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Abstract—Energy efficient processing architectures represent
key elements for wearable and implantable medical devices.
Signal processing of neural data is a challenge in new designs
of Brain Machine Interfaces (BMI). A highly efficient multi-
core platform, designed for ultra low power processing allows
the execution of complex algorithms complying with real time
requirements. This paper describes the implementation and opti-
mization of a seizure detection algorithm on a multi-core digital
integrated circuit designed for energy efficient applications. The
proposed architecture is able to implement ultra low power par-
allel processing seizure detection on 23 electrodes within a power
budget of 1 mW, outperforming implementations on commercial
MCUs by up to 100 times in terms of performance and up to 80
times in terms of energy efficiency still providing high versatility
and scalability, opening the way to the development of efficient
implantable and wearable smart systems.

I. INTRODUCTION

Recent advancements in Brain Machine Interfaces (BMI)
are paving the way to systems for treating various neural
diseases. Among these studies, treating epilepsy has a great
impact on public health, since this neural disorder affects
approximately 1% of the world population and can result
in severe and disabling pathologies. In epilepsy, the normal
pattern of neuronal activity becomes disturbed, causing de-
pression, convulsions or loss of consciousness. The clinical
measurement of the brain electrical activity through the analy-
sis of the EEG traces, and the expertise of the neurologist can
diagnose the epileptic seizure recognizing certain changes in
patterns of amplitude and frequency of the neural signal. The
therapeutic approach is mainly pharmacological or surgical.
Unfortunately, for about 30% of epileptic subjects, seizures
cannot be controlled with drugs delivery nor surgical tech-
niques; but react to neuromodulation [1], a technique based on
direct electrical stimulation of the brain tissue. In this scenario,
the development of automatic closed loop neuromodulation
systems can reduce the time of reaction many orders of mag-
nitude more than human intervention. Furthermore, a closed-
loop system provides stimulation only when triggered by
seizure detection, hence it is less traumatic wrt first generations
of neuromodulators, which just deliver continuous, constant
stimulation [2].

The design of these systems requires a holistic approach
in the development of sensors, digital architectures and algo-
rithms to process the brain signals. Neuromodulation systems
are based on algorithms that analyze the EEG signal to detect
changes that may represent seizure activity [3]. While the
trend in research goes toward design of dense multichannel
systems, with large and dense arrays of sensors, to allow a
fine grain coverage of the brain surface and target wider areas,
commercial SoA devices like Medtronic Activa PC+S and
Neuropace RNS [4] are only able to manage up to 4 electrodes
with a latency of 500ms due to their limited computing power.
A smaller detection latency is also desirable to react as fast
as possible to a seizure or perform early data acquisition.
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Several studies show that machine learning techniques can
achieve high accuracy in seizure detection [5]. Many inspiring
solutions have been proposed both at chip [6] and system
level [7]. Furthermore, extensive research is being done on
signal processing as well, helping to detect when the seizure
begins [8]. Most of these approaches include dimensionality
reduction, feature extraction and pattern recognition algorithms
for classification [9].

Several research ASICs, designed for very specific tasks,
reach remarkable performance in terms of power consumption
but they totally lack flexibility. The work of [10], based on
a single channel, can detect a limited class of seizures with
50uW. In [11], a subdermally implanted system is presented,
which acquires up to 8 EEG channels and performs seizure
count with less than 3uW per channel. However, it is not usable
in a closed loop system due to the high false positive rate of the
extremely simple algorithm adopted. Since the computational
requirements for these algorithms are challenging and the
complexity scales up with the number of sensors, the design
of a scalable digital architecture must target energy efficiency
for a wide range of workloads.

The open challenge we address in this work is the design
of an efficient programmable framework for seizure detection,
based on the combination of parallel processing and near
threshold computing on Parallel Ultra Low Power (PULP)
platform [12], a scalable and energy efficient multi-core ar-
chitecture for sub-mW, deeply embedded applications. Taking
data from an online EEG dataset [5], we show that PULP is
able to compute a seizure detection on 23 electrodes in less
than 5ms, improving state of the art of commercial systems
by more than 5x if we compare the number of electrodes, and
by 100x in terms of detection latency. Still, we compare the
results with implementations on 32-bit ARM Cortex M4-based
MCUs showing that, by virtue of our powerful and energy-
efficient architecture we reduce the energy required to compute
the algorithm by 15x to 80x, depending on the detection la-
tency requirements. Furthermore, the proposed computational
framework based on a fully software programmable multi-core
architecture is highly scalable, versatile and can be used for a
wide range of architectures and applications.

