

class centres (aka centre pair), and forces the centre pair that has

the smallest distance to have a larger margin than the designated

threshold. However, only considering one centre pair each time is

not comprehensive, as more centre pairs may have margins smaller

than the designated threshold and thus the training procedure is

hard to completely converge because of the slow learning speed. 

The loss functions based on Cosine distance include L 2 -Softmax

Loss [14] , L-Softmax Loss [15] , A-Softmax Loss [16] , AM-Softmax

Loss [17] , and ArcFace [18] . Based on Softmax loss, L 2 -Softmax

Loss restricts the L2-norm of the feature descriptor to a constant

value. L 2 -Softmax Loss brings better geometrical interpretation

and pays similar attention to both good and bad quality faces.

L-Softmax reformulates the output of softmax layer from W · f to

| W | · | f | · cos θ so as to transform the Euclidean distance to Cosine

distance, and also add multiplicative angular constraints to cos θ
to enlarge the angular margins between different identities. Based

on L-Softmax Loss, A-Softmax applies weight normalisation, so

W · f is further reformulated to | f | · cos θ which simplifies the train-

ing target. However, after using the same multiplicative angular

constraints, both L-Softmax and A-Softmax Loss are difficult to

converge. So annealing optimization strategy is adopted by these

two methods to help the algorithm to converge. To improve the

convergence of A-Softmax, Wang et al. [17] propose AM-Softmax

which replaces the multiplicative angular constraints with the ad-

ditive angular constraints, namely, transforms cos ( m θ ) to cosθ − m .

Besides, AM-Softmax also applies feature normalisation and intro-

duces the global scaling factor s = 30 which makes | W | · | f | = s .

Hence, the training target | W | · | f | · cos θ is again simplified to

s · cos θ . ArcFace also utilises the additive angular constraints, but

it changes cos ( m θ ) to cos (θ + m ) which makes it have better geo-

metric interpretation. Both AM-Softmax and ArcFace adopt weight

normalisation and feature normalisation which restrict all the

features to lie on a hypersphere. However, is it overstrict to force

all the features to lie on a hypersphere instead of a wider space?
hy and how do weight normalisation and feature normalisation

enefit the training procedure? These questions are difficult to

nswer explicitly, and some evidence shows that “soft” feature

ormalisation may lead to better results [19] . 

The existing loss functions do not take the margin bias prob-

em into account. To rectify this margin bias, we propose to set

 minimum margin for all pairs of classes, and then design a

oss function based on the minimum margin. Inspired by Softmax

oss, Centre Loss and Marginal Loss, we propose a new loss

unction, Minimum Margin Loss (MML), in this paper which aims

t forcing all the class centre pairs to have a distance larger than

he specified minimum margin. Different from Range Loss, MML

enalises all the ‘unqualified’ class centre pairs instead of only

enalising the centre pair that has the smallest distance. MML

euses the centre positions constantly updated by Centre Loss, and

irects the training process by joint supervision with Softmax Loss

nd Centre Loss. To the best of our knowledge, there is no loss

unction which considers setting a minimum margin between the

lass centres. However, it is necessary to have such a constraint to

ectify the margin bias introduced by class imbalance in training

ata. To prove the effectiveness of the proposed method, experi-

ents are conducted on seven public datasets – Labelled Faces in

he Wild (LFW) [20] , Similar-looking LFW (SLLFW) [21] , YouTube

aces (YTF) [22] , Megaface [7] , FaceScrub [23] , IJB-B [24] and IJB-C

25] . Results show that MML achieved better performance than

oftmax Loss, Centre Loss, Range Loss and Marginal Loss with

lmost no increase in computing cost. It also achieved competitive

erformance compared with the state-of-the-art methods. 

. From softmax loss to minimum margin loss 

.1. Softmax loss and centre loss 

Softmax Loss is the most commonly used loss function, which

s presented below: 

 S = − 1 

N 

N ∑ 

i =1 

log 
e 

W 

T 
y i 

f i + b y i ∑ K 
j=1 e 

W 

T 
j 

f i + b j 
(1)

here N is the batch size, K is the class number of a batch, f i ∈ R d

enotes the feature of the i th sample belonging to the y i th class,

 j ∈ R d denotes the j th column of the weight matrix W in the fi-

al fully connected layer and b j is the bias term of the j th class.

rom Eq (1) , it can be seen that Softmax Loss is designed to min-

mise the differences between the predicted labels and the true la-

els, which in other words means the target of Softmax Loss is

nly to separate the features from different classes in the train-

ng set instead of learning discriminative features. Such a target is

ppropriate for close-set tasks, like most application scenarios of

bject recognition and behaviour recognition. But the application

cenarios of face recognition are open-set tasks in most cases, so

he discriminative ability of features has considerable influence on

he performance of a face recognition system. To enhance the dis-

riminative ability of features, Wen et al. [12] proposed the Centre

oss to minimise the intra-class distance, as shown below: 

 C = 

1 

2 

N ∑ 

i =1 

|| f i − c y i || 2 2 (2)

here c y i denotes the class centre of the y i th class. Centre Loss

alculates all the distances between the class centres and within-

lass samples, and is used in conjunction with Softmax Loss: 

 = L S + λL C (3)

= − 1 

N 

N ∑ 

i =1 

log 
e 

W 

T 
y i 

f i + b y i ∑ K 
j=1 e 

W 

T 
j 

f i + b j 
+ 

λ

2 

N ∑ 

i =1 

|| f i − c y i || 2 2 (4)
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here λ is the hyper-parameter for balancing the two loss func-

ions. 

