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Abstract—In this work the Motor Current/Voltage Signature
Analysis and Linear Discriminant Analysis are evaluated with
respect to the accuracy to detect the status of Permanent Magnet
Synchronous Machines whether it is healthy or faulted, determine
the type of that fault, and estimate the severity in the case of static
eccentricity or turn-to-turn short circuit fault. Three types of
faults are discussed: static eccentricity, turn-to-turn short circuit,
and partial demagnetization fault. Two dimensional (2-D) Finite
Element Analysis is used to model and simulate the machine
under healthy and faulted conditions. Fast Fourier Transform
is applied to the phase voltage or current signals to obtain
the frequency spectrum. A combination of the amplitude of the
harmonics of the stator voltage or current signals are used as
detailed features for the classifier for fault detection. Linear Dis-
criminant Analysis is chosen as a classification method for both,
detecting the fault and estimate its severity. Two different winding
types of Permanent Magnet Synchronous Machines are tested: a
concentrated and a distributed winding machine. To validate the
simulation results, experiments at different operational points are
carried out and the results are compared with the Finite Element
Analysis.

Index Terms—Demagnetization, Fast Fourier Transform, Ec-
centricity, Turn-to-turn short circuit, Linear discriminant analy-
sis classification, Permanent magnet synchronous machine.

I. INTRODUCTION

ERMANENT magnet synchronous machines (PMSMs)

play a major role in many industrial applications because
of their high efficiency, reliability, wide operating range, and
high torque density. These applications include traction power
steering in electric/hybrid vehicles, robotics, and wind gener-
ation. Detecting a fault and the type of that fault in PMSMs is
important, since each fault requires different mitigation action
(either interruption in the operation or change in the controller)
and in some cases, these actions can be opposite.

Many methods have been used to detect the type of fault
in PMSMs and estimate its severity. These methods can
be categorized as: time domain methods, frequency analysis
methods as in [1]-[5], and time scale analysis methods such as
Discrete or Continuous Wavelet Transform (D/CWT) [6], [7].
The Motor Current Signature Analysis (MCSA) and the Motor
Voltage Current Analysis (MVCA) are the most common
online methods for single fault detection [1], [8]-[10], since
they do not require any additional connections or hardware.
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They are performed by applying spectral or time-frequency
analysis techniques, like Fast Fourier Transform (FFT), Short
Time Fourier Transform (STFT), or D/CWT, to the stator
current or voltage signal.

Methods have already been developed to distinguish be-
tween faults. In [11] and [12] the variation in the incremental
inductance curve is used as an indicator to detect and dis-
tinguish between eccentricity, uniform demagnetization and
short circuit fault. In [13], the side band harmonics of the
machine current signals are used to distinguish between inter-
turn short circuit and rotor dynamic eccentricity faults in a
permanent magnet synchronous generator. This method is able
to detect the fault type (dynamic eccentricity or inter-turn
fault) but not the severity accurately. In [14] and [15] the
spectrum of the stator current and voltage signals is used to
distinguish between static eccentricity, dynamic eccentricity
and broken magnet for low power PMSMs; both experiments
and simulation are performed to validate the method. Based on
that work, dynamic eccentricity can be detected from the stator
current harmonics, which are given as the multiple of the stator
synchronous frequency divided by the number of pole pairs.
Static eccentricity can be detected based on the increase in
the amplitude in the 7t" harmonic of the stator current signal.
Broken magnets can be detected based on estimating the total
d-axis magnetic flux and comparing it to the baseline healthy
case. The main drawback of this approach is that it requires
different methods to detect each fault, and the detection of the
fault severity is based on the amplitude of the harmonics only
which is not always possible for noisy conditions. In [16], the
induced voltage in a search coil is used to separate between
three faults: short circuit, demagnetization and eccentricity
faults. The main drawback of this method is that the use of a
search coil for fault detection may not be always possible. In
[17] both the stator current and the voltage signals are used to
detect eccentricity fault using the sideband subharmonic. It is
shown that if the controller has a high bandwidth, the sideband
subharmonic in the stator current signals will also appear in
the commanded voltages.

Most of the detection methods in the literature like the
MCSA and Linear Discriminant Analysis (LDA) have been
used before for single fault detection. This approach is based
on analyzing the stator current signal under healthy and faulted
conditions. The appearance of the subharmonics can be used
to detect the fault type and the subharmonics amplitude is used
to estimate the severity.

The use of the subharmonics for fault detection presents

0885-8969 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEC.2016.2558183, IEEE

Transactions on Energy Conversion

some difficulties. It is shown in [1] and [6] that similar side
band patterns appear for both faults, eccentricity and short
circuit fault. Also, the amplitudes of the generated subhar-
monics depend on the operating speed and load conditions.
For non-stationary operation at lower speeds it is difficult to
detect these sideband patterns [18]. In [19] and [20] it is shown
that the relation between the number of poles and the stator
slots affects the appearance of the subharmonics in the case
of eccentricity faults. Based on this, using the subharmonics
only for fault detection might not be adequate. However, there
will always be a change in the amplitude of the harmonics of
the voltage or current signals in a faulted machine.

