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Abstract Area coverage is an important research issue
in the field of visual sensor networks (VSNs) because of
the inherent constraints of VSNs, such as non-rechargeable
energy resources and directionality of the sensing range of
camera nodes. The dense deployment of camera nodes makes
it possible to provide a satisfactory area coverage for a longer
duration. At the same time the rest of camera nodes can be
turned off and be scheduled to alternate the active nodes when
it is necessary. In this paper, we define area coverage problem
in VSNs aiming to minimize blind and redundantly covered
grid cells of a desired area and energy distortion of cam-
era nodes. Then we propose two scheduling algorithms for
camera nodes which are randomly deployed to k-cover the
desired area. In the first algorithm named evolutionary cam-
era node scheduling (ECNS), we aim to achieve maximal area
coverage by putting the smallest number of camera nodes
into active mode and to minimize blind and redundantly grid
cells. Since the objectives considered in ECNS conflict each
other, we employ adaptive weighted sum method to formu-
late our objectives into a linear equation and then we propose
a genetic algorithm to find the minimum value of the inte-
grated linear equation. In the second algorithm named energy
aware evolutionary camera node scheduling (EAECNS), we
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propose a method to strike a balance between the energy
consumption of all camera nodes while it is providing satis-
factory coverage of the target area and keeping the number
of redundantly covered grid cells down. We evaluate the per-
formance of both algorithms in terms of coverage, number of
live nodes and redundancy by subsequent simulations. Also,
we show that EAECNS has superior performance in compar-
ison with ECNS and other state-of-the-art algorithms.
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1 Introduction

Visual sensor networks (VSNs) consist of a large number
of camera nodes each of which integrate capabilities of an
image sensor, an embedded processor, and a wireless trans-
ceiver. Camera nodes in a VSN form a distributed multi-
hop wireless network, where each node can capture image,
process data locally and collaborate with other nodes to pro-
vide the system user application-specific information about
intended targets. The powerful collaboration between nodes
and the low cost of VSNs are some of the clear advantages
that make these networks suitable for a variety of applica-
tions. Today, VSNs are widely used in different areas rang-
ing from surveillance, monitoring and traffic controlling to
advanced health care delivery and automated assistance for
elderly people (Akyildiz et al. 2007, 2008; Soro and Heinzel-
man 2009; Hu and Kumar 2003; Reeves et al. 2005; Charfi
et al. 2009).

In many typical VSN applications to successfully accom-
plish sensing tasks, camera nodes should cover the entire
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desired area. Therefore, area coverage problem is considered
an important research issue especially when it comes to inher-
ent characteristics of VSNs such as non-rechargeable energy
resources and directionality of the sensing range of camera
nodes (Guvensan and Yavuz 2011; Costa and Guedes 2010;
Ai and Abouzeid 2006). According to the literature, many
solutions have been proposed so far based on greedy, genetic
and particle swarm optimization algorithms and binary inte-
ger programming methods to solve the problem of area cov-
erage in VSNs (Cheng et al. 2007; Liang et al. 2011; Tezcan
and Wang 2008a, b; Jiang et al. 2010; Kandoth and Chel-
lappan 2009; Li et al. 2009; Morsly et al. 2012; Pham et
al. 2011; Alaei and Barcelo-Ordinas 2010; Aghdasi et al.
2009; Hooshmand et al. 2013). Although the existing solu-
tions provide suitable coverage of desired area, in majority
of them it is assumed that camera nodes have the ability
of rotation. This assumption needs special infrastructure and
invokes high cost which is not satisfying for existing low-cost
camera nodes (Tavli et al. 2012; Seema and Reisslein 2011;
Newell et al. 2010; Kulkarni et al. 2005). However, there are a
few number of solutions which employ high density of fixed
camera nodes in a desired area and solve the area coverage
problem in VSNs (Aghdasi et al. 2009; Hooshmand et al.
2013). Since these solutions do not consider the direct influ-
ence of remaining energy of camera nodes in their schedul-
ing algorithms, they cannot induce a lot of camera nodes
to be alive simultaneously and cannot prolong network life-
time while providing an acceptable coverage of the desired
area.

Thus, in this paper we define area coverage problem
in VSNs while minimizing blind and redundantly covered
grid cells of desired area and minimizing camera nodes
energy distortion as our objectives. We traverse the solu-
tion space with these three conflicting objectives. Then we
rely on evolutionary methods and propose two new cam-
era nodes scheduling algorithms to the defined area cover-
age problem in VSNs. We also simulate these algorithms
with two different VSN scenarios to show effectiveness
of proposed methods and fitness functions. The important
part of our methods is emphasizing on prolonging network
life time considering network power consumption distri-
bution. Our defined fitness function is trying to schedule
node in a fair way to achieve uniform power consump-
tion in entire network. We also compared proposed methods
with two other proposed methods to show effectiveness of
them.