.2. Marginal loss and range loss 

After combining Softmax Loss with Centre Loss, the within-

lass compactness is significantly enhanced. But it is not enough

o only use Softmax Loss as the inter-class constraint, as it only

ncourages the separability of features. So Deng et al. [13] pro-

osed Marginal Loss which also takes the way of joint supervision

ith the Softmax Loss: 

 = L S + λL Mar (5)

 mar = 

1 

N 

2 − N 

N ∑ 

i, j,i � = j 

(
ξ − y i j 

(
θ −

∥∥∥∥ f i 
|| f i || −

f j 

|| f j || 
∥∥∥∥2 

2 

))
+ 

(6) 

here f i and f j are the features of the i th and j th samples in a

atch, respectively; y ij ∈ { ± 1} indicates whether f i and f j belong

o the same class, (u ) + is defined as max ( u , 0), θ is the threshold

o separate the positive pairs and the negative pairs, and ξ is the

rror margin besides the classification hyperplane. 

Marginal Loss considers all the possible combinations of the

ample pairs in a batch and specifies a threshold θ to constrain all

hese sample pairs including the positive pairs and the negative

airs. Marginal Loss forces the distances of the positive pairs to

e close up to the threshold θ while forcing the distances of the

egative pairs to be farther than the threshold θ . But utilising the

ame threshold θ to constrain both the positive and negative pairs

s not proper. Because it is often the case that the two farthest

amples in a class have a distance larger than the two nearest

amples of the two different but closest classes. Forcibly changing

his situation will make the training procedure hard to converge. 

Similar to the aforementioned methods, the Range Loss pro-

osed by Zhang et al. [9] also works with softmax Loss as the

upervisory signals: 

 = L S + λL R (7) 

Different from Marginal Loss, Range Loss consists of two inde-

endent losses, namely L R intra 
and L R inter 

to calculate the intra-class

oss and inter-class loss respectively (see Eq. (8) ). 

 R = αL R intra 
+ βL R inter 

(8)

here α and β are two weights for adjusting the influence of

 R intra 
and L R inter 

. Mathematically, L R intra 
and L R inter 

are defined as

ollows: 

 R intra 
= 

∑ 

i ⊆K 

L 

i 
R intra 

= 

∑ 

i ⊆I 

n ∑ n 
j=1 

1 
D i j 

(9) 

 R inter 
= max (M − D Centre , 0) (10)

= max (M − || x Q − x R 

|| 2 2 , 0) (11)

here K is the class number in current batch, D ij is the j th largest

istance of the sample pairs in class i, D Centre is the central dis-

ance of two nearest classes in current batch, x Q and x R 

denote

he class centres of class x Q and x R 

which have the shortest

entral distance, and M is the margin threshold. L R intra 
measures

ll the sample pairs in a class and selects n sample pairs that have

he large distances to build the loss for controlling the within-class

ompactness. As described in [13] , experiments show that n = 2 is

he best choice. L R inter 
aims at forcing the class centre pair that has

he smallest distance to have a larger margin up to the designated

hreshold. But there are more centre pairs that may have distances

maller than the designated threshold. It is not comprehensive

nough for only considering one centre pair each time which leads

he training procedure to take a long time to completely converge

ecause of the low learning speed. 
.3. The proposed minimum margin loss 

Inspired by Softmax Loss, Centre Loss and Marginal Loss, we

ropose the Minimum Margin Loss (MML) in this paper. MML is

sed in conjunction with Softmax Loss and Centre Loss, where

entre Loss is utilised to enhance the within-class compactness,

oftmax and MML are applied for improving the between-class

eparability. Specifically speaking, Softmax is in charge of guaran-

eeing the correctness of classification while MML aims at optimis-

ng the between-class margins. The total loss is shown below: 

 = L S + αL C + βL M 

(12)

here α and β are the hyper-parameters for adjusting the impact

f Centre Loss and MML. 

MML specifies a threshold called Minimum Margin. By reusing

he class centre positions updated by Centre Loss, MML filters all

he class centre pairs based on the specified Minimum Margin.

or those pairs which have distances smaller than the threshold,

orresponding penalties are added into to the loss value. The

etail of MML is formulated as follows: 

 M 

= 

K ∑ 

i, j=1 

max (|| c i − c j || 2 2 − M , 0) (13) 

here K is the class number of a batch, c i and c j denote the class

entres of the i th and j th classes respectively, and M represents

he designated minimum margin. In each training batch, the

lass centres are updated by Centre Loss with the following two

quations: 

 

t+1 
j 

= c t j − γ�c t j (14) 

c t j = 

∑ m 

i =1 δ(y i = j) ̇ ( c j − f i ) 

1 + 

∑ m 

i =1 δ(y i = j) 
(15) 

here γ is the learning rate of the class centres, t is the num-

er of iteration and δ( condition ) is a conditional function. If the

ondition is satisfied, δ(condition ) = 1 , otherwise δ(condition ) = 0 .

lease note that, in Range Loss, the centre of a class is computed

y averaging the samples of this class in a batch. However, the

ize of a batch is limited, and the sample number of a certain class

s more limited. Therefore, the class centres generated in this way

re not precise compared with the real class centres. Compared

ith Range Loss, the learned class centres of MML are closer to

he real class centres. 

Algorithm 1 shows the basic learning steps in the CNNs with

he proposed L S + L C + L M 

. 

.4. Discussion 

.4.1. Whether MML can truly enlarge distances of the closest class 

entre pairs that are smaller than the specified minimum margin 

To verify this point, we use the deep models trained by Scheme

 (Softmax Loss + Centre Loss) and Scheme II (Softmax Loss + Cen-

re Loss + MML) to extract the features of all the images from a

leaned version of VGGFace2 dataset [6] . The details of the cleaned

ataset and the training process of these two models can be found

n Section 3.1 . The difference between Scheme I and Scheme II is

hat Scheme II employs MML as a part of the supervision signal

ut Scheme I does not. With the extracted features, we calculate

he centre position for each class and then calculate the distance

etween each class centre and its corresponding closest neighbour

lass centre. The distributions of the distances of these class

entres are shown in Fig. 1 . Fig. 1 (a) and (b) show the distance

istributions of Scheme I and Scheme II, respectively. Fig. 1 (c)

akes a comparison between Scheme I and Scheme II, from which

e can see that Scheme II has smaller values on the first five bins
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Fig. 1. For each class in VGGFace2, its corresponding nearest neighbour class can be found by comparing the positions of different class centres. (a), (b) and (c) show the 

distributions of the distances between every class centre and its corresponding nearest class centre. Specifically, (a) shows the distribution in the case of using the features 

generated by Scheme I (without using MML). (b) shows the distribution in the case of using the features generated by Scheme II (using MML). (c) shows the comparison 

results of (a) and (b), where S1 and S2 represent Scheme I and Scheme II, respectively. 