The main contributions of this work include: 1) evaluating
the accuracy of already existing methods, like the MCSA and
the LDA to detect the machine status, whether it is healthy
or faulted, separation between three different faults, and es-
timation of the fault severity. 2) Using either the measured
stator currents or the commanded voltages for fault detection
and identification. 3) Using the amplitude of the harmonics
as fault detection and classification features instead of the
subharmonics. Here, we continue the work of [3]. Three faults
are tested: static eccentricity, demagnetization and turn-to-
turn short circuit fault. Two machines with different winding
topologies are tested using the proposed method. Simulation
for the two machines, under healthy and faulted conditions
is developed using two dimensional finite element analysis
(FEA) software (FLUX-2D). The harmonics of the phase
voltage/current are chosen as the features for the classifier.
LDA is used as the classification method to detect the type
of fault and estimate the severity. Experiments are conducted
for both machines to validate the analysis and the simulation
results.

Section II of this paper discusses the definition and the
characteristics of the three different fault types. Section III
gives the main parameters of the two tested machines, the
experimental setup, and how faults are applied in finite element
analysis and in the experiment. Section IV describes the main
concept of LDA and how it is applied for fault detection
and classification. Section V discusses LDA classification
results for fault detection and estimation for both FEA and
experimental data. In section VI Conclusions are drawn from
the results.

II. CHARACTERISTIC OF THE FAULTS

Three faults are discussed and tested in this work: static
eccentricity, demagnetization, and turn-to-turn short circuit
fault. Each one of these faults develop in different ways
and will cause different changes to the motor parameters
and performance. Therefore, it is important to have a good
understanding of each one of these faults, the characteristics,
the causes and their effects.

A. Eccentricity fault

Eccentricity faults are the most common mechanical faults
in electric machines. In a healthy machine, the air gap between
the stator and the rotor is uniformly distributed. In a machine
with eccentricity fault, the air gap is no longer uniform,

which leads to an asymmetric flux distribution, which in
turn creates a radial force between the stator and the rotor.
This force increases with eccentricity and has several effects:
vibration, noise, and possibly wear of the bearings. This in
time, may further increase the eccentricity and cause the rotor
and the stator to rub. Therefore, detecting eccentricity faults
and applying early maintenance while the fault is still in the
early stage is very important to protect the machine from
severe damage.

There are three different types of eccentricity. Static eccen-
tricity, (SE). In this fault the stator geometric axis center is
different than that of the rotor and the rotation axis center. This
may be caused by incorrect positioning during assembling of
the machine or stresses applied to the machine stator. Dynamic
eccentricity (DE). In this fault, the rotor geometric axis
center is different than that of the stator and the rotation axis
center. The main reasons for dynamic eccentricity are a bent
machine shaft, bearing wear, stresses applied to the shaft (e.g.
thermal stresses) and mechanical resonance at critical speeds.
Mixed eccentricity, (ME). In this fault the rotation axis
center is different than the stator and the rotor geometric axis
center. Fig. 1 shows a comparison of the geometry between
healthy machine and the three different eccentricity faults:
static eccentricity, dynamic eccentricity and mixed eccentricity
fault. Only static eccentricity is discussed and tested here
because it is the most common type of eccentricity fault.
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Fig. 1: (a) Healthy machine, (b) Static eccentricity, (c) Dy-
namic eccentricity, (e) Mixed eccentricity.

The severity of eccentricity fault is given by the following
equation,

ECC = g””“zi_gh % 100% (1)
h
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where ECC' is the percentage of eccentricity fault severity,
Jmae 1S the maximum airgap in case of eccentricity fault, g,
is the machine airgap for healthy case. For healthy machine
Imaz = gn which means ECC = 0%. According to [21],
any eccentricity less than 10% can be neglected, and any
eccentricity fault higher than 60% requires immediate repair
to prevent any rubbing between the stator and the rotor, which
damage the machine. Based on Fig. 2 and following [22], a
general formula describing static eccentricity can be derived
as follows:

Fig. 2: Analytical approach to calculate eccentricity

R,.cos(8') = ecos(¢) + (R + gece) cos() 2)
Rs- Sin(@’) = Esin(qi)) + (R'm + gecc) Sln(a) (3)

where ¢ is the magnitude of the static eccentricity shift, ¢ is the
angle of eccentricity shift and 6 is the rotation angle. Taking
the square of eqns. (2) and (3), and adding them together:

R? = 52 + (Rm + gecc)2 + 25(Rm + gecc) COS(d) - 9) (4)
= Gece = —£008(¢—0) +/R2 — e2sin(¢p — 0)2 — R,, (5)