In our first scheduling algorithm for area coverage prob-
lem, we aim to provide maximal coverage by putting the
least number of camera nodes into the active mode. First
we apply geographical information to put the desired area
into grid cells, and then we specify the grid cells covered
by each camera node. We consider the objectives of mini-
mizing blind and redundantly covered grid cells in the first

scheduling algorithm. Second to obtain an acceptable com-
promise between the objectives which are conflicting each
other, we utilize adaptive weighted sum method (Kim and De
Weck 2006) to integrate them in a linear equation. Finally,
we solve the area coverage problem using genetic algorithm
to find the minimum value of the integrated linear equation
which serves as a fitness function. Our proposed schedul-
ing algorithm is named evolutionary camera node scheduling
(ECNS).

A precise investigation on ECNS indicates that in net-
work scenarios where camera nodes are densely deployed
on desired area, this algorithm activates the best group of
camera nodes in each scheduling time. Once the activated
camera nodes die, ECNS replaces them with the best group
of remaining camera nodes and provides area coverage for a
longer duration. However, ECNS has some drawbacks. For
instance, the group of camera nodes activated by ECNS to
cover the desired area will die earlier than other camera
nodes. As a result, based on the position of each camera
node and the grid cells it covers, it is possible that the death
of the first group of the activated nodes increases the number
of blind and redundantly covered grid cells in the desired
area.

Considering the drawbacks of ECNS and aiming to strike
a balance between the remaining energy of all camera nodes,
we set the minimization of camera nodes energy distortion
as our third objective. The obtained result is a modified ver-
sion of ECNS which we named energy aware evolutionary
camera node scheduling (EAECNS). The core of EAECNS
is based on genetic algorithm and it utilizes the integrated
linear equation by weighted sum method (Kim and De Weck
2006) as its fitness function. The integrated linear equation
used in EAECNS considers all the objectives we assumed in
the defined area coverage problem. Our simulations prove the
ability of EAECNS in satisfying all objectives in the defined
area coverage problem (minimizing blind and redundantly
covered grid cells besides minimizing remaining energy dis-
tortion of camera nodes) in comparison with ECNS and state-
of-the-art algorithms.

The rest of this paper is organized as follows. Defin-
ition of the area coverage problem in VSNs is clarified
in the next section. Related works is summarized in Sect.
3. In Sect. 4, the evolutionary camera nodes scheduling
(ECNS) algorithm is proposed for the formulated area cov-
erage problem. In Sect. 5, the modified version of ECNS,
named energy aware ECNS (EAECNS) is proposed to strike
a balance between the energy consumption of all camera
nodes while providing acceptable coverage with a minimum
number of redundantly covered grid cells of the desired
area. Section 6 evaluates the performance of both ECNS
and EAECNS algorithms through a set of extensive sim-
ulations. Finally, Sect. 7 is dedicated to some conclusion
remarks.
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Fig. 1 A gridded sample of
desired area in the area coverage
problem

2 Area coverage problem definition in VSNs

2.1 Preliminary assumptions

2.1.1 Considered area

A boundary region modeled in the form of a quadrilateral in
a 2-D area which is gridded into I rows and J columns is
considered the desired area in the area coverage problem of
VSNs (see Fig. 1).

2.1.2 Camera node model

We use a common 2-D standard model for camera nodes. In
this model, (xCm , yCm ) are coordinates of mth camera node
(Cm), RS is radius of the camera sensing area, α is an angle
representing the bisecting line of sight of camera sensing
direction (rotation angle), θ is the angle of the FoV, and RC

is communication range of a camera node. Figure 2 repre-
sents a camera node model with the given characteristics.
Due to high cost of camera nodes with ability of rotation,
we assume that position of each camera node is fixed and its
rotation angle cannot be changed; moreover, we assume that
all camera nodes have the same characteristics and do not
have the ability of changing FOV angle. Also we take into
consideration that the camera nodes distributed randomly and
uniformly all over of the desired area to provide a k-coverage
for grid cells.

2.2 Area coverage problem objectives

Considering our assumptions in Sect. 2.1 and requirements
of VSN applications, we define the area coverage in a VSN
so to attain following objectives.

• Blind Grid Cells Minimization: To minimize the number
of uncovered grid cells in the desired area and to fulfill
application-specific requirements.