Algorithm 1 Learning algorithm in the CNNs with the proposed 

L S + L C + L M 

. 

Input: Training samples { f i }, initialised parameters θC in convo- 

lution layers, parameters W in the final fully connected layer, and 

initialised n class centres { c j | j = 1 , 2 , . . . , n } . Learning rate μt , hy- 

perparameters α and β , learning rate of the class centres γ and 

the number of iteration t � 1 . 

Output: The parameters θC . 

1: while not converge do 

2: Calculate the total loss by L 

t = L 

t 
S 
+ αL 

t 
C 

+ βL 

t 
M 

. 

3: Calculate the backpropagation error ∂L t 
∂ f t 

i 

for each sample i 

by ∂L t 
∂ f t 

i 

= 

∂L t 
S 

∂ f t 
i 

+ α
∂L t 

C 

∂ f t 
i 

+ β
∂L t 

M 

∂ f t 
i 

. 

4: Update W by W 

t+1 = W 

t − μt ∂L t 
∂W 

t = W 

t − μt ∂L 
t 
S 

∂W 

t . 

5: Update c j for each centre j by c t+1 
j 

= c t 
j 
− γ�c t 

j 
. 

6: Update θC by θ t+1 
C 

= θ t 
C 

− μt 
∑ N 

i 
∂L t 
∂ f t 

i 

∂ f t 
i 

∂θ t 
C 

. 

7: t � t + 1 . 

8: end while 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

a

3

 

t  

p  

o  

V  

t

 

i  

f  

f  

A  

i  

h  

n  

i  

w  

e

 

p  

t  

L  

a  

u

a  

e  

1  

s  

t  

c  

d  

p  

loads the trained model of Softmax Loss + Centre Loss as the 

1 We notice that whether doing cleaning on MegaFace is controversial, as some 

researchers think it is unfair for the methods previously tested on non-cleaned 

dataset (e.g. the discussion on GitHub ). However, whether doing the cleaning on 

MegaFace makes much difference in results. According to the results published by 

MegaFace team, the best methods that using cleaned data can have an accuracy 

higher than 99% while the best method (BingMMLab-v1) that using non-cleaned 

data only has an accuracy of 83.758%. 
while owns larger values on the rest of the bins. This indicates that

MML enlarges the distance of some neighbour centre pairs, there-

fore increases the quantity of the centre pairs having large margin.

2.4.2. Whether MML can truly improve the performance of the model 

on face recognition 

To answer this question, we conduct extensive experiments

on different benchmark datasets as illustrated in Section 3 . The

experimental types include face verification, face identification,

image-based recognition and video-based recognition. Results

show that the proposed method can beat the baseline methods as

well as some state-of-the-art methods. 

3. Experiments 

In this section, we describe the implementation details of the

experiments, investigate the influence of the parameters β and

M , and evaluate the performance of the proposed method. The

evaluations are conducted on MegaFace [7] , FaceScrub [23] , LFW

[20] , SLLFW [21] , YTF [22] , IJB-B [24] and IJB-C [25] datasets with

face identification and face verification tasks. Face identification

and face verification are two main tasks of face recognition. Face

verification aims at verifying whether two faces are from the

person, answering ‘Yes’ or ‘No’, which is a binary classification
roblem. Face identification is to identifying the ID of a face,

nswering the exact ID, which is a multi-classification problem. 

.1. Experiment details 

Training data. In all experiments, we use VGGFace2 [6] as our

raining data. To ensure the reliability and the accuracy of the ex-

erimental results, we removed all the face images that might be

verlapped with the benchmark datasets. As the label noise in the

GGFace2 is very low, no data cleaning has been applied. The final

raining dataset contains 3.05M face images from 8K identities. 

Data preprocessing. MTCNN [26] is applied to all the face

mages for landmark location, face alignment and face detection. If

ace detection fails on a training image, we simply discard it; if it

ails on a testing image, the provided landmarks are used instead.

ll the training and testing images are cropped to 160 ∗160 RGB

mages. To augment the training data, we also perform random

orizontal flipping on the training images. To improve the recog-

ition accuracy, we concatenate the features of the original testing

mage and its horizontally flipped counterpart. Please note that

e did not do data cleaning on all the testing sets involved in the

xperiments including Megaface dataset. 1 

Network settings. Based on Inception-ResNet-v1 [27] , we im-

lemented and trained five models by Tensorflow [28] according

o five supervision schemes: Softmax Loss, Softmax Loss + Centre

oss, Softmax Loss + Marginal Loss, Softmax Loss + Range Loss

nd Softmax Loss + Centre Loss + MML. For convenience, we

se “Softmax Loss”, “Centre Loss”, “Marginal Loss”, “Range Loss”

nd “MML” to represent these five schemes, respectively, in the

xperimental results. We train these five models on one GPU (GTX

080 Ti), and we set 90 as the batch size, 512 as the embedding

ize, 5e −4 as the weight decay and 0.4 as the keep probability of

he fully connected layer. The total number of iterations is 275K,

osting about 30 h. The learning rate is initiated as 0.05 and is

ivided by 10 every 100K iterations. All schemes use the same

arameter settings except that Softmax Loss + Centre Loss + MML

https://github.com/deepinsight/insightface/issues/49
http://megaface.cs.washington.edu/results/facescrub.html
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Fig. 2. Face verification accuracies on LFW dataset with two groups of models: (a) fixed β = 5e −8, and different M , (b) fixed M = 280, and different β . 
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3

re-trained model before training starts, as this way makes the

ormer achieve better recognition performance. 2 

Test settings. During the testing, we try our best to find the

arameter settings that lead to highest performance. The α and β
n Eq. (12) are set to be 5e −5 and 5e −8, respectively. The mini-

um margin of MML is set to be 280. The deep feature of each

mage is obtained from the output of the fully connected layer,

nd we concatenate the features of the original testing image and

ts horizontally flipped counterpart, therefore the resulting feature

ize of each image is 2 ∗512 dimensions. The final verification re-

ults are achieved by comparing the threshold with the Euclidean

istance of two features 

.2. Influence analysis on parameters β and M 

β is the hyper-parameter for adjusting the impact of MML

n the combination. M is the designated minimum margin.

hese two parameters influence the performance of the proposed

ethod. Therefore, how to set these two parameters is a question

orthy of study. 