Since R > ¢, the airgap in case of static eccentricity can
be given as,

Gece = (Rs — Ryy,) — e cos(¢p — 0) = g — e cos(¢p — 0)  (6)

B. Turn-to-turn Short Circuit

Of the many possible types of stator winding faults, the turn-
to-turn short circuit faults are the most common. A turn-to-turn
fault can be due to mechanical, electrical and thermal stress
in the stator winding. Stress may lead to an insulation break-
down of the coil conductor, which leads to shorting some of
the turns. In this case, the shorted turns create an extra high-
current path that is magnetically and electrically coupled with
the winding current and a flux circuit path. This current heats
the shorted turns, causing further insulation damage and may
expand to nearby windings. Detecting the turn-to-turn fault at
an early stage is important for protecting the machine winding
from damage. Fig. 3 shows a series connected three phase
winding with turn-to-turn short circuit fault at phase A. The
fault is modeled by a small resistance ¢ connected in parallel
across the shorted turns.

Fig. 3: Series winding with shorted turns.

C. Demagnetization

Demagnetization is also a common fault in PM machines. In
these faults, the flux distribution in the machine is asymmetric
and a high current flow in the windings. These currents weaken
the insulation of the winding, increase the torque ripple and
affect the machine performance and parameters. A main factor
that might cause demagnetization faults is turn-to-turn short
circuit fault, as the short circuit fault severity increases, this
leads to demagnetized the rotor magnets. Therefore, it is
important to detect the fault type and severity while it is still
in the early stages. Other factors that might cause demagne-
tization fault include: aging of the magnet, high temperature,
and operation under strong field weakening.

In this paper, LDA is used to detect the type of the fault and
the severity based on the amplitude of the main harmonics of
the current or voltage signals. Different LDA algorithms are
used for fault detection in electrical machines [23]-[26]. In
[23], LDA is used with discrete wavelet transform to choose
the best wavelet filter to detect short circuit faults in induction
machine. In [24] a comparison is made between different
LDA algorithms: Classical LDA, Foley-Sammon LDA, and
Uncorrelated LDA are used to detect reaction control system
thruster faults in a launch vehicle. In [25], components from
the vibration spectrum are used as features for LDA algorithm
to detect bearing faults in induction machine.

III. FAULTS IMPLEMENTATION AND PROPOSED METHOD

Motors with different winding topologies create different
stator current and voltage harmonics. Therefore, it is important
to discuss the detection method for motors with different wind-
ings topologies. Two types of 3-phase PMSMs were modeled
and tested. The first one has 16 poles and a concentrated
winding distribution with 8 parallel branches per phase. The
second has 12 poles and a distributed winding with 2 parallel
branches per phase. Fig. 4(a) shows the geometric cross sec-
tional area of the concentrated winding machine and Fig. 4(b)
shows the cross section of the distributed winding machine.
The specifications and parameters of the two machines are
summarized in Table 1.
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(a) (b)

Fig. 4: Cross section for the two tested machines. (a) Concen-
trated winding machine. (b) Distributed winding machine

TABLE I: Parameters for the two tested machines

Concentrated winding  Distribution winding

Number of phases 3 phase 3 phase
Maximum current 300A 300A
Maximum torque 310N.m 315N.m
Number of slots 24 48
Number of poles 16 12
Turns per phase 46 8

A. Finite Element Analysis

To model static eccentricity fault in FEA, the axis for the
stator geometry should be different than that for both the rotor
geometry and the rotational axis center. To do this, a separate
coordinate system was assigned to the stator, different than
the rotor and the rotated coordinate system; by changing the
stator coordinate center, the stator axis geometry will only
change. This allows controlling the direction and the degree
of eccentricity without affecting the rotor geometric axis or
the rotation center axis.

To simulate partial demagnetization using FEA, a new
material with lower remanence value was assigned to replace
the magnet and represent partial demagnetization. To model
turn-to-turn short circuit fault for the concentrated winding
machine, a new region was created in the winding slot. This
region represents the short fault; the number of shorted turns
was assigned to that region and subtracted from the original
slot. A change was also made to the circuit model by adding
a new coil conductor corresponding to the new faulted region.
To represent this fault in the circuit, a resistance was connected
in parallel across the new faulted coil conductor. To simulate
turn-to-turn short circuit fault for the distributed winding
machine, two end turns were shorted, this implied assigning
all the shorted conductors to the short circuit coil in the circuit.
Shorting two end turns corresponds to shorting of 12% of the
total phase conductors. Another two end turns were shorted to
represent a second severity of short circuit fault (25% of the
total phase conductors were shorted).

