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Abstract— Efficient on-chip learning is becoming an essential
element of implantable biomedical devices. Despite a substantial
literature on automated seizure detection algorithms, hardware-
friendly implementation of such techniques is not sufficiently
addressed. In this paper, we propose to employ a gradient-
boosted ensemble of decision trees to achieve a reasonable
trade-off between detection accuracy and implementation cost.
Combined with the proposed feature extraction model, we show
that these classifiers quickly become competitive with more
complex learning models previously proposed for hardware
implementation, with only a small number of low-depth (d < 4)
“shallow” trees. The results are verified on more than 3460
hours of intracranial EEG data including 430 seizures from 27
patients with epilepsy.

I. INTRODUCTION

Given the large population of patients with intractable

epilepsy, the automatic detection of seizure onset has sparked

great interest among researchers over the past 20 years. In

addition to providing a vital seizure alert to the patient, care-

giver or a therapeutic device, it significantly eases the task

of reviewing and labeling seizure segments in a patient’s

EEG, a time-intensive task routinely done by neurologists.

Implanting a device that performs both detection and closed-

loop suppression is the ultimate goal. Today, the Responsive

Neurostimulator (RNS) by NeuroPace provides an FDA-

approved therapy option to reduce the seizure frequency.

However, RNS is bulky, limited in number of channels, and

only relies on simple hard thresholding with moderate seizure

classification accuracy.

The power and area constraints imposed by implantable

devices do not allow the implementation of sophisticated

on-chip classification algorithms. Indeed, even the simple

arithmetic operations performed in conventional classifica-

tion methods, such as SVMs [1] and k-nearest neighbor

(KNN) algorithms [2] can become very costly with increas-

ing number of recording channels and higher sampling rates.

With only simple comparator stages as their building blocks,

decision trees (DTs) are a preferable solution to reduce

hardware design complexity. Despite all their advantages,

decision trees are unfortunately very susceptible to overfitting

in seizure detection, particularly due to the high dimension-

ality of the feature space. This necessitates a careful design.

We present and evaluate a very light seizure detection

algorithm using an ensemble of gradient-boosted decision

tree classifiers. With the proposed feature extraction steps, we

show that these ensembles can compete with more complex
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learning models proposed for on-chip implementation, with

only a small number of low-depth trees. The proposed

approach is tested on a large dataset of over 140 days of

intracranial EEG data from 27 epileptic patients.

Related Work: [3] has utilized a decision tree spike

classification method that interleaves 8 neural channels into

one decision tree block. Operating at 50kHz, the proposed

system performs spike sorting with negligible power and area

per channel. As opposed to spikes that can be classified into

multiple shapes, the seizure detection problem is normally

simplified into two states of seizure and non-seizure, thus

exhibits great potentials for a hardware-optimized imple-

mentation using decision trees. In another application [4], a

wearable gait monitor using decision tree classifiers achieved

roughly identical detection accuracy to support vector ma-

chines, while drawing three times less power. It therefore

provides a framework for power-efficient detection in wear-

able systems, by hierarchical activation of sensors through

a hierarchical decision tree classifier [4]. The authors in [5]

propose a non-linear classifier using Adaboost technique with

decision stumps (trees with depth of one) as base classifier, to

achieve a low complexity seizure detection system. However,

as discussed in Section III, the choice of d = 3 achieves

a better trade-off between classification performance and

implementation complexity.

II. DATA DESCRIPTION AND METHODOLOGY

A. Intracranial EEG Data

In this work, we use the publicly available data from the

iEEG portal1[6], augmented with 8 additional patients from

the UPenn and Mayo clinic’s seizure detection competition

dataset [7], 7 of whom are iEEG recorded at 5kHz and one at

500Hz. The portal includes iEEG recordings at both high and

low sampling rates and various types of epilepsy. All patients

in the portal with three or more expert marked seizures are

included in this analysis. The access IDs of analyzed patients

and further details are provided in Table I. In total, more than

3460 hours of data from 27 patients including 430 seizures

are processed.

B. Feature Selection

Based on our initial study on discriminative performance

versus hardware complexity of several frequency and time

domain features, and the existing literature in [8]-[11],

we limited ourself to the following set of features: line-

length, time-domain variance, and multiple band powers,
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Fig. 1: A general schematic diagram of a boosted ensemble

of shallow decision trees proposed for hardware efficient

seizure detection (here d = 2).

as described in Table II. While studies on EEG signals

have emphasized on an epileptic frequency range of below

30Hz [8], [10], the intracranial EEG (iEEG) signals span a

wider frequency range, lately shown to go beyond 200Hz

for seizure biomarker extraction [12], [13]. These high-

frequency oscillations (HFOs) have been previously studied

[14] on 36h of iEEG data to evaluate their seizure detection

accuracy. The authors have concluded a significant potential

of HFOs for seizure detection. In this work, we compare

the discriminative performance of various frequency bands,

including HFOs, on an extensive iEEG database.