Total loss only reflects the performance of the model on the

raining set. We conduct two experiments on VGGFace2 dataset

nd evaluate the influence of these two parameters on total loss. In

he first experiment, we fix β to 5e −8, and observe the influence

f M on total loss as shown in Fig. 2 (a). In the second experiment,

e fix M to 280, and evaluate the relationship between β and

otal loss as shown in Fig. 2 (b). From Fig. 2 (a), we can see that

etting M to 0, namely without using MML, is not proper, as it

eads to a high total loss. The lowest total loss appears when M
s 280. From Fig. 2 (b), we can observe that the total loss remains

table with a wide range of β , but reaches its lowest value when

is 5e −8. Therefore, in the subsequent experiments, we fixed M
nd β to 280 and 5e −8, respectively. 
2 Since the training of Softmax Loss + Centre Loss finishes until it fully converges, 

ust reloading the model and resuming training without changing any parameters 

ill not improve the model. In training, the model needs to learn two abilities: 

he ability to separate different classes (making different classes have no overlap) 

t the first stage and the ability to enlarge the margin between different classes at 

he second stage. MML only focuses on the target of the second stage. In addition, 

ML uses the learned class centres for computing, however the learned class cen- 

res cannot reflect the real centres at the early stage as it requires some time for 

earning. Applying MML at the first stage will cause interference to the training at 

his stage. Actually, this two-stage training mode can also be regarded as a one- 

ime training by initialising the factor – β to 0 and then setting it to 5e-8 after a 

ertain number of epochs. These two modes are equivalent. 

d

 

b  

t  

t

 

f  

e  

m

.3. MegaFace challenge 1 on FaceScrub 

In this section, we conduct experiment with the MegaFace

ataset [7] and the FaceScrub dataset [23] . The MegaFace dataset

onsists of a million faces and their respective bounding boxes

btained from Flickr (Yahoo’s dataset). The FaceScrub dataset is

 publicly available dataset containing 0.1M images from 530

dentities. According to the experimental protocol of MegaFace

hallenge 1, the MegaFace dataset is used as the distractor set,

hile the FaceScrub dataset is used as the test set. The evaluation

s conducted with the officially provided code [7] . More details

bout the experimental protocol can be found in [7] . 

We compare the proposed method (MML) with different losses

nd some deep learning-based methods provided by MegaFace

eam. 3 In the face identification experiments, the Cumulative

atch Characteristics (CMC) curves [29] are calculated to measure

he ranking capabilities of different methods, as illustrated by

ig. 3 (a)). In the face verification experiments, we use the Receiver

perating Characteristic (ROC) curves to evaluate the different

ethods. The ROC curves plot the False Accept Rate (FAR) of a 1:1

atcher versus the False Reject Rate (FRR) of the matcher which

re shown in Fig. 3 (b). Table 2 lists the numeric results of different

ethods on identification rates and the verification rates with 1M

istractors. 

From Fig. 3 (a), (b) and Table 2 , we can observe that MML per-

orms better compared with other deep learning-based methods

n both identification and verification test. This demonstrates

he effectiveness of the whole framework. The proposed MML

onsistently outperforms Softmax, Centre Loss, Marginal Loss and

ange Loss, which confirms the effectiveness of the proposed loss

unction. 

.4. Comparison with the state-of-the-art methods on LFW and YTF 

atasets 

In this section, we evaluate the proposed method on two public

enchmark datasets – LFW [20] and YTF [22] datasets according

o the settings in Section 3.1 . Some preprocessed examples from

hese two datasets are shown in Fig. 4 . 

LFW dataset is collected from the web, which contains 13,233

ace images with large variations in facial paraphernalia, pose and

xpression. These face images come from 5749 different identities
3 The features of the benchmark methods provided by MegaFace team: http:// 

egaface.cs.washington.edu/participate/challenge.html . 

http://megaface.cs.washington.edu/participate/challenge.html
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Fig. 3. (a) reports the CMC curves of different methods with 1M distractors on MegaFace Set 1. (b) reports the ROC curves of different methods with 1M distractors on 

MegaFace Set 1. 

Fig. 4. Some examples from the LFW dataset (left) and the YTF dataset (right). 

Table 2 

The identification rates and the verification rates of different methods on Megaface and 

FaceScrub datasets with 1M distractors. 

Methods Rank1@10 6 Rank100@10 6 VR @FAR 10 −6 VR @FAR 10 −5 

Barebones FR 59.36% 79.79% 58.77% 69.80% 

ntech small 58.21% 84.34% 65.48% 75.07% 

faceall 63.97% 84.84% 63.89% 72.99% 

SIAT MMLAB 65.23% 89.33% 76.56% 83.78% 

Vocord 75.13% 91.11% 66.50% 75.15% 

deepsense small 70.06% 91.85% 82.15% 87.56% 

Softmax Loss 72.11% 88.73% 73.33% 80.37% 

Centre Loss 75.93% 89.07% 76.07% 82.66% 

Marginal Loss 78.32% 89.87% 80.16% 85.32% 

Range Loss 79.86% 91.76% 81.85% 86.65% 

MML 83.00% 93.12% 84.03% 87.73% 
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where 4069 of them have one image and the remaining 1680

identities have at least two images. LFW utilises the Viola-Jones

face detector, which is the only constraint on the faces collected.