II. MATERIALS AND METHODS
A. PULP platform

PULP is a programmable multi-core computing platform
that exploits parallel, near-threshold operation and low-power
28nm FD-SOI technology to match computational require-
ments of near-sensors processing applications constrained by
power budgets ranging from sub mW to few mW. The first
implementation of the PULP architecture is described in [12],
while the second is described in [13]. Figure 1(a) shows its die
micrograph used for characterization of the power models used
in this work. The third generation PULP architecture exploited
in this work (PULPvV3) is summarized in the following.
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SoC architecture. The compute engine is a cluster with
a parametric number of OpenRISC cores sharing 4kB of
instruction cache. The core features optimizations and ISA
extensions for energy efficient digital signal processing; in
the context of this work we consider a configuration of the
core augmented with floating-point units [14]. The L1 memory
is composed of a 64kB, single cycle latency, multi-banked,
Tightly Coupled Data Memory (TCDM) working as software-
managed scratchpad memory. The TCDM features a 2 *
number of cores word-level interleaved banks connected to
the processors through a non-blocking interconnect to reduce
banking conflict probability. Off-cluster 256kB L2 memory
access is managed by a tightly coupled DMA optimized
for low power, connected to an AXI-4 interconnect enabling
efficient data transfers. To provide high energy efficiency for
a wide range of workloads, the cluster and the rest of the SoC
are in different power and clock domains controlled by two
Frequency-Locked Loops and external voltage regulators.

Programming model. A lightweight implementation of
OpenMP 3.0 [15] has been tailored to PULPs explicitly
managed, scratchpad-based memory hierarchy on top of a
GCC 4.9 and LLVM 3.7 toolchains. To achieve high energy
efficiency PULP includes special hardware for accelerating key
software patterns such as barriers. Moreover, to reduce the
power wasted by unused cores when worker threads are idling
(e.g., in sequential regions of the program), PULP supports
a clock-gating based thread docking scheme to reduce power
of idle cores [12]. Control of power management knobs is
fully integrated in the OpenMP runtime, hence completely
transparent from the programmer viewpoint.

B. Seizure Detection On PULP

A block diagram of the seizure detection algorithm is
shown in fig. 1(b), providing details of the whole processing
chain and of its parallelization scheme.

Dimensionality Reduction. Using an orthogonal transfor-
mation, we convert the possibly correlated data acquired from
p sensors into a set of linearly uncorrelated components (7).
This transformation, widely used in neural processing [8], is
named Principal Component Analysis (PCA), and represents
an input dataset into a new coordinates system through the
linear transformation:

Y=X-P )

where X, ., is the input data matrix, P,; is the transfor-
mation matrix and Y, ; is matrix of the reduced data. In
this implementation, we reduce the dimensionality of the data
from 23 to 9 components maintaining more than the 90% of
the variance of the original input data.
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Layout of the PULP chip (a) and Seizure Detection Algorithm with computational kernels (b)

As shown in Fig. 1(b), the PCA is composed of five main
sub-kernels, featuring very different parallelism properties.
Mean Value and Covariance Matrix can be efficiently paral-
lelized on multiple cores, since OpenMP threads can process
independently the 23 EEG input channels, producing one raw
of the 23x23 covariance matrix each. Householder Reduc-
tion and Accumulation characterize a complex parallelization
scheme where block level parallelism cannot be exploited. In
these kernels the generation of each column of the reduced
covariance matrix requires the output of the previous column
to be processed. The same process is then replicated by rows,
hence requiring additional synchronization barriers. Moreover,
several OpenMP reductions (e.g. tree additions) are required
to calculate scaling factors to compute intermediate matrixes
in a bidiagonal form. Diagonalization is the most challenging
kernel since the diagonal matrix is calculated in an iterative
manner which is more efficient from the computational point
of view. Moreover, the ¢ column of the output matrix of
this kernel is calculated from the ¢ — 1 column of the input
matrix, and very small parallelism is available with the 23x23
processed matrix. The output of this kernel are eigenvectors
and eigenvalues sorted with descending order in a diagonal
matrix. Principal Component can be efficiently parallelized at
data level, since it requires the multiplication of the 23x256
input EEG components matrix with the 9x23 eigenvector
diagonal matrix connected to most significant eigenvalues,
resulting in a 9x256 principal components matrix.

Feature Extraction. The Discrete Wavelet Transform
(DWT) performs an efficient time-frequency analysis, provid-
ing information on the frequency content of a signal in the
time domain. The signal is decomposed through a bank of
low pass (LPF) and high pass (HPF) filters. The output of a
level n decomposition results in a series of coefficients, named
Detail Coefficients (D)) for the HPF and Approximation
Coefficients (A(y)) for the LPF. We apply a 4 levels DWT
on a 256 samples sliding window to obtain the D;_4. Once
the detail coefficients are extracted, we calculate their energy
to retrieve the information related to the frequency content of
each sub-band with the following equation:

k
Ep,, = Y |Dwli)[’ ®)
1=0

where k is the length of the coefficient vector of level n.
These kernels can be efficiently calculated since the structures
of digital filters and summations can be divided in parallel
threads and parallelized at block level. However, in this case
maximum available parallelism is 9, since one OpenMP thread
is created for each principal component.