• Redundantly Covered Grid Cells Minimization: To reduce
the number of redundantly covered grid cells in the
desired area and consequently put a minimum number
of camera nodes into the active mode.

Fig. 2 The representation of a camera node in a 2-D space

• Camera Nodes Remaining Energy Distortion Minimiza-
tion: To minimize energy distortion of camera nodes by
keeping their energy consumption balanced. This can be
done by fairly putting some nodes into the active mode
and keeping the rest of them alive for a longer duration.

2.3 Modeling the objectives of area coverage problem

In this section, before modeling the area coverage objectives
some required variables are introduced. A 3-D array named
G I×J×M is the first variable used in the modeling. M is
the maximum number of camera nodes and, I and J are
the maximum number of rows and columns in the gridded
desired area, respectively. In this array the element G(i, j, m)

with binary values (1 and 0) indicates whether or not the
i th row and j th column of the gridded area is covered by
the mth camera node respectively. The second variable in
the modeling is the 1-D array named YM . Element Y (m)

with binary values (1 and 0) indicates whether or not mth
camera node is selected as an activate node. The model of
the three considered objectives of the area coverage problem
is as follows:

To maximize the number of covered grid cells in the
desired area, namely satisfying the Blind Grid Cells Mini-
mization, Eq. (1) is designed to count the number of blind
grid cells.
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BCells =
∑I

i=1

∑J

j=1

×
(

1 −
⌈∑M

m=1 [G(i, j, m) × Y (m)]

M

⌉)
(1)

where M is the maximum number of camera nodes, I and
J are the maximum number of rows and columns, respec-
tively. The variables G( j, j, m) and Y (m) are the same as
introduced in the first paragraph of this section. Increasing
the number of 1’s in YM decreases the value of BCells in Eq.
(1).

To minimize the number of grid cells that are covered
more than once, namely satisfying the Redundantly Covered
Grid Cells Minimization, we introduce Eq. (2) to count the
number of redundantly covered grid cells.

RCells =
∑I

i=1

∑J

j=1

((∑M

m=1
[G(i, j, m) × Y (m)]

)

−
⌈∑M

m=1 [G(i, j, m) × Y (m)]

M

⌉)
(2)

The definition and values of all parameters in Eq. (2) are the
same as mentioned in Eq. (1).

To minimize the difference between the remaining energy
of all camera nodes, namely satisfying the Camera Nodes
Remaining Energy Distortion Minimization, Eq. (3) is
designed to show the amount of distortion of scheduled cam-
era nodes remaining energy

EDistortion =
∑M

m=1
[(EMax − E(m)) × Y (m)] (3)

where EMax is the maximum energy level of all camera nodes
in each scheduling and E(m) is the energy level of mth cam-
era node. Other parameters have definition and values like
Eq. (1).

3 Related works

In Cheng et al. (2007), authors employed a greedy approach
named DGreedy to provide a maximal coverage. They used
a minimum number of sensor nodes by scheduling their
working directions. They assumed that each sensor node
is equipped with multiple directional sensors and can acti-
vate only one at a time. In Liang et al. (2011) authors used
DGreedy algorithm and presented update priority (UP) and
least overlapped-area first (LOF) algorithms. The main dif-
ference between UP and DGreedy algorithms is that UP
dynamically updates priority of nodes while DGreedy uses
permanent priorities. The LOF algorithm follows all of
schemes used in UP but it utilizes the size of overlapped
area to assign priority to each sensor node. Although the
mentioned algorithms increase area coverage, they are only

applicable to scenarios in which multiple directional sensors
with minimal density are deployed in target area.

Tezcan and Wang (2008a) introduced an algorithm in
which each sensor orients its direction to maximize total cov-
erage over the sensing field after determining its position.
They focused on finding the most beneficial orientation for
all sensors to maximize multimedia coverage and minimize
the overlapping regions. Nodes scan their field of view (FoV)
disk to find a visible FoV with the least possible occlusion.
Besides, each sensor checks its FoV to examine whether or
not it has overlap with any other sensor FoV.

Jiang et al. (2010) proposed a coverage-enhancement
method based on genetic algorithm for occlusion-free sur-
veillance model. They considered sub-areas all over the mon-
itored area and assigned them some weights to calibrate their
importance. The simulation results which compare the pro-
posed algorithm with the self-oriented optimizing algorithm
(Tezcan and Wang 2008a) indicated that the proposed algo-
rithm enhances coverage.