We follow the standard experimental protocol of unrestricted with

labelled outside data [36] and test 60 0 0 face pairs according to

the given pair list. 

YTF dataset consists of 3425 videos obtained from YouTube.

These videos come from 1595 identities with an average of 2.15

videos for each person. The frame number of the video clips

ranges from 48 to 6070, and the average is 181.3 frames. Also,

we follow the standard experimental protocol of unrestricted with

labelled outside data to evaluate the performance of the relevant

methods on the given 50 0 0 video pairs. 
Table 3 shows the results of the proposed method and the

tate-of-the-art methods on LFW and YTF datasets, from which we

an observe the followings. 

• The proposed MML outperforms Softmax Loss and Centre

Loss, increasing the verification performance both on LFW

and YTF datasets. On LFW, the accuracy improves from

99.43% and 99.50% to 99.63%, while on YTF, the accuracy

increases from 94.9% and 95.1% to 95.5%. Also, MML outper-

forms Range Loss and Marginal Loss both on LFW and YTF

datasets. On LFW, the accuracy improves from 99.50% and

99.52% to 99.63%, while on YTF, the accuracy increases from

95.1% and 95.3% to 95.5%. This demonstrates the effective-
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Fig. 5. Examples of the negative pairs in LFW and SLLFW. Compared to the negative pairs in LFW, the negative pairs in SLLFW are quite difficult to distinguish. 

Table 3 

Verification Rates of state-of-the-art methods on LFW and YTF datasets. 

Methods Images VR on LFW(%) VR on YTF(%) 

ICCV17’ Range Loss [9] 1.5M 99.52 93.7 

CVPR17’ Marginal Loss [13] 4M 99.48 96.0 

BMVC15’ VGG Face [30] 2.6M 98.95 97.3 

CVPR14’ Deep Face [31] 4M 97.35 91.4 

ICCV15’ FaceNet [11] 200M 99.63 95.1 

ECCV16’ Centre Loss [12] 0.7M 99.28 94.9 

NIPS16’ Multibatch [32] 2.6M 98.20 

ECCV16’ Aug [33] 0.5M 98.06 

CVPR17’ SphereFace [16] 0.5M 99.42 95.0 

ECCV18’ Contrastive CNN [34] 0.5M 99.12 

ECCV18’ OE-CNNs [35] 1.7M 99.47 

Softmax Loss 3.05M 99.43 94.9 

Centre Loss 3.05M 99.50 95.1 

Range Loss 3.05M 99.50 95.1 

Marginal Loss 3.05M 99.52 95.3 

MML (Proposed) 3.05M 99.63 95.5 
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Table 4 

Verification performance of different methods on SLLFW. 

Method Images LFW(%) SLLFW(%) 

Deep Face [31] 0.5M 92.87 78.78 

DeepID2 [10] 0.2M 95.00 78.25 

VGG Face [30] 2.6M 96.70 85.78 

DCMN [21] 0.5M 98.03 91.00 

Noisy Softmax [37] 0.5M 99.18 94.50 

Softmax Loss 3.05M 99.43 95.92 

Centre Loss 3.05M 99.50 96.02 

Range Loss 3.05M 99.50 96.07 

Marginal Loss 3.05M 99.52 96.07 

MML 3.05M 99.63 96.37 
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ness of the MML, also demonstrates the effectiveness of the

combination of Softmax Loss + Centre Loss + MML. 
• Compared with the state-of-the-art methods, the proposed

method has an accuracy of 99.63% on LFW and 95.5% on

YTF, higher than most of the methods. FaceNet is neck and

neck with the proposed method on LFW, but FaceNet uses

a large scale dataset which includes approximately 200

million face images. Consequently, FaceNet requires much

more time for training compared with the proposed method

which only uses 3.05 million face images. 

.5. Further comparison on SLLFW dataset 

As more and more methods are gradually touching the theo-

etical upper limit 4 of LFW, the gaps between different methods

ecome more and more narrow, making it hard to differentiate

ifferent methods. Therefore, to confirm the performance of MML,

n additional experiment is conducted on SLLFW [21] . SLLFW uses

he same positive pairs as LFW for testing, but in SLLFW, 30 0 0

imilar-looking face pairs are deliberately selected out from LFW

y human crowdsourcing to replace the random negative pairs in

FW. Some examples of the negative pairs in LFW and SLLFW are

hown in Fig. 5 . Compared with LFW, SLLFW adds more challenges

o the testing, causing the accuracy of the same state-of-the-art

ethods to drop by 10–20%. 
4 There are 6 mismatched pairs on LFW which are incorrectly labelled as 

atched. So the upper limit accuracy on LFW is (60 0 0-6)/60 0 0 = 99.90%. 

M  

s  

m  

b  
Table 4 shows the verification accuracy of different methods

n SLLFW. The results of some benchmark methods are shown

n the top half of the table. These results are publicly accessible

38] and provided by the SLLFW team [21] . As can be seen from

able 4 , MML achieves considerably better performance than the

enchmark methods on SLLFW. Also MML shows higher accuracy

han other relevant loss functions. In the top half of the table, the

ccuracy of the benchmark methods drops only by between 16.75%

nd 4.68% from LFW to SLLFW. By comparison, the accuracy of

ML drops by 3.26%. The results on SLLFW further confirm the

erformance of the proposed methods. 

.6. Results on IJB-B and IJB-C 

The IJB-B dataset [24] is composed of 21.8K still images and

5K frames from 7011 videos. In IJB-B, there are 1845 subjects

hich have no overlap with the popular face recognition bench-

arks, such as VGGFace2 [6] and CASIA WebFace [8] . In IJB-B,

here are totally 12,115 templates with 10,270 genuine matches

nd 8M impostor matches. The IJB-C dataset [25] is an extension

f IJB-B. It contains 31.3K still images and 117.5K frames from

1,779 videos. All these images and videos are from 3531 subjects

hich also have no overlap with the popular face recognition

enchmarks. In IJB-C, there are totally 23,124 templates including

9, 557 genuine matches and 15, 639K impostor matches. 