Pattern Recognition. Among the algorithms used in EEG
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TABLE 1.

EXECUTION OF SEIZURE DETECTION ON DEEPLY EMBEDDED COMPUTING PLATFORMS

ARM Cortex M4  PULP 1 core PULP 2 cores PULP 4 cores PULP 8 cores
Kernel kCycles load % kCycles | kCycles Speedup® Sleep® | kCycles Speedup® Sleep® | kCycles Speedup®  Sleep®
PCA 2600 82 2072 1235 1,68 19,7 764 2,71 30,4 487 4,25 38,9
Mean+Cov. 1300 41 872 444 1,96 1,1 223 391 1.5 113 7,72 2,8
Householder Red. 272 9 193 131 1,47 16,2 87 2,22 24,7 62 3,11 31,9
Accumulate 133 4 96 57 1,68 10,3 34 2,82 16,9 22 4,36 26,1
Diagonalize 190 6 316 308 1,03 65,6 269 1,17 72,8 209 1,51 76,4
Compute PC 709 22 571 293 1,95 0,3 147 3,88 0,6 75 7,61 1,6
DWT+ENERGY 192 6 173 97 1,78 20,6 59 2,93 34,1 40 4,33 50,5
SVM 369 12 426 222 1,92 34 114 3,74 5,8 61 6,98 12,3
TOT 3165 100 2647 1552 1,71 18,2 933 2,84 28,5 582 4,55 38,6

4 Speed-Up with respect to single-core PULP paltform.
b Mean value of sleep cycles of slave cores (%)

seizure detection, Support Vector Machine (SVM) is a super-
vised classifier widely used for its solid theoretical background
that guarantees global minimum convergence with high com-
putational efficiency [9]. The separation hyperplane between
two classes of vectors is represented by a set of data vectors,
named Support Vectors (SVs) which belong to the border
between the classes [16]. The mean dimension of SVs matrix
calculated for this setup is 36x315. In our application the input
of the SVM classifier is a 36-dimensional vector calculated in
Eq. (2) from the D, coefficients. Having two possible classes,
denoted as C'l; and Cl,, the formula of the decision function
to classify a new input instance is:

pElY {f(x)>07x€Cl1

f(x) = lzzl yiai K(x,8;) — p f(x) <0,x € Cly ®)

where x is the input features vector, s, are the support
vectors, «; y; are precalculated coefficients, p is a bias term
and K(-,-) denotes the Radial Basis Function (RBF) kernel
function, expressed by:

K(x,s;) = exp <|Xsl|) @

202

where o is the variance. The parallelization of the RBF
kernel function is highly efficient since each core can take
over the computation of one of the 315 K () values. The
Decision Function is computed sequentially due to its small
computational requirements, comparable to the cost of the
OpenMP threads creation and termination, hence not suitable
for parallelization.

III. EXPERIMENTAL RESULTS

The EEG data are taken from the CHB-MIT data set, which
collects samples collected from 23 pediatric subjects affected
by intractable seizures. The electrodes are placed following the
International 10-20 System and the EEG signals are acquired
with 256Hz sampling frequency and 16-bit resolution. We took
the EEG data from 8 patients randomly chosen among the
traces that present seizures. To test the system we initially
tuned up the processing chain and executed it on Matlab to
verify the accuracy of the seizure recognition. The algorithm
reaches 98.9% accuracy in the seizure detection with a sen-
sitivity of 0.85. After this validation, the seizure detection
algorithm was evaluated on PULP and two commercial off the
shelf MCUs integrating an ARM Cortex M4 processor. We
consider a high-end MCU (STM32F427) [17] and a low-end
MCU (Ambiq Apollo) [18], that represent the two extremes in
the market for high performance and low power, for Cortex
M4 class architectures, both implemented in 90nm CMOS
technology.

We tested our seizure detection implementation, imposing

3 latency constraints: 500ms, 50ms and 5ms. While the Sms
requirement is not necessary for clinical applications, it is
useful to show performance of the system with different
workloads. The evaluation was conducted executing the pro-
cessing steps of the seizure detection application on a demo
board, to analyze the performance of the two Cortex M4-based
MCUs and on the instruction accurate simulator of the PULP
platform with 1,2,4,8 cores extended with FPUs. The operating
frequency and power consumption of the PULP platform
at different voltage levels have been extracted from post-
layout timing and power analysis of an instance of PULPv3
SoC, accurately calibrated with models and measurements
performed on the first silicon prototype of PULP [12], and
finally adapted to the configurations adopted. A 4-cores PULP
cluster with FPUs achieves S00MHz at 1V and 112,W/MHz
and 50MHz at 0.5V and 24;W/MHz. For fair comparison
we only consider the power of the processors for the MCUs
and the power of the cluster for PULP, excluding the power
consumption of peripheral subsystem which would be similar,
and negligible with respect to the digital processing power.

