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ABSTRACT 
 

The Big Bang–Big Crunch (BB–BC) optimization algorithm is a new optimization method that relies on the 
Big Bang and Big Crunch theory, one of the theories of the evolution of the universe. In this paper, a Big 
Bang–Big Crunch algorithm is presented for solving optimal power flow (OPF) problems with valve-point 
effects. The proposed algorithm has been tested with the IEEE 30-bus system with different fuel cost 
characteristics, quadratic cost curve model, and quadratic cost curve with valve-point effects model. 
Numerical results demonstrate the efficiency of the BB–BC algorithm compared to other heuristic 
algorithms. 
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1. INTRODUCTION  
 

Economic dispatch is one of the most important 
problems to be solved in the operation of a power 
system. Improvements in scheduling the unit 
outputs can lead to significant cost savings. The 
primary objective of the economic dispatch problem 
(EDP) of electric power generation is to schedule 
the committed generating unit outputs so as to meet 
the required load demand at minimum operating 
cost while satisfying all unit and system equality 
and inequality constraints [1]. This makes the EDP 
a large-scale highly non-linear constrained 
optimization problem. 

The input–output characteristics of large units are 
inherently highly non-linear because of valve-point 
loadings, generating unit ramp rate limits, etc. 
Furthermore they may generate multiple local 
minimum points in the cost function. In light of the 
non-linear characteristics of the units, there is a 
demand for techniques that do not have restrictions 
on the shape of the fuel-cost curves [2]. To obtain 
accurate dispatch results, approaches without 
restriction on the shape of incremental fuel-cost 
functions are needed. Whereas both lambda-
iterative and gradient technique methods in 
conventional approaches to the problems are 
calculus-based techniques, and require a smooth 
and convex cost function and strict continuity of the 
search space. Dynamic programming (DP) [3] 
imposes no restrictions on the nature of the cost 
curves and therefore it can solve EDP with 
inherently nonlinear and discontinuous cost curves. 

This method, however, suffers from the “curse of 
dimensionality” or local optimality [1]. 

In the past decade, random search optimization 
methods, such as simulated annealing (SA) [4], 
evolutionary programming (EP)  [5], genetic 
algorithms (GA)  [6], [7], tabu search (TS) 
algorithm [8], [9] and particle swarm optimization 
(PSO) [10], which are probabilistic heuristic 
algorithms, have been successfully used to solve the 
dynamic ED problem. 

A new optimization method relied on one of the 
theories of the evolution of the universe namely, the 
Big Bang and Big Crunch theory is introduced by 
Erol and Eksin [11] which has a low computational 
time and high convergence speed. According to this 
theory, in the Big Bang phase energy dissipation 
produces disorder and randomness is the main 
feature of this phase; whereas, in the Big Crunch 
phase, randomly distributed particles are drawn into 
an order. The Big Bang–Big Crunch (BB–BC) 
Optimization method similarly generates random 
points in the Big Bang phase and shrinks these 
points to a single representative point via a center of 
mass in the Big Crunch phase. After a number of 
sequential Big Bangs and Big Crunches where the 
distribution of randomness within the search space 
during the Big Bang becomes smaller and smaller 
about the average point computed during the Big 
Crunch, the algorithm converges to a solution. The 
BB–BC method has been shown to outperform the 
enhanced classical Genetic Algorithm for many 
benchmark test functions [11]. 
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In this paper, the Big Bang–Big Crunch (BB–
BC) Optimization method has been employed to 
solve economic dispatch problem with a valve point 
effects. The feasibility of the proposed method is to  
demonstrated and compared to those reported in the 
literature. The results are promising and show the 
effectiveness of the proposed method. 

2. PROBLEM FORMULATION 
 
2.1 Basic Economic dispatch Formulation 

The total cost of operation of generators includes 
fuel, and maintenance cost but for simplicity only 
variable costs need to consider are fuel costs. The 
fuel cost is Important for thermal power plant. For 
the fuel costs, it is assumed that fuel cost curves for 
each generating unit is given [12]. 

Consider a system with n generators committed 
and that all the loads PD, find PGi and Vi, PL, δi.  
i=1,2,..,n. To minimize the total fuel cost 
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Where N is the total number of generation units, 
ai, bi, ci is the cost coefficients of generating unit 
and PGi is the real power generation of ith unit. i = 
1, 2 … to N. 