Following the 1:1 verification protocol, we compare the pro-

osed MML with the most recent methods as shown in the upper

art of Table 5 . For a fairer comparison, we also directly compare

ML with other popular and relevant loss functions under the

ame framework. Results show that MML performs better than the

ost recent methods as shown in the upper part of Table 5 on

oth IJB-B and IJB-C datasets. Also, MML shows better performance
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Table 5

Evaluation results with 1:1 verification protocol on IJB-B and IJB-C datasets.

Method IJB-B TAR@FAR = 1e −4 IJB-C TAR@FAR = 1e −4 

Crystal Loss [39] 0.898 0.919

ResNet50 [6] 0.784 0.825

SENet50 [6] 0.800 0.840

ResNet50 + SENet50 [6] 0.800 0.841

MN-v [40] 0.818 0.852

MN-vc [40] 0.831 0.862

ResNet50 + DCN(Kpts) [41] 0.850 0.867

ResNet50 + DCN(Divs) [41] 0.841 0.880

SENet50 + DCN(Kpts) [41] 0.846 0.874

SENet50 + DCN(Divs) [41] 0.849 0.885

GAN + ArcFace [42] 0.904 0.926

PCP + ArcFace [42] 0.901 0.924

PCPSM + ArcFace [42] 0.907 0.928

LRR + ArcFace [42] 0.909 0.931

PCPSFM + ArcFace [42] 0.911 0.934

Softmax Loss 0.908 0.931

Centre Loss 0.910 0.934

Range Loss 0.916 0.937

Marginal Loss 0.917 0.939

MML 0.921 0.943
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than the relevant loss functions compared in the lower part of

Table 5 . 

4. Conclusion

In this paper, a new loss function – Minimum Margin Loss

(MML) is presented to guide deep neural networks to learn highly

discriminative face features. To the best of our knowledge, MML

is the first loss that considers setting a minimum margin between

the different classes. We show that the proposed loss function is

very easy to implement in the CNNs and our CNN models can be

directly optimized by the standard SGD. Extensive experiments

are conducted on the seven public available datasets. We compare

MML with the methods published in the past few years on top

conference and journals. We also directly compare MML with the

relevant loss functions under the same framework. Results show

that MML has state-of-the-art performance. Future research is

needed to automatically determine the minimum margin M . Also

we will try to give the theoretical proof about the advantage of

setting a minimum margin in the future work. 

References 

[1] J.M. Pandya , D. Rathod , J.J. Jadav , A survey of face recognition approach, Int. J.
Eng. Res. Appl. (IJERA) 3 (1) (2013) 632–635 .

[2] L. Wu , Y. Wang , J. Gao , X. Li , Deep adaptive feature embedding with local
sample distributions for person re-identification, Pattern Recognit. 73 (2018)

275–288 .

[3] J. Han , D. Zhang , G. Cheng , N. Liu , D. Xu , Advanced deep-learning techniques
for salient and category-specific object detection: a survey, IEEE Signal Process.

Mag. 35 (1) (2018) 84–100 .
[4] M. Ma , N. Marturi , Y. Li , A. Leonardis , R. Stolkin , Region-sequence based

six-stream CNN features for general and fine-grained human action recogni-
tion in videos, Pattern Recognit. 76 (2018) 506–521 .

[5] Y. Guo , L. Zhang , Y. Hu , X. He , J. Gao , MS-Celeb-1M: a dataset and benchmark

for large scale face recognition, in: European Conference on Computer Vision,
Springer, 2016 .

[6] Q. Cao , L. Shen , W. Xie , O.M. Parkhi , A. Zisserman , Vggface2: a dataset for
recognising faces across pose and age, in: 2018 13th IEEE International Con-

ference on Automatic Face & Gesture Recognition (FG 2018), IEEE, 2018,
pp. 67–74 .

[7] I. Kemelmacher-Shlizerman , S.M. Seitz , D. Miller , E. Brossard , The megaface
benchmark: 1 million faces for recognition at scale, in: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2016, pp. 4 873–4 882 .

[8] D. Yi, Z. Lei, S. Liao, S.Z. Li, Learning face representation from scratch, 28 Nov
2014, arXiv: 1411.7923v1 (2014).

[9] X. Zhang , Z. Fang , Y. Wen , Z. Li , Y. Qiao , Range loss for deep face recognition
with long-tailed training data, in: 2017 IEEE International Conference on Com-

puter Vision (ICCV), 2017, pp. 5419–5428 .
[10] Y. Sun , Y. Chen , X. Wang , X. Tang , Deep learning face representation by joint
identification-verification, in: Advances in neural information processing sys-

tems, 2014, pp. 1988–1996 .
[11] F. Schroff, D. Kalenichenko , J. Philbin , Facenet: a unified embedding for face

recognition and clustering, in: Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 815–823 .

[12] Y. Wen , K. Zhang , Z. Li , Y. Qiao , A discriminative feature learning approach
for deep face recognition, in: Computer Vision – ECCV 2016, Lecture Notes in

Computer Science, Springer, Cham, 2016, pp. 499–515 .

[13] J. Deng , Y. Zhou , S. Zafeiriou , Marginal loss for deep face recognition, in:
2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW), 2017, pp. 2006–2014 .
[14] R. Ranjan, C.D. Castillo, R. Chellappa, L2-constrained softmax loss for discrimi-

native face verification, 7 Jun 2017, arXiv: 1703.09507v3 (2017).
[15] W. Liu , Y. Wen , Z. Yu , M. Yang , Large-margin softmax loss for convolutional

neural networks, in: International Conference on Machine Learning, 2016,

pp. 507–516 .
[16] W. Liu , Y. Wen , Z. Yu , M. Li , B. Raj , L. Song , Sphereface: deep hypersphere em-

bedding for face recognition, in: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2017, pp. 212–220 .