C. Gradient-Boosted Decision Trees

Gradient-boosting [15] is one of the most successful

machine learning techniques that exploits Gradient-based

optimization and boosting, by adaptively combining many

simple models to get an improved predictive performance.

Binary split decision trees are commonly used as the “weak”

learners. Boosted trees are at the core of the state-of-the-

art solutions in a variety of learning domains, given their

TABLE I: Patient Data and Signal Acquisition Info.

Subj. iEEG Portal ID No. Elec. No. Seiz. Rec. Dur. Samp. Rate

1 Study 004-2 56 3 7d 18h 500
2 Study 006 56 5 1d 14h 500
3 Study 040 116 6 2d 23h 5k
4 Study 017 16 9 7d 17h 500
5 Study 011 88 3 3d 12h 500
6 Study 022 56 7 3d 23h 500
7 I001 P034 D01 47 16 1d 8h 5k
8 Study 010 56 3 12d 16h 500
9 Study 023 88 4 2d 5h 500
10 Study 012-1 60 6 3d 7h 500
11 Study 027 48 6 3d 21h 500
12 Study 016 64 7 5d 21h 500
13 Study 031 116 5 6d 19h 500
14 I001 P010 D01 56 10 3d 18h 5k
15 Study 030 64 8 5d 23h 500
16 Study 036 96 4 4d 14h 5k
17 Study 020 56 8 5d 0h 500
18 Study 014 104 15 6d 0h 500
19 Study 021 108 13 6d 11h 500
20 Study 026 96 22 3d 3h 500
21 Study 024 88 19 8d 10h 500
22 Study 028 96 9 1d 16h 500
23 Study 038 88 10 3d 0h 500
24 Study 005 16 151 6d 16h 500
25 Study 012-2 84 28 13d 16h 500
26 Study 019 96 36 5d 16h 500
27 Study 033 128 17 6d 17h 500

excellent accuracy, fast computation and operation. The

output of a boosted classifier (or regressor) has the additive

form of H(x) =
∑

t αtht(x). A general schematic diagram

illustrating the components of an ensemble of depth-2 trees

is shown in Fig. 1. In this paper, we have employed the

XGBoost package [16], a parallelized implementation of

Gradient-boosting algorithm. Applying this method to our

iEEG dataset, we observed over 100 times improvement in

training speed compared to common SVM implementations.

III. CLASSIFIER DESIGN AND PERFORMANCE

EVALUATION

Decision trees are very efficient, but also susceptible to

overfitting in problems with high feature-space dimensional-

ity. One way to address this is to limit the number of nodes

in each tree, i.e., design shallow trees using small number

of features. Shorter trees are also more efficient in hardware

and equally important, incur less detection delay. Therefore,

it is important to carefully select the depth parameter and

also to understand the relative predictive value of individual

features in prior. Figure. 2 shows the Area Under the Curve

(AUC) performance of an ensemble of gradient-boosted trees

versus the number of trees for different values of the depth

parameter. An important observation is that the detection

accuracy is not significantly improved (< 0.5%) with the

depth values of 4 and higher. As a simple benchmark, let us

consider a boosted ensemble of 5 shallow trees with depth

of 3, and compare it to linear SVM, cubic SVM and KNN-

3 models, previously proposed in the literature for on-chip

classification. Figure. 3 shows the F1-measure performance

of these classifiers across different patients. We can see

that this benchmark is already competitive with its peers,

and that it can outperform with larger ensemble sizes. In

our simulations, this benchmark achieved an average seizure

detection sensitivity of 98.3%.

Figure. 4 summarizes the overall performance of examined

features across patients. In order to obtain a more realistic

estimation of accuracy under various measurement condi-

tions, we have not used any pre-processing techniques. The

performance could be further boosted by artifact removal, as

some datasets (e.g. patient 3 and 18) are contaminated by

high-frequency artifacts that particularly overlap with HFO

band. Line-length stands out as the best single discriminative

TABLE II: Evaluated Features

Feature Description

Line-Length (LLN) 1
d

∑
d |x[n]− x[n− 1]|, d = window length

Power (POW) Total spectral power

Variance (VAR) 1
d

∑
d(x[n]− μ)2 where μ = 1

d

∑
d(x[n])

Delta Power (δ) Spectral power in 1-4Hz
Theta Power (θ) Spectral power in 4-8Hz
Alpha Power (α) Spectral power in 8-13Hz
Beta Power (β) Spectral power in 13-30Hz
Gamma Power (γ) Spectral power in 30-80Hz
Ripple Power (Ripple) Spectral power in 80-200Hz
Fast Ripple Power (FR) Spectral power in 200-250Hz @ SR = 500Hz,

Spectral power in 200-600Hz @ SR = 5kHz
HFO Power (HFO) Spectral power in 80-250Hz @ SR = 500Hz,

Spectral power in 80-600Hz @ SR = 5kHz
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Fig. 2: The overall classification performance at various

depths versus number of trees.

feature, in confirmation with the results reported in [8]

and being used as a gold standard in [17]. It captures

both low-amplitude fast and high-amplitude slow activities

during the course of a seizure. As shown in Fig. 4, the

optimal frequency range that exhibits the most discriminating

epileptiform activity is patient-dependent, but in majority of

patients sampled at a sufficiently high rate of 5k, it has a clear

shift from Berger bands (delta, theta, alpha, beta) towards

gamma, fast ripple, and more specifically, the HFOs.