Subject to the satisfaction of the power flow 
equations and the following inequality constraints 
on generator power, voltage magnitude and line 
power flow. 
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Where PD is the demand power and PL is the 

total transmission network losses. 

B. Inequality Constraints As 

Branch flow limits: 

li niSSi ,...1max =≤                      (3) 

Where nl is the number of lines. 

Voltage at load buses 

dDD niSSiS ,...1maxmin =≤≤       (4) 

Where nd is the number of load buses. 

Generator MVAR 

NiQQQ GiGiGi ,...1maxmin =≤≤              (5) 

Slack bus MW 
maxmin

GGG PPP ≤≤                            (6) 

Transformer tap setting 
maxmin
kkk ttt ≤≤                               (7) 

Upper and lower bounds with bus voltage phase 
angles: 

maxmin
iii δδδ ≤≤                             (8) 

2.2. valve-point effects  

The generating units with multi-valve steam, 
turbines exhibit a greater variation in the fuel cost 
functions. Since the valve point results in the 
ripples as show in fig. 1, a cost function contains 
higher order nonlinearity [13]. Therefore, the 
equation (1) should be replaced as the equation (9) 
to consider the valve point effects. Here, the 
sinusoidal functions are thus added to the quadratic 
cost function as follows. 

The incremental fuel cost function of the 
generation units with valve-point loading is 
represented as follows.  

))(sin()( min
2

GiGiiiGiiGiiigi PPfePcPbaPFi −××+++=  (9) 

Where ei and fi are the coefficients of generator i 
reflecting valve point effects. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 : Fuel cost versus power output for 6 valve 

steam turbine unit. 
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3. BIG BANG–BIG CRUNCH (BB–BC) 
OPTIMIZATION ALGORITHM 

 
The BB–BC method developed by Erol and 

Eksin [11] consists of two phases: a Big Bang 
phase, and a Big Crunch phase. In the Big  Bang 
phase, candidate solutions are randomly distributed 
over the search space. Similar to other evolutionary 
algorithms, initial solutions are spread all over the 
search space in a uniform manner in the first Big 
Bang. Erol and Eksin [11] associated the random 
nature of the Big Bang to energy dissipation or the 
transformation from an ordered state (a convergent 
solution) to a disorder or chaos state (new set of 
solution candidates). 

Randomness can be seen as equivalent to the 
energy dissipation in nature while convergence to a 
local or global optimum point can be viewed as 
gravitational attraction. Since energy dissipation 
creates disorder from ordered particles, we will use 
randomness as a transformation from a converged 
solution (order) to the birth of totally new solution 
candidates (disorder or chaos) [11]. 

The proposed method is similar to the GA in 
respect to creating an initial population randomly. 
The creation of the initial population randomly is 
called the Big Bang phase. In  this phase, the 
candidate solutions are spread all over the search 
space in an uniform manner [11]. 

The Big Bang phase is followed by the Big 
Crunch phase. The Big Crunch is a convergence 
operator that has many inputs but only one output, 
which is named as the ‘‘center of mass”, since the 
only output has been derived by calculating the 
center of mass. Here, the term mass refers to the 
inverse of the merit function value [14]. The point 
representing the center of mass that is denoted by xc 
is calculated according to: 
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where xi is a point within an n-dimensional 
search space generated, fi is a fitness function value 
of this point, N is the population size in Big Bang 
phase. The convergence operator in the Big Crunch 
phase is different from ‘exaggerated’ selection 
since the output term may contain additional 
information (new candidate or member having 
different parameters than others) than the 
participating ones, hence differing from the 

population members. This one step convergence is 
superior compared to selecting two members and 
finding their center of gravity. This method takes 
the population members as a whole in the Big-
Crunch phase that acts as a squeezing or 
contraction operator; and it, therefore, eliminates 
the necessity for two-by-two combination 
calculations [11]. 