[17] F. Wang , J. Cheng , W. Liu , H. Liu , Additive margin softmax for face verification,
IEEE Signal Process. Lett. 25 (7) (2018) 926–930 .

[18] J. Deng, J. Guo, S. Zafeiriou, Arcface: additive angular margin loss for deep face

recognition, 9 Feb 2019, arXiv: 1801.07698v3 (2018).
[19] Y. Zheng , D.K. Pal , M. Savvides , Ring loss: Convex feature normalization for face

recognition, in: The IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2018 .

20] G.B. Huang , M. Ramesh , T. Berg , E. Learned-Miller , Labeled Faces in the Wild: a
Database for Studying Face Recognition in Unconstrained Environments, Tech-

nical Report 07-49, University of Massachusetts, Amherst, 2007 .

[21] W. Deng , J. Hu , N. Zhang , B. Chen , J. Guo , Fine-grained face verification: Fglfw
database, baselines, and human-dcmn partnership, Pattern Recognit. 66 (2017)

63–73 .
22] L. Wolf , T. Hassner , I. Maoz , Face recognition in unconstrained videos with

matched background similarity, in: Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on, IEEE, 2011, pp. 529–534 .

23] H.-W. Ng , S. Winkler , A data-driven approach to cleaning large face datasets,

in: Image Processing (ICIP), 2014 IEEE International Conference on, IEEE, 2014,
pp. 343–347 .

24] C. Whitelam , E. Taborsky , A. Blanton , B. Maze , J. Adams , T. Miller , N. Kalka ,
A .K. Jain , J.A . Duncan , K. Allen , J. Cheney , P. Grother , Iarpa janus benchmark-b

face dataset, in: The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) Workshops, 2017 .

25] B. Maze, J. Adams, J.A. Duncan, N. Kalka, T. Miller, C. Otto, A.K. Jain, W.T. Niggel,

J. Anderson, J. Cheney, P. Grother, Iarpa janus benchmark - c: Face dataset and
protocol, in: 2018 International Conference on Biometrics (ICB), 2018, pp. 158–

165, doi: 10.1109/ICB2018.2018.0 0 033 .
26] K. Zhang , Z. Zhang , Z. Li , Y. Qiao , Joint face detection and alignment using

multitask cascaded convolutional networks, IEEE Signal Process. Lett. 23 (10)
(2016) 1499–1503 .

[27] C. Szegedy , S. Ioffe , V. Vanhoucke , A .A . Alemi , Inception-v4, inception-resnet
and the impact of residual connections on learning, in: Thirty-First AAAI Con-

ference on Artificial Intelligence, 2017 .

28] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A.
Davis, J. Dean, M. Devin, et al., Tensorflow: large-scale machine learning on

heterogeneous distributed systems, Mar 2016, arXiv: 1603.04467v2 (2016).
29] P.J. Phillips , P. Grother , R.J. Micheals , D.M. Blackburn , E. Tabassi , M. Bone ,

R.V.T. FACE , Evaluation report, Facial Recognit. Vendor Test 2002, 2003 .
30] O.M. Parkhi , A. Vedaldi , A. Zisserman , Deep face recognition., in: 2015 British

Machine Vision Conference (BMVC), 1, 2015, p. 6 .

[31] Y. Taigman , M. Yang , M. Ranzato , L. Wolf , DeepFace: closing the gap to hu-
man-level performance in face verification, in: Proceedings of the 2014 IEEE

Conference on Computer Vision and Pattern Recognition, CVPR ’14, IEEE Com-
puter Society, Washington, DC, USA, 2014, pp. 1701–1708 .

32] O. Tadmor , T. Rosenwein , S. Shalev-Shwartz , Y. Wexler , A. Shashua , Learning a
metric embedding for face recognition using the multibatch method, in: Pro-

ceedings of the 30th International Conference on Neural Information Process-

ing Systems, NIPS’16, Curran Associates Inc., USA, 2016, pp. 1396–1397 .
[33] I. Masi , A.T. Tran , T. Hassner , J.T. Leksut , G. Medioni , Do we really need

to collect millions of faces for effective face recognition? in: Computer Vi-
sion – ECCV 2016, Lecture Notes in Computer Science, Springer, Cham, 2016,

pp. 579–596 .
34] C. Han , S. Shan , M. Kan , S. Wu , X. Chen , Face recognition with contrastive con-

volution, in: The European Conference on Computer Vision (ECCV), 2018 .

35] Y. Wang , D. Gong , Z. Zhou , X. Ji , H. Wang , Z. Li , W. Liu , T. Zhang , Orthogonal
deep features decomposition for age-invariant face recognition, in: The Euro-

pean Conference on Computer Vision (ECCV), 2018 .
36] G.B. Huang , E. Learned-Miller , Labeled faces in the wild: updates and new re-

porting procedures, Tech. Rep, 14–003, Dept. Comput. Sci., Univ. Massachusetts
Amherst, Amherst, MA , USA , 2014 .

[37] B. Chen , W. Deng , J. Du , Noisy softmax: improving the generalization ability of

dcnn via postponing the early softmax saturation, in: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017 .