Kandoth and Chellappan (2009) considered the issue of
angular mobility to enhance coverage in directional camera
sensor networks. They proposed a new distributed method
called the face-away (FA) algorithm. This algorithm deter-
mines a new working direction for each sensor that is having
the least density of neighbors to minimize the overlapping
areas between neighboring sensors. It uses the exact posi-
tion of neighboring sensors and plots lines to them. There-
after, the largest angle between the adjacent directions is
found and a bisector to that angle is drawn which indicates
the new direction of the sensor. The experimental results
show that FA algorithm achieves a satisfactory coverage
percentage.

Li et al. (2009) presented a greedy approximation algo-
rithm to optimize coverage in a directional sensor network
while activating as few sensors as possible. The authors
named this problem the optimal coverage in directional sen-
sor networks (OCDSN), which can be solved by a greedy
algorithm based on boundary Voronoi diagram. The assistant
sensor, a traditional sensor with the same maximum sensing
range as the directional sensor is used to solve the OCDSN
problem. The objective of assistant sensor is to move through
every edge of the diagram and determine whether the area
is covered by any sensor or not. If not, it finds the nearest
inactive sensor to the edge and changes its state to the active
mode. Then, the activated node rotates its orientation toward
the assistant sensor.

Altogether all of the mentioned algorithms (Cheng et al.
2007; Liang et al. 2011; Tezcan and Wang 2008a; Jiang et al.
2010; Kandoth and Chellappan 2009; Li et al. 2009) increase
area coverage but they require motility which is expensive
and cannot be achieved without infrastructure support (Tavli
et al. 2012; Seema and Reisslein 2011; Newell et al. 2010;
Kulkarni et al. 2005).
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In our previous work in Aghdasi et al. (2009), we pro-
posed a greedy algorithm called fair camera node scheduling
(FCNS) to activate a suitable subset of camera nodes. FCNS
is successful to strike a balance between energy consump-
tion rates of all camera nodes while maximizing area cover-
age. However, it does not consider the Redundantly Covered
Grid Cells Minimization objective for area coverage prob-
lem. Hooshmand et al. (2013) considered a large number of
camera nodes in the desired area for achieving high network
lifetime. They proposed five algorithms for scheduling cam-
era nodes. When one or more of the activated camera nodes
die, their algorithms select some other camera nodes instead
and put them into the active mode. Maximum coverage area
(MA), maximum lifetime and minimum overlap (MLMO)
and symmetric difference (SD) are their three algorithms
which are based on greedy approach, and the two others are
based on genetic algorithm and particle swarm optimization.
Simulation results in Hooshmand et al. (2013) showed that
the SD algorithm has superior performance in comparison to
the other algorithms.

4 Evolutionary camera node scheduling

4.1 A proposed function for minimizing blind and
redundantly covered grid cells

One way to arrive at an acceptable compromise between the
conflicting objectives of Eqs. (1) and (2) and integrate them
into a linear equation is to utilize adaptive weighted sum
method (Kim and De Weck 2006). Using this method, we
define Eq. (4). Our final goal is to solve the defined area cov-
erage problem by assigning proper values to YM to minimize
Eq. (4).

ZECNS = w1 × BCells

B N
Cells

+ w2 × RCells

RN
Cells

(4)

where w1 and w2 are weights of blind and redundantly
covered grid cells minimization objectives, respectively,
and their values should be specified by network admin-
istrator based on application constraints. B N

Cells and RN
Cells

are nadir values of BCells and RCells in Eqs. (1) and (2)
respectively.

The set cover optimization problem is reduced to the
defined area coverage problem, thus, its complexity is
NP-hard (Cormen et al. 2009; Neapolitan and Naimipour
2009) and finding a minimum value for Eq. (4) with
the help of exact algorithms is fairly time consuming.
Therefore, in ECNS we rely on evolutionary algorithms
and propose a genetic algorithm to solve the coverage
problem.

4.2 Proposed genetic algorithm

To schedule camera nodes and find a suitable set of them to
minimize the ZECNS function, we apply a genetic algorithm
with ZECNS as its fitness function. In this algorithm, N is
the number of individuals. Each individual is in the form of
array YM as described in Sect. 2.3 and is composed of M
genes. Each gene can be 1 which means a camera node is
activated or can be 0 to show a turned-off or dead node. In
the initial population which is related to live camera nodes,
all individuals can be initialized to 1s and 0s randomly. Ini-
tialization performs according to probability P (initialization
probability) and based on Eq. (5):

n ∈ {1, . . . , N } and m ∈ {1, . . . , M}
Cm

n =
{

1 if (E(m) > 0) and (Randomm
n ≤ P)

0 otherwise
(5)

where E(m) is the remaining energy of the mth camera node
and Randomm

n is a random number created for mth allele in
nth individual. Finally, CN×M is the population matrix.