After the Big Crunch phase, the algorithm must 
create new members to be used as the Big Bang of 
the next iteration step. This can be done in various 
ways, the simplest one being jumping to the first 
step and creating an initial population. The 
algorithm will have no difference than random 
search method by so doing since latter iterations 
will not use the knowledge gained from the 
previous ones; hence, the convergence of such an 
algorithm will most probably be very low. An 
optimization algorithm must converge to an optimal 
point; but, at the same time, in order to be classified 
as a global algorithm, it must contain certain 
different points within its search population with a 
decreasing probability. To be more precise, we 
mean that, large amount of solutions generated by 
the algorithm must be around the 'so-called' optimal 
point but the remaining few points in the population 
bed must be spread across the search space after 
certain number of steps. This ratio of solution 
points around the optimum value to points away 
from optimum value must decrease as the number 
of iterations increases; but, in no case, it could be 
equal to zero, which means the end of the search. 
This convergence or the use of the previous 
knowledge (center of mass) can be accomplished 
by spreading new off-springs around this center of 
mass using a normal distribution operation in every 
direction where the standard deviation of this 
normal distribution function decreases as the 
number of iterations of the algorithm increases. 
This convergence can be formulated as below, 
where the space boundary is the sum of the 
Euclidian distances of all members: 

space boundary in the kth iteration/space 
boundary in the (k+1)th iteration > 1 

After the second explosion, the center of mass is 
recalculated. These successive explosion and 
contraction steps are carried repeatedly until a 
stopping criterion has been met. The parameters to 
be supplied to normal random point generator are 
the center of mass of the previous step and the 
standard deviation. The deviation term can be fixed, 
but decreasing its value along with the elapsed 
iterations produces better results. 
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After the Big Crunch phase, the algorithm 
creates the new solutions to be used as the Big 
Bang of the next iteration step, by using the 
previous knowledge (center of mass). This can be 
accomplished by spreading new off-springs around 
the center of mass using a normal distribution 
operation in every direction, where the standard 
deviation of this normal distribution function 
decreases as the number of iterations of the 
algorithm increases [14]: 

krlxx cnew /.+=                         (11) 
where xc stands for center of mass, l is the upper 

limit of the parameter, r is a normal random 
number and k is the iteration step. Then new point 
xnew is upper and lower bounded. 
The BB–BC approach takes the following steps 
[11]: 
Step 1 Form an initial generation of  N 
candidates in a random manner. Respect the limits 
of the search space. 
Step 2  Calculate the fitness function values of all 
the candidate solutions. 
Step 3  Find the center of mass according to (10). 
Best fitness individual can be chosen as the center 
of mass. 
Step 4  Calculate new candidates around the center 
of mass by adding or subtracting a normal random 
number whose value decreases as the iterations 
elapse of  using (11). 
Step 5 Return to Step 2 until stopping criteria has 
been met. 

 
Fig. 2 BB–BC-OPF computational procedure. 

 
4. LOAD FLOW CALCULATION 
 

Once the reconstruction operators have been 
applied and the control variables values are 
determined for each candidate a load flow run is 
performed. Such flows run allows evaluating the 
branches active power flow, the total losses and 
voltage magnitude this will provide updated 
voltages angles and total transmission losses. All 
these require a fast and robust load flow program 
with best convergence properties; the developed 
load flow process is upon the full Newton Raphson 
algorithm [15]. 

 
5. SIMULATION RESULTS AND 

DISCUSSION 
 

The proposed BB–BC algorithm is tested on 
standard IEEE 30 bus system and a comparison 
with other heuristic algorithms reported in [16], 
[17]. The test system consists of 6 thermal units 
(Table 1), 24 load buses and 41 transmission lines 
of which four of the branches (6-9), (6-10), (4-12) 
and (28-27) are with the tap setting transformer. 
The total system demand is 283.4 MW 

All methods are performed with ten trials under 
the same evaluation function and individual 
definition in order to compare their solution quality, 
convergence characteristic and computation 
efficiency. In these examples. The software was 
implemented by the MATLAB language, on a 
Pentium 4, 2.4 GHz personal microcomputer with 
1GB DDR RAM under Windows XP. 

According to simulation, the following 
parameters in the BB–BC algorithms methods are 
used : 

- The  number  of  generation  is  100 iterations and 
Size of population 50 individuals (candidates). 

- The individual having minimum cost value is 
chosen for Big-Crunch phase. 