38] The results of some baseline methods provided by SLLFW team: http://www.
whdeng.cn/SLLFW/#results .

http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0001
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0001
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0001
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0001
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0002
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0002
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0002
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0002
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0002
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0003
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0003
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0003
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0003
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0003
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0003
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0004
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0004
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0004
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0004
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0004
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0004
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0005
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0005
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0005
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0005
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0005
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0005
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0006
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0006
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0006
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0006
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0006
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0006
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0007
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0007
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0007
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0007
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0007
http://arxiv.org/abs//1411.7923v1
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0008
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0008
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0008
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0008
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0008
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0008
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0009
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0009
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0009
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0009
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0009
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0010
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0010
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0010
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0010
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0011
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0011
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0011
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0011
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0011
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0012
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0012
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0012
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0012
http://arxiv.org/abs//1703.09507v3
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0013
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0013
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0013
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0013
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0013
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0014
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0014
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0014
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0014
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0014
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0014
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0014
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0015
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0015
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0015
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0015
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0015
http://arxiv.org/abs//1801.07698v3
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0016
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0016
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0016
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0016
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0017
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0017
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0017
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0017
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0017
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0018
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0018
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0018
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0018
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0018
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0018
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0019
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0019
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0019
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0019
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0020
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0020
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0020
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0021
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0021
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0021
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0021
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0021
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0021
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0021
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0021
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0021
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0021
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0021
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0021
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0021
https://doi.org/10.1109/ICB2018.2018.00033
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0023
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0023
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0023
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0023
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0023
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0024
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0024
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0024
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0024
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0024
http://arxiv.org/abs//1603.04467v2
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0025
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0025
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0025
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0025
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0025
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0025
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0025
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0025
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0026
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0026
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0026
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0026
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0027
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0027
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0027
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0027
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0027
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0028
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0028
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0028
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0028
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0028
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0028
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0029
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0029
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0029
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0029
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0029
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0029
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0030
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0030
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0030
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0030
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0030
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0030
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0031
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0031
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0031
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0031
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0031
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0031
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0031
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0031
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0031
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0032
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0032
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0032
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0033
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0033
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0033
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0033
http://www.whdeng.cn/SLLFW/#results


X. Wei, H. Wang and B. Scotney et al. / Pattern Recognition 97 (2020) 107012 9

[
 

[

[

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m  

c  

r

w
a

R

T

 

 

39] R. Ranjan , A. Bansal , J. Zheng , H. Xu , J. Gleason , B. Lu , A. Nanduri , J.-C. Chen ,
C.D. Castillo , R. Chellappa , A fast and accurate system for face detection, iden-

tification, and verification, IEEE Trans. Biom., Behav. Identity Sci. 1 (2) (2019)
82–96 .

40] W. Xie, A. Zisserman, Multicolumn networks for face recognition, 24 Jul 2018,
arXiv: 1807.09192v1 (2018).

[41] W. Xie , L. Shen , A. Zisserman , Comparator networks, in: Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 782–797 .

42] N. Xue, J. Deng, S. Cheng, Y. Panagakis, S.P. Zafeiriou, Side information for

face completion: a robust pca approach, IEEE Trans. Pattern Anal. Mach. Intell.
(2019) . 1–1, doi: 10.1109/TPAMI.2019.2902556 .

Xin Wei received the bachelor of engineering degree in

computer science and technology from Shangrao Normal

University, Jiangxi, China, in 2013; and the master de-
gree in computer application and technology from the

School of Mathematics and Computer Science, Fujian Nor-
mal University, China. He is currently pursuing his Ph.D.

at Ulster University, UK. His current research interests are
face recognition and image representation.

Hui Wang is Professor of Computer Science at Ulster Uni-

versity. His research interests are machine learning, logics
and reasoning, combinatorial data analytics, and their ap-

plications in image, video, spectra and text analysis. He
has over 230 publications in these areas. He is the prin-

cipal investigator of 8 regional, national and international
projects in the areas of image/video/text analytics, and in-

telligent content management; and is co-investigator of

several other externally funded projects.
Bryan W. Scotney received the B.Sc. degree in mathemat-
ics from Durham University, UK in 1980 and the Ph.D.

degree in mathematics from the University of Reading,
UK in 1985. He is Professor of Informatics at Ulster Uni-

versity, UK, and was Director of Ulster University’s Com-

puter Science Research Institute since its formation in
2005 until May 2015. He has over 300 publications, span-

ning a range of research interests in mathematical com-
putation, especially in digital image processing and com-

puter vision, pattern recognition and classification, statis-
tical databases, reasoning under uncertainty, and applica-

tions to healthcare informatics, official statistics, biomed-

ical and vision sciences, and telecommunications network
anagement. He has collaborated widely with academic, government and commer-

ial partners, and much of his work has been supported by funding from the Eu-
opean Union Framework Programmes and the UK Research Councils. Prof. Scotney

as President of the Irish Pattern Recognition and Classification Society 2007–2014,
nd a member of the Governing Board of the International Association for Pattern

ecognition (IAPR), 2007–2014. He is currently Guest Professor at Keio University,

okyo.

Huan Wan received the bachelor of engineering degree

in computer science and technology from Shangrao Nor-
mal University, Jiangxi, China, in 2013; and the master

degree in computer application and technology from the

School of Mathematics and Computer Science, Fujian Nor-
mal University, China. She is currently pursuing her Ph.D.

at Ulster University, UK. Her current research interests are
face verification and image representation.

http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0034
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0034
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0034
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0034
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0034
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0034
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0034
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0034
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0034
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0034
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0034
http://arxiv.org/abs//1807.09192v1
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0035
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0035
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0035
http://refhub.elsevier.com/S0031-3203(19)30315-2/sbref0035
http://dx.doi.org/10.1109/TPAMI.2019.2902556

	Minimum margin loss for deep face recognition
	1 Introduction
	2 From softmax loss to minimum margin loss
	2.1 Softmax loss and centre loss
	2.2 Marginal loss and range loss
	2.3 The proposed minimum margin loss
	2.4 Discussion
	2.4.1 Whether MML can truly enlarge distances of the closest class centre pairs that are smaller than the specified minimum margin
	2.4.2 Whether MML can truly improve the performance of the model on face recognition


	3 Experiments
	3.1 Experiment details
	3.2 Influence analysis on parameters &#x03B2; and 
	3.3 MegaFace challenge 1 on FaceScrub
	3.4 Comparison with the state-of-the-art methods on LFW and YTF datasets
	3.5 Further comparison on SLLFW dataset
	3.6 Results on IJB-B and IJB-C

	4 Conclusion
	References