B. Experimental Setup

National Instrument (NI) Real Time LabVIEW (RTLV) was
used to operate and control the machines. This real time

system consists of two desktop computers: one used as host
and the other as the target. The controller was developed first
in the host computer, then deployed to the target, where it was
ran by the target computer’s processor. The host computer was
used to monitor data from the target and apply the changes to
the controller parameters. A 100kW surface PMAC machine
operated in a constant speed mode was used as a dynamometer.

Two faults were applied to the distributed winding machine
experimentally: static eccentricity with two severity levels
(25% and 50%), and two severity of short circuit fault (12%
and 25% of phase A conductors were shorted). To apply static
eccentricity fault, shims were mounted below the machine
bearing to lift the rotor, as shown in Fig. 5. The same
method was applied to the concentrated winding machine. To
apply turn-to-turn short circuit fault, two turns of the machine
windings were shorted through a resistance with a value of
0.12552, which is equivalent to 125% of the stator winding
resistance. Another two turns were shorted to represent the
second severity. Fig. 6 shows the the distributed winding
machine with turn-to-turn short circuit fault implemented
experimentally.

Fig. 6: Implementing short circuit fault experimentally

C. Algorithm for fault detection and classification

Fig. 7 shows the general flow diagram for the algorithm.
The algorithm uses two classifiers: the first classifier detects
the presence and type of the fault, while the second estimates
the fault severity, once the type of fault was determined. The
proposed method works as follows:
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Fig. 7: Generalized flow chart for fault detection and identifi-
cation

[1] Three phase currents were used to control and operate the
machine under both healthy and faulted conditions. The
stator phase current or voltage signals in the abc frame
of reference were measured for processing.

[2] FFT was applied to the measured current or voltage
signals. The amplitudes of the harmonics were selected
as features for the classification. In this method a vector
of the amplitude of the first 15 harmonics was chosen
from phase A spectrum, as the features for each sample.
(i.e. The fundamental and the harmonics 2"¢-15")

[3] LDA classification is applied to detect whether the ma-
chine is healthy or faulted, and detect the type of the fault.
The sample space for the first classifier contains samples
from all studied faults. In the faulted case, it detects the
type as one of the following: static eccentricity, turn-to-
turn short circuit, or partial demagnetization.

[4] If the fault was detected as static eccentricity or turn-to-
turn short circuit fault, another LDA classifier was applied
to detect the severity of that fault. In this classifier, the
sample space contains samples from the same type of
fault but with different severities.

IV. LINEAR DISCRIMINANT ANALYSIS (LDA)

LDA [27] is used to maximize the ratio between the variance
for different classes and the variance within the same class,
in order to achieve maximum separation between the feature
sets in each class. For LDA, the sample space is divided into
K classes, where each class consists of a specific number
of samples corresponding to the same state. These classes
are associated with weighting coefficients. These coefficients
are used to calculate the corresponding linear discriminant

function for that class. The linear discriminant function for
class k is given by (7):

Cr(Xi) = a1pxi1 + aop®io + - - -

where X; = [2;1,%;2,...,x;N] is the N dimensional vector
for the sample X, and [a1, car . . . an+15] is the coefficient
matrix for the k' class.

During the training phase, the weighting coefficient matrices
are determined in an iterative process. Starting from arbitrary
guesses of the k x IV matrix, the weighting coefficient matrix
is adjusted with each iteration. For each training sample X,
its class k is known, and the coefficients are adjusted so that
Cr(X;) is greater for k than for all the other classes.

Once the training process is completed and the matrix C' has
been obtained, to classify an unknown sample, the coefficients
computed during the training phase are used to calculate
the discriminant functions for this sample. A sample vector
belongs to a particular class if the linear discriminant function
for that sample is greater than any other linear discernment
function. A sample vector 7 belongs to a class j if:

C(X;) > Ck(Xi) Vj#k ®)

In this work, more than 15 samples were collected for
different operating condition (current and speed), to determine
the coefficient matrix. By varying the operating conditions,
the coefficient matrix as function of current and speed is
established for each class. For any test point not used in the
training phase, the associated coefficients are obtained from
the interpolation of the trained coefficient matrix. The resultant
coefficients from each class are used to compute the class for
fault detection and classification.

+ ankriv + antie (7)

V. SIMULATION AND EXPERIMENTAL RESULTS

Field Oriented Control (FOC), as shown in Fig. 8, is used
for the operation of the machine. The commanded currents
iy and iy are subtracted from the measured currents iq and
14, then through a PI controllers, generate the commanded
voltages v and vy, which are used to control the machine.
The harmonics of the measured currents are used as features
for the LDA classifier. LDA can detect the type and the
severity of the fault, based on the different variation in the
amplitude of the harmonics caused by the different faults.
It makes no difference if the harmonics of the voltages or
the measured current signal are used for the classification.
The commanded voltages are generated through PI controllers
with a large bandwidth, so the harmonics that appear in the
measured current signal, will also appear in the commanded
voltages. It was proven in [17] that for a controller with higher
bandwidth, the fault information produced in the current will
also be contained in the voltage signal. Having a voltage sensor
during the normal operation of the machine is not always
necessary, while the measured feedback currents are always
available.