- New population (Big Bang phase) is generated by 
using normal distribution principle with (11): 
 

itrandPPPestP GiMinGiMaxi
k

Gi /).( −+=   (12) 

Where  k number  of  candidates, i number  of 
parameters, Pesti value  which falls with minimum 
cost, PGiMax and PGiMin are parameter upper and 
lower limits and it number  of iterations. 
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5.1. Case 1: The OPF with quadratic fuel cost 
functions 

In this case the units cost curves are represented 
by quadratic function. The generator cost 
coefficients are given in Table A.1. The proposed 
BB–BC based OPF algorithm  is applied to 
standard IEEE 30 bus system.  

The best solutions, which are shown in Table 1, 
satisfy the system constraints. The statistical results 
obtained with ten trials, such as the generation cost, 
computational time and Standard deviation are 
shown in Table 2. 

Table 1 :  Best solution of standard IEEE 30 system 
Unit power output Methods 
 IEP 

]16[  
SADE_ALM 

[17] 
BB–BC 

P1 (MW) 
P2 (MW) 
P5 (MW) 
P8 (MW) 
P11 (MW) 
P13 (MW) 
Total Pg (MW) 
Ploss (MW) 
Total cost ($/h) 

176.2358 
49.0093 
21.5023 
21.8115 
12.3387 
12.0129 

292.9105 
9.5105 
802.465 

176.1522 
48.8391 
21.5144 
22.1299 
12.2435 
12.0000 
292.8791 
9.4791 
802.404 

175.8299 
48.6122 
21.1692 
22.6083 
12.5263 
12.0000 

292.7460 
9.346 

802.0207 
 

Fig. 3 shows the cost convergence of BB–BC 
based OPF algorithm for various numbers of 
generations. It was clearly shown that there is no 
rapid change in the fuel cost function value after 
100 generations. Hence it is clears from the Fig. 3  
That the solution is converged to a high quality 
solution at the early iterations (45 iterations). 
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Fig. 3 Convergence characteristic of system (Case 1). 

 

Or the IEEE 30 bus system, the best solutions of 
the seven methods are given in Table 1 after 
performing ten trials. The results of the BB–BC 
based OPF algorithm are compared with those 
obtained by the EP, TS, TS/SA, ITS, IEP, and 
SADE_ALM algorithms in terms of Worst, 
Average, Best generation cost, the Standard 
deviation and Average computational time as 
shown in Table 2. Obviously, all methods have 
succeeded in finding the near optimum solution 
presented in [16], [17] with a high probability of 
satisfying the equality and inequality constraints. 
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Fig. 4 Distribution of generation cost for IEEE 30 

bus system (Case 1). 

Fig. 4 shows distribution the generation cost of 
the best solution for each run in the case of 283.4  
MW load demand. 

5.1. Case 2: The OPF for units with valve-point 
effects 

In this case, the generator fuel cost curves of 
generator at bus 1 and 2 are represented by 
quadratic functions with rectified sine components 
using (10). Bus 1 is selected as the slack bus of the 
system to allow more accurate control over units 
with discontinuities in cost curves. The generator 
cost coefficients of those two generators are given 
in Table A.2. 

The best solutions, which are shown in Table 3, 
satisfy the system constraints. 

TABLE 2 : COMPARISON OF BB–BC PERFORMANCE WITH OTHER METHODS 
Methods Fuel Cost ($/hr.) Average 

computational 
time (minutes) 

Best cost Average cost Worst cost Standard deviation 

EP [16] 
TS [16] 
TS/SA [16] 
ITS [16] 
IEP [16] 
SADE_ALM [17] 
BB–BC 

802.907 
802.502 
802.788 
804.556 
802.465 
802.404  
802.020 

803.232 
802.632 
803.032 
805.812 
802.521 
802.407  
802.069 

803.474 
802.746 
803.291 
806.856 
802.581 
802.411 
802.132  

0.226 
0.080 
0.187 
0.754 
0.039 
0.003  
0.041 

66.693 
86.227 
62.275 
88.495 
99.013 
15.934  
04.418 
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The statistical results obtained with ten trials, 
such as the generation cost, computational time and 
Standard deviation are shown in Table 4. 