Selection operator is the next component of our proposed
solution. This operator uses binary tournament selection to
transfer individuals from current population to mating pool.
To create a pool of L mating individuals, an individual with
smaller fitness value from two randomly-chosen individu-
als of the current population is selected, and this process is
repeated L times to create the mating pool (MPL×M ).

To produce a new population, individuals of the mating
pool are divided into L/2 pairs. A proportion of PC of the
pairs is transferred to the new population after perturba-
tion (offspring creation processes). Perturbation is composed
of two processes: crossover and mutation. In the crossover
process, two cut points r1 and r2 are selected randomly in
the range of [1 . . . M] and alleles of participating parents are
swapped between these two points. (see the Eq. 6 for two-
point crossover)

l ∈ {1, . . . , L}
MPl = (MP1

l , . . . , MPr1
l , MPr1+1

l+1 , . . . , MPr2
l+1,

MPr2+1
l , . . . , MPM

l )

MPl+1 = (MP1
l+1, . . . , MPr1

l+1, MPr1+1
l , . . . , MPr2

l ,

MPr2+1
l+1 , . . . , MPM

l+1)

(6)

Next, each allele of the produced new individuals (offspring)
is mutated with a probability Pm in a mutation process based
on Eq. (7):

l ∈ {1, . . . , L} and m ∈ {1, . . . , M}
MPm

l

=
{

1 − MPm
l if (E(m) > 0) and (Randomm

l ≤ Pm)

MPm
l otherwise

(7)
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Fig. 3 ECNS algorithm
flowchart

After producing new individuals, the fitness value of each off-
spring is calculated. Next, the individuals in current CN×M

and MPL×M are combined and N individuals which have
the lowest fitness values are picked to generate a new pop-
ulation (new CN×M ). The selection, crossover, mutation,
and combination processes are repeated to generate a new
population until the termination condition of genetic algo-
rithm is satisfied. In the final population, the best individ-
ual which has the least fitness value is considered to be the
coverage optimization solution for ECNS and is formed the
best YM . Figure 3 depicts flowchart of the proposed ECNS
algorithm.

5 Energy aware evolutionary camera node scheduling

The ECNS algorithm initially activates the best group of cam-
era nodes to provide maximal coverage of the desired area
with minimal redundancy. It replaces the activated camera
nodes with the best subset of remaining nodes just when-
ever their energy ends up. Obviously, ECNS does not acti-
vate camera nodes fairly so the energy of all camera nodes
do not consume at an even rate. Nonetheless, fair activation
of camera nodes, namely Camera Nodes Remaining Energy
Distortion Minimization is essential to prolong the lifetime
of each camera node and consequently keep most of them
alive for a longer duration.

To minimize camera nodes energy consumption distor-
tion, we modify ECNS algorithm and propose energy aware
evolutionary camera nodes scheduling (EAECNS) which
takes advantages of all objectives of defined area coverage
problem. Since there should be a tradeoff between all objec-
tives, we use the adaptive weighted sum method (Kim and
De Weck 2006) and integrate them into a linear equation. We
define ZEAECNS function based on Eq. (8).

ZEAECNS = w1 × BCells

B N
Cells

+ w2

× RCells

RN
Cells

+ w3 × EDistortion

E N
Distortion

(8)

where w1, w2, BCells, B N
Cells, RCells, and RN

Cells are the same
parameters defined in Eq. (4), w3 is weight of fair activation
objective and its value should be determined by the network
administrator based on application requirements. Parameter
E N

Distortion is the nadir value for EDistortion in Eq. (3).
Our goal is to assign a proper value to YM that gets min-

imized value for Eq. (8); therefore, in EAECNS we uti-
lize evolutionary algorithms and propose a genetic algo-
rithm in which Eq. (8) is its fitness function. The genetic
algorithms used in ECNS and EAECNS are the same
except for their fitness functions are different. So there is
no need to explain the genetic algorithm in this section
again.
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6 Performance evaluation

6.1 Simulation setup and assumptions

To evaluate the performance of ECNS and EAECNS, we
implemented our simulations in MATLAB 7.6 executed on
a Pentium Dual-Core CPU 2.5 GHz PC.

