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TABLE VII
COMPARISON OF SEIZURE DETECTION ALGORITHMS

Fig. 11. Algorithm performance for different number of channels used.

Our algorithm consumes over an order of magnitude less
power than comparable ones in the literature while still de-
tecting 98.5% of seizures. It does have a higher number of
false alarms, which means that we need to store more data
to be analyzed than others. In order to estimate the power
penalty of having extra data, we used a 128 Mbit flash memory
(MX25U12835FZ2I) and measured its power when writing
to it at the expected rate. The memory consumes 1.3 per
channel. Therefore, if we include this power penalty, our algo-
rithm still performs better than the other systems by a factor of
three. Even though our algorithm has a higher number of false
alarms than other ones, this is not an issue since we can run the
stored data through any complex algorithm, such as [10], in a
computer to reduce the number of false alarms to a minimal.

F. Effect of Number of Channels on Algorithm
Fig. 11 shows the results of the algorithm for using different

number of channels: from one to eight. As depicted by the chart,
if only one channel is available, the algorithm can still detect
approximately 94% of the seizures. This is very encouraging,
given the fact that sometimes the electrodes might be placed on
areas of the brain barely affected by seizures. Our ASIC can
record up to eight channels of EEG, and if the location of the
seizure is known and all eight channels are correctly placed,
98.5% of seizures are detected.

VII. CONCLUSION
This paper presented the design of an ASIC to be used in a

minimally invasive subdermal implantable EEG recorder and
seizure detector. The ASIC can record up to eight channels of

EEG and uses a power-efficient algorithm to detect seizures.
In the diagnosis mode, the ASIC records EEG up to five times
the typical bandwidth. The higher bandwidth enables recording
of HFO, which can potentially improve diagnosis. The ASIC’s
low-power consumption enables the design of smaller and better
ambulatory EEG systems. It offers patients with epilepsy a more
convenient way of monitoring their seizures and gives doctors
more accurate information for diagnosis and treatment options.
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