Table 3 : Best solution of standard IEEE 30 bus 
system 

Unit power output Methods 
 IEP 

]16[  
SADE_ALM 

[17] 
BB–BC 

P1 (MW) 
P2 (MW) 
P5 (MW) 
P8 (MW) 
P11 (MW) 
P13 (MW) 

Total Pg (MW) 
Ploss (MW) 

Total cost ($/h) 

149.7331 
52.0571 
23.2008 
33.4150 
16.5523 
16.0875 
291.0458 
7.6458 
953.573 

193.2903 
52.5735 
17.5458 
10.0000 
10.0000 
12.0000 
295.4096 
12.0096 
944.031 

199.6127 
20.0000   
21.7407   
26.2079   
13.9545    
12.0000  
293.5158 
10.1158 
920.5089 

 

Fig. 5 shows the cost convergence of BB–BC 
based OPF algorithm for various numbers of 
generations. It was clearly shown that there is no 
rapid change in the fuel cost function value after 
100 generations. Hence it is clears from the Fig. 5  
That the solution is converged to a high quality 
solution at the early iterations (45 iterations). 
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Fig. 5 Convergence characteristic of the IEEE 30 

bus system (Case 2). 

For this case, the results from ten test runs of 
BB–BC do not violate any constraints. Table 4 
shows that worst, average, best generation cost, the 

standard deviation and average computational time 
of BB–BC are lower than those obtained by TS, 
TS/SA, ITS, EP, IEP and SADE_ALM.  
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Fig. 6 Distribution of generation cost for IEEE 30 

bus system (Case 2). 

Fig. 6 shows distribution the generation cost of 
the best solution for each run in the case of 283.4  
MW load demand. 
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Fig. 7 Comparison of computation performance. 

The comparisons of computational time of the 
seven methods in the two cases   are shown in Fig. 
7. Clearly, the computational time of the MTS 
algorithm method is lowest in comparison to those 
of the other methods. 

 
Table 4 : Comparison of BB–BC performance with other methods 

Methods Fuel Cost ($/hr.) Average 
computational 
time (minutes) 

Best cost Average cost Worst cost Standard deviation 

EP [16] 
TS [16] 
TS/SA [16] 
ITS [16] 
IEP [16] 
SADE_ALM [17] 
BB–BC 

955.508 
956.498 
959.563 
969.109 
953.573 
944.031 
920.508  

957.709 
958.456 
962.889 
977.170 
956.460 
954.800 
920.661 

959.379 
960.261 
966.023 
985.533 
958.263 
964.794 
920.920 

1.084 
1.070 
2.146 
6.191 
1.720 
5.371 
0.121 

61.419 
88.210 
65.109 
85.138 
93.583 
16.160 
5.0472  
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The simulation results in the IEEE 30 bus system 
demonstrate the feasibility and effectiveness of the 
proposed method BB-BC in minimizing cost of the 
generator. It is useful for obtaining high quality  
solution in a very less time compared to other 
methods EP, TS, TS/SA, ITS, IEP and 
SADE_ALM. 

6. CONCLUSION 
  

A Big Bang-Big Crunch optimization (BB-BC) is 
developed for the optimal power flow (OPF) 
problems. This method consists of a Big Bang 
phase where candidate solutions are randomly 
distributed over the search space, and a Big Crunch 
phase working as a convergence operator where the 
center of mass is generated. 

The comparison of numerical results of optimal 
power flow (OPF) problems with valve-point 
effects using the BB–BC method with the results 
obtained by other heuristic approaches are 
performed to demonstrate the robustness of the 
present algorithm.  

The BB-BC optimization has several advantages 
over other evolutionary methods: Most 
significantly, a numerically simple algorithm and 
heuristic methods with relatively few control 
parameters; and the ability to solve problems that 
depend on large number of variables.  

APPENDIX  
Table A.1 : Generator cost coefficients in case 1 

 
Bus 
 No. 

Real power output 
limit (MW) 

Cost Coefficients 

Min Max a b c 
1 50 200 0.00375 2.00 0 
2 20 80 0.01750 1.75 0 
5 15 50 0.06250 1.00 0 
8 10 35 0.00834 3.25 0 
11 10 30 0.02500 3.00 0 
13 12 40 0.02500 3.00 0 

 

Table A.2 : Generator cost coefficients in case 2 
 

Bus 
 No. 

Real power 
output 

limit (MW) 

Cost Coefficients 

Min Max a b c e f 
1 50 200 0.00160 2.00 150 50 0.063 
2 20 80 0.01000 2.50 25 40 0.098 
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