Fig. 9 shows the spectrum of the stator current (phase
A) for the distributed winding machine for the healthy case
and for two faults with different severities (25% and 50%
of eccentricity fault, 12% and 25% of the coils in phase A
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Fig. 8: Field Oriented Control block diagram

shorted). Fig. 10 shows the spectrum of the stator current
(phase A) of the concentrated winding machine under healthy
and two severities of eccentricity faults (25% and 50%). The
current spectrum was collected with a current of 504 and
operating speed of 500 rpm. The amplitudes of the 5! and
7t" harmonics are shown as an example for the change in the
harmonics amplitude for faulted machine.
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Fig. 9: Experimental results of the stator current spectrum
for the distributed winding machine when healthy, eccentricity
fault and short circuit fault.

It can be noticed from the harmonic spectrum that the
appearance of the fault causes changes to the current (or
voltage) spectrum. The relative change depends on the type
and the severity of that fault. These changes in the main
harmonics amplitude can be used as classification features to
detect the fault type and estimate the severity.

A. Identifying the fault type

LDA classification was used first to detect the type of fault
(static eccentricity, turn-to-turn short circuit, or demagnetiza-
tion). Since the first 15 harmonics are used as features for
the classifier, more than 15 samples are needed in the sample
space for the LDA classification matrix to converge [28]. Table
IT shows the classification results of fault detection for both
machines using FEA simulation for two different loads, LDA
was performed separately at each load. The sample space
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Fig. 10: Experimental results for the stator current frequency
spectrum when healthy and eccentricity fault.

contains 44 samples that correspond to four different classes.
Each class represents a specific machine state as follows: class
0 corresponds to the healthy case, class 1 corresponds to
12% static eccentricity, class 2 corresponds to 12% shorted
conductors and class 3 corresponds to 80% demagnetization
for one magnet. Each class contains 11 samples, generated
by varying the speed from 1000 rpm to 2000 rpm in steps of
100 rpm. Two different operating loads were tested, 30% and
60% of the full load. The samples for each fault were chosen
as the minimum accepted severity, so that, if the algorithm
was able to detect the fault with lower severity, the fault with
a higher severity can also be detected.

To validate the classification method the leave-one-out
method is used; one sample from the sample space is selected
and left out. The coefficient matrix is calculated from the rest
of the samples. The selected sample is classified using these
coefficients. This process is then repeated for every sample in
the sample space. Each time the coefficients are recalculated
and the left-out sample is classified using these coefficients.
The classification accuracy for each class can be calculated
as: N,

orrect
— % 100% )]
Ntotal

where CC(%) represents the percentage of the correct classi-
fication for each class, N yrrect 1 the number of the samples
that are classified correctly and Ny, is the total number of
samples in the sample space. From the results in Tablell, it can
be noted that LDA is able to classify the type of fault correctly
and distinguish between different faults for both machines at
different operating conditions.

CO(%) =

B. Identifying the fault severity

After detecting the fault and determining its type, it is
necessary to estimate the severity. LDA was used again to
estimate the severity of the eccentricity fault or the turn-to-turn
short circuit fault. Table III shows the classification results for
eccentricity severities for both machines under two different
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TABLE II: LDA classification results for fault detection using
FEA results. (11 samples/class, speeds 1000 — 2000 rpm).

Correct classification

Concentrated Winding  Distribution Winding

30% 60% 30% 60%

full load full load full load  full load
Healthy 100% 100% 100% 91%
12% ECC 91% 91% 100% 91%
12% Short 100% 100% 100% 100%
80% Demag. 100% 100% 100% 100%

loads at 30% and 60% of full load using FEA simulation. Table
IV shows the classification results for the turn-to-turn short
circuit fault for both machines. For the static eccentricity case,
the sample space consists of 33 samples for three different
severities: 12%, 25%, and 45%. Each sample corresponds
to a specific speed from 1000rpm to 2000rpm in steps of
100rpm. A total of 3 classes assigned as follows: class 0
corresponds to 12% static eccentricity, class 1 corresponds to
25% static eccentricity and class 2 corresponds to 45% static
eccentricity. For the turn-to-turn circuit fault, the sample space
consists of 33 samples, corresponding to healthy case and
two degrees of shorted turns: class O corresponds to healthy
case, class 1 corresponds to 12% shorted conductors and class
2 corresponds to 25% shorted conductors. The leave-one-out
method is used to validate the results.

TABLE III: LDA classification results to detect the severity of
static eccentricity fault using FEA results. (11 samples/class,
speeds 1000 — 2000 rpm).