The desired area is put into grid cells and contains 18
camera nodes with the same characteristics described in
Sect. 2.1.2. The camera nodes distributed randomly and
uniformly to two-cover 90 % of a target area of size
50 m × 50 m. The size of each grid cell in the target
area is 1 m2 and the sensing range of camera nodes is
35 m with FoV of 75◦ and communication range tuned up
to 70 m. We assume that each camera node has an ini-
tial energy of 10 J and consumes 1 J of its energy when
it is activated in each scheduling. Since camera nodes are
distributed randomly and uniformly in the desired area,
we deployed camera nodes four times randomly with uni-
form distribution in the desired area making four differ-
ent scenarios. Then we conducted simulations considering
those scenarios and made final conclusions using the aver-
age of obtained results. To show performance of proposed
algorithms, we compare simulation results with the results
obtained from our previously designed FCNS algorithm
(Aghdasi et al. 2009) and one of the state-of-the-art algo-
rithms named SD (Hooshmand et al. 2013). Table 1 shows
the parameters of genetic algorithm along with their val-
ues.

Existing parameters in fitness functions (ZECNS, ZEAECNS)

which are based on desired area and camera nodes have con-
stant values. By taking into consideration the characteristics
of desired area and information of their nodes in simulations,
the values of B N

Cells and RN
Cells are 2,500 and 7,500 grid cells,

respectively. Also, E N
Distortion is set to 180 J in ZEAECNS. The

weights of blind and redundantly grid cells and camera nodes
remaining energy distortion minimization objectives should
be initialized to proper values which will satisfy application

Table 1 Genetic algorithm parameters

Parameters Values

Individual size (K) 18

Number of individuals (N) 126

Mating pool size (M) 100

Initialization probability (P) 0.5

Maximum number of generations 50

Crossover rate (Pc) 0.95

Mutation rate (Pm) 0.1

Crossover type Two-point

Selection type Binary tournament

requirements. Subsequently we explain how these weights
should be determined.

First, we introduce a methodology for finding the value
of weighting parameters in Eq. (8) (ZEAECNS). It should be
taken into account that having satisfactory coverage of the
target area is a vital requirement in many applications. So we
put more emphasis on the objective of minimizing blind cov-
ered grid cells rather than the other two objectives. The satis-
factory value for coverage is analogous to maximum number
of blind covered grid cells which is tolerated by application
and should be determined by network administrator. More-
over, fairly activating camera nodes is more important than
minimizing redundancy. Keeping this in mind, the relation
w1 > w3 > w2 is acceptable for the weights in Eq. (8). In
addition, whereas the objectives in ZEAECNS have different
types, we have w1 + w2 + w3 = 1 according to the adaptive
weighted sum method (Kim and De Weck 2006).

Applying these relations, the value of weight parameters
in ZEAECNS are w1 = 0.65, w2 = 0.05 and w3 = 0.3 in all
simulations. In Eq. (4) only the first relation (w1 > w3 >

w2) is applicable, therefore w1 and w2 are 0.65 and 0.05,
respectively, in all steps of simulations.

6.2 Performance evaluation when the initial energy of
camera nodes are homogeneous

In this section, we assume that all camera nodes have sim-
ilar amount of initial energy (10 J). We run FCNS, ECNS,
EAECNS and SD algorithms for 25 scheduling times with
each of them operating in four different scenarios. In every
running step, which is based on putting selected nodes into
the active mode, the minimum average of blind grid cells, the
number of live nodes and the number of redundantly covered
grid cells are computed.

6.2.1 The number of blind grid cells

The simulation results shown in Fig. 4, indicates that
EAECNS algorithm can provide 90 % coverage of desired
area in 15 scheduling times and makes the average number
of blind grid cells smaller than 250. However ECNS, SD,
and FCNS can provide 90 % coverage of desired area just in
10, 10 and 13 scheduling times respectively. By taking into
consideration the functionality of EAECNS algorithm to pro-
vide 90 % coverage of desired area, it can prolong network
lifetime 1.15 times more than FCNS. Also it can prolong
network lifetime 1.5 times more than ECNS and SD. The
coverage by ECNS and SD cannot reach higher than 90 %
after the 10th scheduling due to this regarding the remaining
energy of camera nodes while they are selecting a set of active
nodes. This will result in selecting nodes repeatedly in some
scheduling times and causes their energy to end up after the
10th scheduling. As a result other alive camera nodes which
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Fig. 4 The comparison
between ECNS, EAECNS,
FCNS, and SD in term of blind
grid cells
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are selected to active mode after 11th scheduling cannot pro-
vide desired coverage.