A. Evaluation of Performance and Energy Metrics

Table I summarizes the execution time (clock cycles) of
the seizure detection application on the reference platforms.
PCA requires 82% of the overall computation time on the
Cortex M4, while DWT, Energy and SVM contribute to the
remaining computational load (18%). When executing the
algorithm exploiting parallel processing over multiple cores
of the PULP platform, the execution time reduces by up to
4.55x with 8 cores. It can be noted that for the kernels with
high parallelism, like Mean value + Covariance, Compute PC
and SVM, that account for 75% of the overall computational
load during sequential execution, the speed-up is nearly ideal.
Householder Reduction and Accumulate require parallel com-
putations on small chunks of data and several synchronization
points, which increase the overhead of the OpenMP runtime.
Diagonalize is an iterative kernel affected by pathological
Amdahl bottleneck caused by the dependencies between matrix
elements calculated during the iterations, which force most of
this kernel to be executed sequentially. For this reason, we
see in table I the high percentage of sleep cycles of the slave
cores of this kernel. Finally, even though DWT + Energy kernel
is highly parallelizable, it is affected by workload unbalance,
since it requires the elaboration of 9 PC components over 8
cores, limiting the overall speedup of this kernel to 4.33x and
leading to a highly increasing ratio of sleep cycles of the slave
cores when increasing parallelism.

Fig. 2(a) shows the operating frequency required to run
the seizure detection on a data frame (23 channels x 256
samples) within a given latency (500ms, 50ms and 5Sms). The
graph highlights that with the limited capabilities of Ambiq
Apollo, the constraints can be satisfied only with 500ms frame
period, while STM32F427 can also satisfy the constraints
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Fig. 2. Frequency (a) and Energy (b) required to execute seizure detection algorithm on Cortex M4 and PULP platform for different frame periods.

for 50 ms latency. By virtue of its scalable architecture,
the PULP platform can satisfy the requirements with all
constraints, being able to consume an average power of 47uW,
473 W, and 5.9mW for 500ms, 50ms, and Sms latency. It can
be noted that increasing the number of cores the operating
frequency required to achieve the real-time constraints on
PULP decreases, allowing to reduce the supply voltage as well.
This leads to significant improvement in power density, thanks
to the quadratic dependency of dynamic power with supply
voltage. This highlights a trade-off between the parallelization
efficiency, which decreases with the number of cores, and
voltage scaling.

This scenario is highlighted in Fig. 2(b), which also shows
the comparison with off-the shelf MCUs, that operates at
nominal voltage supply of 1.8V and 2.5V. The difference in
energy between the MCUs and the single-core PULP platform
at nominal supply voltage is mainly given by technology gap,
different implementation strategy and architectural complexity,
and leads to 12x to 2.5x lower energy. More interesting is
the exploitation of parallel near threshold computing on the
PULP platform, which leads to a further improvement of 6x
with respect to sequential processing, and to an improvement
of 72x and 15x in terms of energy consumption with respect
to commercial MCUs. Energy efficiency is further increased
thanks to the power management techniques applied to idle
cores during sequential execution or barriers, leading to an
average energy reduction of 5%, 12%, 21%, when executing
on 2, 4, and 8 cores, respectively. From an application perspec-
tive, these results show that the optimization of the parallel
processing tailored for a highly efficient HW/SW platform
allows to scale up the complexity of the system (eg. the number
of channels), without losing the real-time requirements. This
combined approach can dramatically extend the battery life of
a closed loop neural stimulation system targeting also a power
budget compatible with implantable energy harvesters [19].

IV. CONCLUSION AND FUTURE WORK

The proposed work shows the strong impact of the PULP
architecture in the design of a real time embedded system
for neural processing. The combination of the near threshold
operation with the parallel multi-core architecture of PULP
outperforms commercial solution by 10-100 times in terms
of performance and up to 80 times in terms of energy effi-
ciency. Moreover, as opposed to ASIC solutions, the proposed
platform maintains the flexibility typical of programmable
processors suitable to implement a versatile and scalable neural
processing framework. Future works target the tuning of the
PULP architecture with dedicated HW optimization in the ISA
design for low power signal processing and also more aggres-
sive algorithmic strategies to improve the parallel speedup in

neural computing algorithms and the energy efficiency of next
generation neural computing systems.
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