Correct classification

Concentrated Winding  Distribution Winding

30% 60% 30% 60%

full load full load full load  full load
12% ECC 91% 100% 100% 91%
25% ECC 91% 100% 100% 100%
45% ECC 100% 100% 100% 100%

TABLE IV: LDA classification results to detect the severity
of turn to turn short circuit fault using FEA results. (11
samples/class, speeds 1000 — 2000 rpm).

Correct classification

Concentrated Winding  Distribution Winding

30% 60% 30% 60%

full load full load full load  full load
Healthy 100% 100% 100% 91%
12% Short 91% 100% 91% 100%
25% Short 100% 100% 100% 100%

From the classification results, it is clear that LDA was
able to detect the type of fault and estimate its degree for
both machines. However, some of the samples related to the
12% static eccentricity fault were not classified correctly,
even though only simulation experiments were used that
did not have measurement noise. The reason was that for
low severities of eccentricity faults, most of the harmonic

amplitudes for the 12% eccentricity were close to those for
the healthy machine; hence the LDA classification cannot
distinguish between healthy and the 12% static eccentricity
fault for a few samples.

C. Comparing FEA with experimental data

In this paper we combined the effects of both speed and
torque to evaluate the accuracy of LDA classification for fault
detection and identification. First, the training samples and the
testing samples were collected from operation with the same
torque level. Samples for healthy and faulted machine were
collected from three torque levels (204, 504 and 70A). For
each class 11 samples generated by varying the speed from
500rpm to 1000rpm in steps of 50rpm, with a sampling
frequency of 10kHz (10000 points are recorded for each
sample (1s)). The leave-one-out method was used to test and
validate the classification method. (Results are shown in Tables
V and VI for cases 1, 3 and 4).

To evaluate the validity of the method when the testing
samples were different than the training samples, samples from
two torque levels were tested (30A and 100A). The coefficients
used for these two cases were interpolated from the calculated
coefficients from 20A, 50A and 70A. Each class contains
11 samples generated by varying the speed from 500 rpm to
1000 rpm in steps of 50 rpm. (Results are shown in Tables V
and VI for cases 2 and 5).

An additional case was tested when the testing samples and
training samples were differ in both speed and torque. For
this case, each class contains 11 samples. The testing samples
were collected while the machine was operating at a torque
of 30A by varying the speed from 525rpm to 1025 rpm in
steps of 50rpm. The coefficients were interpolated from the
calculated coefficients from 204, 50A and 70A by varying the
speed from 500 rpm to 1000 rpm in steps of 50 rpm. (Results
are shown in Tables V and VI for case 6).

Table. V shows a comparison of the correct classification
results for fault detection between the experimental and FEA
simulation for the distributed winding machine under healthy,
25% eccentricity fault and 12% short circuit fault. Table
VI shows a comparison of the correct classification results
between the experimental and FEA simulation for the concen-
trated winding machine under healthy and two severities of
eccentricity fault (25% and 50%). Table VII shows a compar-
ison of the classification results for fault severity detection be-
tween the experimental and FEA simulation for the distributed
winding machine under two severities of eccentricity fault
(25% and 50%). Table VIII shows a comparison of the correct
classification results for fault severity detection between the
experimental and FEA simulation for the distributed winding
machine under two severities of short circuit fault (12% and
25%).

The results show that the most accurate classification can
be achieved when the testing and the training samples were
collected from the same load. A minimum of 82% of the
samples were classified correctly. Interpolation for the training
samples can be used if the testing samples were collected from
a load close to the training samples load, but the accuracy
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TABLE V: Comparison of LDA classification results between
experiments and FEA to detect the fault type for the distributed
winding machine. (11 samples/class, speeds 500 — 1000 rpm).

Correct classification

Experimental results FEA results

case # H 25%  12% H 25% 12%

ECC Short ECC Short
1-20A 91% 91% 100% 100% 100% 100%
2-30A 82% 82% 82% 91% 82% 91%
3-50A 91% 82%  91% 91% 91% 100%
4-70A 91% 82%  82% 90% 82% 82%
5-100A 2% 63% 2% 82% 2% 82%
6-30A/Speed - - - 91% 82% 82%

TABLE VI: Comparison of LDA classification results be-
tween experiments and FEA for the concentrated winding
machine.(11 samples/class, speeds 500 — 1000 rpm).

Correct classification

Experimental results FEA results

case # H 25%  12% H 25% 12%

ECC  Short ECC Short
1-20A 100% 91% 100% 100% 100% 100%
2-30A 82% 2% 82% 91% 82% 91%
3-50A 91% 82% 91% 91% 91% 91%
4-7T0A 91% 82% 91% 91% 91% 91%
5-100A 2% 72% 2% 2% 2% 82%
6-30A/speed - - - 82% 2% 82%

TABLE VII: Comparison of LDA classification results be-
tween experiments and FEA to detect the fault severity for
the distributed winding machine. (11 samples/class, speeds
500 — 1000 rpm).