We want to evaluate the minimum required coverage for
better network functionality and providing 75 % coverage of
desired area for applications (the number of blind grid cells
are fewer than 625). The simulation results drawn in Fig. 4
imply that running FCNS algorithm can provide 75 % cov-
erage of desired area (making the average number of blind
grid cells fewer than 625) by 14 scheduling times. However
EAECNS, ECNS and SD perform better than FCNS and can
leave the average number of blind grid cells fewer than 625 up
to 20 scheduling times and provide 75 % coverage of desired
area. Although the functionalities of EAECNS, ECNS and
SD in prolonging network lifetime are equal, the average
number of blind grid cells until 20th scheduling time which
provided by them at the same time are 176, 175 and 361 grid
cells, respectively. By taking into account the better network
functionality in simulations (providing 90 % minimum cov-
erage and 75 % coverage of area) and the obtained results,
we can conclude that EAECNS algorithm has better func-
tionality in providing proper coverage in comparison with
other algorithms.

6.2.2 The number of live camera nodes

The simulation results shown in Fig. 5 indicate that EAECNS
can keep alive a high percentage of camera nodes for a notice-
ably longer duration of time in comparison with ECNS, SD
and FCNS. It strikes a balance between remained energy
of camera nodes. For instance the numerical results in Fig. 5
show that the percentage of alive nodes in 15th scheduling for
EAECNS, ECNS, SD, and FCNS at the same time are 83.34,
55.56, 44.45, and 55.56 %, respectively. In 20th scheduling
time, the percentage of live nodes for EAECNS, ECNS, SD,
and FCNS are 66.67, 55.56, 44.45, and 0 %, respectively.

6.2.3 The number of redundantly covered grid cells

The simulation results shown in Fig. 6 imply that up to
10th scheduling time, ECNS algorithm provides less average
redundancy than the other algorithms but the average number
of redundantly covered grid cells up to 20th scheduling time
in which EAECNS, ECNS, and SD can provide coverage
more than 75 % are 1,479, 1,647, and 1,643 grid cells, respec-
tively. Regarding this finding, EAECNS in redundantly cov-
ered grid cells performs better than the other algorithms.
Also, we know that FCNS does not consider the objective
of minimizing the number of redundantly covered grid cells
so the number of redundantly covered grid cells in this algo-
rithm is higher than the others. For instance, while FCNS
provides 75 % coverage of the desired area in 14th schedul-
ing times the average number of redundantly covered grid
cells reaches 3,424.

6.3 Performance evaluation when the initial energy of
camera nodes are heterogeneous

In this section, we evaluate the performance of EAECNS,
ECNS, SD, and FCNS when they are applied to camera nodes
supplied with different amounts of initial energy. In our sim-
ulations, we assume that two-third of camera nodes has 10 J
and the rest have 5 J of initial energy. We run all the algo-
rithms in four scenarios and in each run we calculate the
minimum average number of blind grid cells, the number of
live nodes and the number of redundantly covered grid cells.

6.3.1 The number of blind grid cells

The simulation results shown in Fig. 7 indicate that EAECNS
algorithm can provide 90 % coverage of the desired area with
12 scheduling times and it makes the average of blind grid
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Fig. 5 The comparison
between ECNS, EAECNS,
FCNS, and SD in terms of live
camera nodes
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Fig. 6 The comparison
between ECNS, EAECNS,
FCNS, and SD in terms of
redundantly covered grid cells
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Fig. 7 The comparison
between ECNS, EAECNS,
FCNS, and SD in terms of blind
grid cells
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Fig. 8 The comparison
between ECNS, EAECNS,
FCNS, and SD in terms of live
camera nodes

0 2 4 6 8 10 12 14 16 18 20 22
0

2

4

6

8

10

12

14

16

18

20

Scheduling Time

A
ve

ra
ge

 N
um

be
r o

f A
liv

e 
C

am
er

a 
N

od
es

EAECNS
ECNS
SD
FCNS

15

Until 90% of the Area has been
Covered

Until 75% of the Area has been
Covered

11

cells smaller than 250 grid cells. However, ECNS, SD, and
FCNS can provide 90 % coverage of desired area just in 10
and 11 scheduling times, respectively. By take into consid-
eration the functionality of EAECNS algorithm in providing
90 % coverage of desired area, it can prolong network life-
time 1.15 times more than FCNS and 1.5 times more than
ECNS and SD. The coverage provided by ECNS and SD can-
not get higher than 90 % after the 10th scheduling because
the remaining energy of camera nodes are not considered
while they are selecting a set of active nodes. This will result
in selecting some nodes repeatedly in the first ten scheduling
times so their energy will end up after the 10th times. The
remaining nodes which are selected to active mode after 11th
scheduling time cannot provide desired coverage.