As discussed in [14], HFOs may be missing in some cases

and hard to capture at low sampling rates. In addition, it

is somewhat challenging to capture them due to presence

of artifacts, their low amplitude and duration, and rare

occurrence. However, their potential in early detection of

seizure onset is promising, a factor of great importance in

seizure control devices. Inspired by the early works on ex-

ploration and analysis of HFOs [13], several researchers are

therefore seeking to alleviate these challenges by developing

automatic detection methods [18] to ease the use of HFOs

in clinical routine. Applying circuit techniques to suppress

the effect of artifacts and improve the signal-to-noise ratio
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Fig. 3: Comparison of predictive ability (F1 Scores) of three

different classification methods with an ensemble of five trees

of depth d = 3.

Fig. 4: Feature importance for patients with two different

sampling rates of 500Hz and 5kHz.

in measurements may help to successfully capture them in

future devices.

The results presented above encourage a patient-specific

training step to set the frequency passband of the feature

extraction filter, in order to get the desired performance

for every patient. While the physical implementation of all

spectral power features, then selection and elimination of

failed ones may cause significant hardware cost, the circuit-

level tuning of a band-pass filter is much more practical.

Upon training for each patient, the bandwidth may be fixed,

as the dominant range of rhythmic seizure activity for each

person is nearly consistent over time [10].

IV. HARDWARE-FRIENDLY CLASSIFICATION

As our feature importance studies showed, two features

prove to be dominant: line-length and a single spectral power

specific to each patient. Furthermore as shown in Fig. 2,

very little improvement in performance is achieved by using

trees with a depth of 4 and above. These findings can lead

to proper design solutions to implement hardware-efficient

decision trees, as discussed below.

A. Mixed-Signal Decision Tree Topology

In addition to choosing an inherently simple classifier

such as DT, further hardware saving could be achieved by

performing an initial detection in analog domain. As opposed

to the fully digital approach in [19], we suggest to build a

mixed-signal DT classifier by combining the light analog pre-

detectors with more complex digital features. The proposed

architecture is shown in Fig. 5. Since the final decision in ma-

jority of cases during the operation of device is equal to NO

(i.e., seizures are rare events), the power consumption can

be significantly reduced by performing an initial ultra-low-

power and sensitive analog detection within each channel

(e.g. line-length and a tunable bandpass filter) and keeping

the digital circuitry off during this phase. Once this step is

completed, those channels with a “YES” or “UNCERTAIN”

state are further processed in digital domain. This technique
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Fig. 5: An efficient implementation of DT classifier in two

steps: analog per channel and shared digital.

alleviates the conventional overhead of digitization and high-

complexity digital feature extraction inside the channels.

B. Optimal Channel Allocation upon Learning from Data

A critical challenge of online seizure detection using an

implantable device is that the seizure detection algorithm

and corresponding circuit architecture has to be chosen and

implemented in advance. Using switching techniques and

multiplexing, however, provide some degree of flexibility in

allocation of physically implemented blocks to selected chan-

nels. To partially alleviate this problem, a generic decision

tree architecture with a reasonable depth and complexity can

be implemented on chip. During each comparison step, only

the feature value of the channel appearing in the active node

and path of tree is needed, as shown in Fig. 6. The rest of

array can be switched off to save power. The channels can be

multiplexed either across the entire array, or chosen among

a selected subset of channels which are dominant decision

makers during training. Interestingly, only D × N feature

extraction blocks are required, with D being the depth of tree

and N being the number of trees. The drawback is that the

depth of tree will affect the detection latency. Alternatively,

since the final decision of each tree is made upon completing

the decisions in prior levels, one single feature extraction

block (analog or digital) can be sequentially used per tree,

resulting in significant hardware saving.

V. CONCLUSION

Hardware-efficient seizure detection becomes increasingly

important in systems with hundreds of recording electrodes, a

future trend in neuroscience and neuroengineering. Towardes

this goal, we studied the performance of gradient-boosted

ensemble of low-depth decision trees with a selected subset

of features on a large iEEG database. We show that the

proposed solution performs comparatively well against previ-

ously reported learning models for hardware implementation,

with only a handful of trees of depth three.
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