Correct classification

Experimental results FEA results

case # H 25%  50% H 25%  50%

ECC ECC ECC ECC
1-20A 91% 91% 91% 100% 91%  100%
2-30A 82% 82% 82% 91% 82% 91%
3-50A 91% 82% 8% 91% 91% 91%
4-7T0A 82% 82% 82% 91%  82%  82%
5-100A  72% 62% 82% 8% 82%  82%

TABLE VIII: Comparison of LDA classification results be-
tween experiments and FEA to detect short circuit fault sever-
ity for the distributed winding machine. (11 samples/class,
speeds 500 — 1000 rpm).

Correct classification

Experimental results FEA results

case # H 12%  25% H 12% 25%

Short  Short Short Short
1-20A 91% 91% 91% 100% 100%  100%
2-30A 82% 82% 91% 91% 91% 91%
3-50A 91% 82% 82% 91% 91%  100%
4-7T0A 82% 82% 91% 91% 82% 91%
5-100A  72% 2%  82% 82% 82% 82%

decreases if the training samples were collected from loads that
were too different from the testing samples loads. A minimum

correct classification of 62% in the case of 100A was achieved
to detect eccentricity fault. A minimum percentage of 72% was
achieved in the case of 30A for eccentricity fault detection.

To test the method over the operating range and not only
at specific torques, the entire sampling space was modified
to contain different torques and speeds. Tables IX and X
show a comparison of the correct classification results between
experimental data and FEA of fault detection and classification
for the distributed winding machine. The sample space for
each class contains 40 samples, so a total of 120 samples
were used to generate the training matrix. The 40 samples
correspond to 4 different currents, each case contains 10 sam-
ples that were generated by varying the speed from 550 rpm to
1000 rpm in steps of 50 rpm. The combination of the amplitude
of the first 15 harmonics were used as the features for the
LDA classification. Fig. 11 shows the full training matrix
construction for the healthy case and two different faults. Fig.
12 shows the construction of the healthy portion of the full
training matrix.

M ozl 12 13 115
: : : : Healthy
1’401 £E402 $403 1’4015
T4l x412 413 T4115
: : : 25% ECC.
Trgol X802  Tgo3 Tg0ld
rg1l  xg12 813 xg115
: : : : 12% short
L T1201 21202 %1203 x12015 |

Fig. 11: Full training matrix for healthy case and two faults
(25% eccentricity and 12% turns of phase A shorted).

i 3311 1‘12 .5613 .56115 ]
: : : ; 20A
.1‘101 33102 33103 l‘1015
.’Elll $112 {,C113 5171115
: : : I 30A
H .’E201 $202 £C203 £C2015
.1‘211 33212 33213 JJ2115
. . . . 40A
.’1,‘301 1‘302 1‘303 1‘3015
.’E311 IE312 £C313 £C31].5
: : : : S0A
L Ta0l x402 7403 24015 ]

Fig. 12: Training matrix for healthy case only.

The results show that the proposed method was able to
detect the type of the fault and estimate the severity either
by using the harmonics of the phase voltages or of the
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TABLE XI: A comparison of LDA classification results for
the distributed winding machine for different SNR levels.(10
samples/class, speeds 550 — 1000 rpm).

TABLE IX: A comparison of LDA classification results to
detect the fault type for the distributed winding machine

between experiments and FEA using the full training matrix.

Correct classification

Exp. using current  Exp. using voltage =~ FEA Data
Healthy 87.5% 85% 95%
25% ECC 85% 80% 88%
12% Short 88% 85.5% 92.5%

TABLE X: A comparison of LDA classification results to
detect the severity of eccentricity fault for the distributed
winding machine between experiments and FEA using the full
training matrix.

Correct classification

Exp. using current  Exp. using voltage = FEA Data
Healthy 85.5% 87.5% 91%
25% ECC 77.5% 80% 87.5%
50% ECC 80% 77.5% 90.5%

current signals. When the training and testing features were
extracted from samples collected at different operating loads,
the classification results were not as accurate as in the case
when the samples were collected from the same operating
torque. For fault detection, an average of 89.6% of the samples
were classified correctly for the FEA samples, 81% of the total
samples were classified correctly from the experimental data
using the harmonics in the measured feedback current, and
81.6% were classified correctly based on the harmonics in the
voltage signal.

In practical applications, tested machines might differ due
to the variations in the manufacturing tolerance and material
property. To evaluate the robustness of the detection methods,
Additive White Gaussian Noise (AWGN) with different Signal
to Noise Ratio (SNR) levels was added to the tested current
samples. A comparison of the classification results for fault
detection between experimental and FEA is shown in Table
XI. For this case, the sample space contains of 30 samples
corresponding to three classes: healthy, 25% static eccentricity
and one turn-to-turn short circuit fault. Each class contains
10 samples generated by varying the speed from 550 rpm to
1000 rpm in steps of 50rpm, with a sampling frequency of
10K H z for a current of 20A. It is noted that the change in the
harmonics amplitude due to the noise affects the classification
results, which makes the detection based on the harmonics
amplitude not robust at high noise levels.