Now we want to evaluate the minimum required coverage
for a better network functionality and providing 75 % cover-
age of desired area for applications (the number of blind grid
cells are fewer than 625). The simulation results shown in
Fig. 7 imply that FCNS algorithm can provide 75 % cover-
age of desired area (making the average number of blind grid
cells fewer than 625) by running the algorithm in 12 times
schedule. However, EAECNS, ECNS, and SD perform bet-
ter than FCNS. They can leave the average number of blind
grid cells fewer than 625 up to 18th, 15th, and 15th schedul-
ing times, respectively, and provide 75 % coverage of desired
area. By taking into account better network functionality and
providing 75 % minimum coverage, EACNS prolong net-
work lifetime by 1.2 times more than ECNS and SD, and by
1.5 times more than FCNS. The average number of blind grid
cells in EACNS, ECNS, SD and FCNS are 217, 159, 296,
and 129, respectively, to provide 75 % minimum coverage of
desired area.

6.3.2 The number of live camera nodes

The simulation results shown in Fig. 8 indicate that EAECNS
can keep a high percentage of camera nodes alive for a notice-
ably longer duration than ECNS, SD, and FCNS by finding
balance between camera nodes remained energy. For instance
the numerical results in Fig. 8 indicate that the percentage
of the number of alive nodes in 12th scheduling time for
EAECNS, ECNS, SD, and FCNS are simultaneously 88.9,
55.56, 44.45, and 55.56 %. In 18th scheduling time the per-
centage of the number of alive nodes for EAECNS, ECNS,
SD, and FCNS are 50, 33.34, 27.78, and 0 %, respectively.

6.3.3 The number of redundantly covered grid cells

The simulation results presented in Fig. 9 indicate that the
average number of redundantly covered grid cells while
EAECNS, ECNS, SD, and FCNS are able to provide more
than 90 % coverage, are 1,407, 1,548, 1,683, and 3,217
grid cells, respectively. Moreover, while EAECNS, ECNS,
SD, and FCNS are able to provide more than 75 % cov-
erage, the average number of redundantly covered grid
cells are 1,399, 1,555, 1,540, and 3,140 grid cells, respec-
tively. Considering the obtained results we can say that
EACNS in the case it provides 90 and 75 % minimum
coverage and purposes a better functionality, operates bet-
ter than the other algorithms and makes a reduced num-
ber of redundantly covered grid cell in comparison with
them. The lack of minimizing redundantly covered grid
cells in FCNS results in a higher redundantly covered grid
cells.
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Fig. 9 The comparison
between ECNS, EAECNS,
FCNS, and SD in terms of
redundantly covered grid cells
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7 Conclusion

In this paper, we studied the importance of area coverage in
VSNs and proposed two evolutionary-based coverage algo-
rithms to densely deployed camera nodes in a desired area.
In both algorithms, we integrated the considered area cov-
erage by contrasting the objectives into the linear equations
and using adaptive weighted sum method. We used a genetic
algorithm to find the minimum value of each equation (pro-
posed fitness functions). The weight of each objective in both
fitness functions can be adjusted based on its importance
compared to the other objectives, thereby we ensured flexibil-
ity. Our first algorithm, evolutionary camera node scheduling
(ECNS), effectively provided maximum area coverage and
kept redundancy at its minimum value. Our main motiva-
tion to propose the second algorithm was the advantages of
keeping all camera nodes alive as long as possible while it
provides satisfactory coverage of the target area for a longer
duration of time. Therefore, in the second algorithm, energy
aware evolutionary camera node scheduling (EAECNS), we
focused on energy consumption of all camera nodes at an
even rate by activating nodes fairly while satisfying the two
objectives considered in ECNS.

We evaluated the average performance of ECNS and
EAECNS in two groups of network scenarios in compari-
son with our previous work named, FCNS (Aghdasi et al.
2009) and one of the state-of-the-art algorithms named, SD
(Hooshmand et al. 2013). In the first group, all camera nodes
had the equal amount of initial energy and in the second
one they were initially supplied with different amounts of
energy. The simulation results indicated that in both groups
of network, EAECNS outperforms ECNS, FCNS, and SD
algorithms in providing acceptable coverage of the desired

area and keeping more camera nodes alive for a longer dura-
tion of time. Finally, the overall performance of EAECNS
in terms of redundantly covered grid cells was better than
ECNS, FCNS, and SD algorithms.
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