D. Effect of Temperature

The change in the operating temperature causes multiple
changes to the stator current and voltage of PMSMs. The
increase of the operating temperature causes an increase in
the stator resistance and a decrease in the magnet remanence.
The effect of temperature is modeled in FEA for both tested
machines by changing the values of the stator resistance and
the magnet remanence flux based on the following formulas:

RS(T) :R520(1+01R*(T720)) (10)

Correct classification

FEA results

Experimental results

SNR H 25%  12% H 25% 12%
(dB) ECC  Short ECC  Short
100 90% 80% 90% 100% 100%  90%
90 90% 80% 90%  100% 100%  90%
80 88% 83% 8% 95% 92% 88%
70 80% 5% 79% 90% 86% 82%
60 0% 65% 71% 80% 70% 76%

Bo(T) = Byao(1 + apy # (T — 20)) (11)

where R is the value of the stator resistance at 20°C, ap =
0.00393 is the temperature coefficient for the stator resistance,
B0 is the magnet permeance of the rotor magnet at 20°C,
apr = —0.0011 is the temperature coefficient for the magnet
and 7T is the operating temperature.

Table XII shows the simulation results of fault classification
for fault detection under different temperatures for both ma-
chines. The sample space contains 40 samples corresponding
to 4 classes: Healthy, 12% static eccentricity, 12% short circuit
fault and 80% demagnetization. Each class consists of 11
samples generated by varying the speed from 1000rpm to
2000rpm in a steps of 100rpm. The training samples were
collected at an operating load of 204 at a temperature of 20°C,
while the testing samples were collected at a temperatures of
20°C, 709C and 150°C.

TABLE XII: LDA classification results for fault detection
using FEA results. (11 samples/class, speeds 1000—2000 rpm).

Correct classification

Concentrated Winding Distribution Winding

20°C  70°C  1209C  20°C  709C 120°C
Healthy 100%  72% 63% 100%  72% 63%
12% ECC 91% 2% 55% 91% 2% 63%
12% Short 100%  81% 63% 100%  81% 72%
80% Demag. 100%  63% 55% 91%  55% 55%

It can be noticed that the temperature is an important
factor that needs to be considered. If the training samples
are collected from a temperature that is relatively close to
the testing samples temperature (difference in temperature be-
tween testing and training samples below 40°C), the classifier
is able to detect the fault type. If testing samples are collected
from temperature that is 40°C or more than the training
samples, the accuracy of the classifier reduces. To account
for temperature variation, samples from FEA can be used as a
training samples. However, the mesh quality and the variation
in the material parameters causes small differences between
the actual model and the simulated model. These changes
might affect the harmonics amplitude, and reduce the accuracy
of the classification. Often in practice FEA results are adjusted
using empirical factors. In this case, samples collected from
FEA can be used as a training samples.
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VI. CONCLUSIONS

In this paper, the MSCA and LDA classifiers were evaluated
for accuracy for fault detection and estimation in PMSM. The
amplitude of the harmonics of the phase voltage or stator
current signals were used as features for the LDA classifier
to detect the fault type and estimate its severity. Three faults
were discussed: static eccentricity, turn-to-turn short circuit,
and partial demagnetization fault. Tests were performed using
FEA and validated using experimental data for two types of
PMSMs: a 12 poles distributed winding machine and a 16
poles concentrated winding machine.

Most of the previous detection and separation methods
are based on using the subharmonics of the stator current
signal while the motor is operating at a specific speed and
torque. For the proposed method, experimental and simulation
classification results show that the variation in amplitude of the
current or voltage harmonics due to the presence of a fault in
the machine, can be used to detect the fault type and estimate
the severity under different operating speeds and loads. The
accuracy of the classification depends on the density of the
training samples in the sample space. The highest classification
accuracy is achieved when the training and the testing samples
are collected from similar operating conditions. Interpolation
for the training samples can also be used if the testing samples
are collected from a different operating conditions than the
training samples. The accuracy will decrease when the training
samples are collected from an operating conditions that are too
different from the testing samples (results shown in Tables II-
XII).

The proposed method is valid for the machine at steady state
operation. Since that only the first 15 harmonics are needed for
the classifier, only few cycles are needed. It is also important
to mention that the magnitude of the resistance of the short
was relatively high. Therefore, the amplitudes of the harmonics
from all the phases were close in the case of short circuit fault.
This makes the method able to detect the short circuit fault no
matter which phase the features were extracted from, but not
able to detect the fault location (i.e. the shorted phase).
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